种植体修复上部义齿三种不同(牙合)面设计的三维有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
牙齿缺失是临床上常见的疾病,常见的病因是龋病和外伤等。种植修复是一种前景光明的修复方法。骨-种植界面骨整合的形成以及骨-种植界面的应力传导是影响种植修复成功的关键因素,随着骨-整合理论的成熟以及种植材料性能的提高,如何使骨-种植体界面的应力传导更为合理是当前种植修复研究的重点。本研究使用三维有限元的方法对单颗种植义齿在不同(牙合)面设计的条件下(牙尖斜度分别为45度、35度、25度)的应力分析,以指导种植修复临床,提高种植修复的成功率。
     使用螺旋CT对一志愿患者(右下第一磨牙行种植修复,FRIALIT Stepped Cylinder型,直径6.5mm,长度13mm,(牙合)面为金瓷冠,SHOFO)进行下颌骨扫描,在数字化仪中读取下颌骨各边缘及种植体边缘,将读取数据编写成ANSYS程序文件,在ANSYS中进行三维重建,对三维模型行网格划分,按照咀嚼力均值加载并进行受力分析,结果显示:种植体颈部的骨皮质为应力集中区,但应力的最大值均在种植体根端部舌侧。在牙尖斜度为45度时,在加载150牛顿的面力时,von Mises应力最大值为65.42MPa加载为300牛顿的面力时,von Mises应力最大值为130.84MPa;在牙尖斜度为35度时,在加载150牛顿的面力时,von Mises应力最大值为55.81MPa,加载为300牛顿的面力时,von Mises应力最大值为90.05MPa;在牙尖斜度为25度时,在加载150牛顿的面力时,von Mises应力最大值为21.4MPa,加载为300牛顿的面力时,von Mises应力最大值为40.74MPa。
     结论:单颗种植修复中受力时应力集中在种植体颈部的骨皮质及种植体根端区,在三种设计中,尖斜度为25度时von Mises应力最小且不会引起骨整合界面的破坏。所以在修复中应优化义齿的(牙合)面设计,提高种植修复的成功率。
Teeth missing represents a group of clinically common disease, which mainly caused by caries and trauma, et al. Implant reparation is a promising method for those cases. The interface of bon-implant and stress transference of the bone-implant interface is key factors in success of implant rehabilitation. With the development of the implant material properties and maturity of osseointergration theory of the bone-implant interface. no\v how to make stress on the interface distributed reasonable is an attractive topic to researchers. This paper focus on stress distribution of the implant in three different models which cusp inclination are 45, 35, 25 degrees respectively The method we use is 3-dimensional finite element analysis(3D-FEA).
    A volunteer's mandible was scanned using helix computer tomography and then we got the data of the mandible's margin in digital instrument. We wrote ANSYS program files using these data. Three models were created, meshed, analyzed in computer. The result is below: there was a stress concentration area in the cortical bone around implant neck, but the maximum of stress located on the lingual side of implant's apical area. When cusp inclination was 45 degree and the load was 150 Newton, the maximum of von Mises stress was 65.42MPa and the maximum of von Mises stress was 130.84MPa when the load was 300 Newton; when cusp inclination was 35 degree and the load was 150 Newton, the maximum of von Mises stress was 55.81MPa and the maximum of von Mises stress was 90.05MPa when the load was 300 Newton; when cusp inclination was 25 degree and the load was 150 Newton, the maximum of von Mises stress was 21.4MPa and the maximum of von Mises stress was 40.74MPa when the load was 300 Newton.
    Conclusively, stress concentration located on cortical bone around the neck of implant and apical area of implant. Among three designs, 25 degrees inclination of
    
    
    cusp was appropriate. In this situation, von Mises stress was minimal and didn't destroy bone-implant interface. Thus in clinical practice, we should optimize design of occlusal surface in order to improve success rate of implant rehabilitation. We think that 25 degrees inclination of cusp is ideal.
引文
1. Adell R, Lekholm U, Branemark PI. A 15-year study of osseointegrated implant in the treatment of edentulous jaw. Int J Oral Surg 1981; 10:387—416.
    2. Albrektsson T, Dahl E, Enbom L, et al. Osseointegrated oral implant. A multicenter study Of 8139 consecutively inserted Noblepharma implant. J Periodontol 1985; 59:287-96.
    3. Zarb GA, Schmitt A. The longitudinal clinical effectiveness of osseointegrated dental implants: the Toronto study. Part Ⅰ: surgical results. J Prosthet Dent 1990;63:451-7.
    4.徐君伍主编。口腔修复临床与理论。人民卫生出版社,北京。1999:545。
    5 Batenberg RH, Raghoebar GM, et al. Madibular overdentures supported by two or four endosteal implant. A prospective, comparative study, Int J Oral-Maxillo-fac Surg. 1998DEC, 27(6):435—9.
    6. Meijer HJ, Starmans JM,William HA, et al. A three-dimensional finite element study on two versus four implant in an edentulous mandible. Int. J Prosthodont, 1994 May-June;7(3):271-9.
    7. Korioth,TW; Johann, AR. Influence of superstructure shape on implant stress during simulated posterior biting. J-Prosthet-Dent. 1999 Jul;82(1):67-72.
    8. Sertgoz-A;Guvener-S. Finite analysis of effect of superstructure materials on stress distribution in an implant-supported fixed prosthesis. Int-J-Prosthont. 1997, Jan-Feb; 10(1):19-27.
    9.何佳凝,岑远坤,毛祥彦,等。全下颌种植义齿及其支持组织应力的三维有限元分析。Ⅵ不同上部结构对覆盖义齿应力分布的影响。华西口腔医学杂志。1997,15(1):67。
    10.毛政严,毛祥彦,鲜苏秦,等。全下颌种植义齿及其支持组织应力的三维
    
    有限元分析。固定式种植义齿三种上部支架设计的应力分析比较。华西口腔医 学杂志,1996,14(4) :307。
    11. Uysal-H; Iplikcioglu-H; Avci-M; et al. Efficacy of the intromobile connector in implant tooth-supported fixed prosthesis: an experimental stress analysis. Int-J-Prosthodont. 1996 Jul-Aug;9(4) :355-61.
    12. Sergoz A, Gurener S. Finite element analysis of effect of cantilever and implant length on stress distribution in an implant-supported prosthesis. J Prosthet Dent 1996,Aug; 76(2) : 165-9.
    13. Hart RT, Hennebel VV, Thongreda N, et al. Modeling the biomechanics of the mandible: A three-dimensional finite element study. J Biomech, 1992,25(3) : 261.
    14. Dang DT, Dilly GL, Krejci RF. Stress analysis of tooth restored with a post and corn. J Dent Res, 1981,60(7) : 1301-1310.
    15. Richard A, Rennhardt YC. Periodontal ligament stress in initiation of occlusal traumatism. J Periodontal Res, 1984,19(3) :238-246.
    16. Meijer HJA. Starmans FJM, Bosman F, et al. A comparison of three finite element models of an edentulous mandible provided with implants. J Oral Rehabil, 1993,20:147-157.
    17. Stegaroiu R, Sato T, Kusakari H, et al. Influence of restoration type on stress distribution in bone around implants: A three-dimensional finite element analysis. Int J Oral Maxifac Implant, 1998, 13:82-90.
    18 皮昕主编。口腔解剖生理学,第三版。人民卫生出版社,北京。1999:193。
    19 Lundgren D, Falk H, Laurell L. Influence of number and distribution of occlusal cantilever contacts on closing and chewing forces in dentitions with implant-supported fixed prostheses occluding with complete dentures. Int J Maxillofac Implants 1989;4:277-283.
    20 Goel VK, Khear SC, Singh K. Clinical implication of the enamel and dentin to
    
    masticatory loads. J Prosthet Dent, 1990;64:446
    21 于海洋,杜传诗,巢永烈。三维有限元法分析瓷贴面厚度对三型瓷贴面复合体应力分布的影响。华西口腔医学杂志,1998,16(4):365-367。
    22 Akagaw Y, Wdamtoto M, Sato Y. The three dimensional bone interface of an osseointegrated implant: a method for study. J Prosthet Dent, 1992; 68:813.
    23 骆小平,欧阳官,董研,等。CT扫描及CAD技术在建立无牙下颌骨及全口义齿三维有限元模型应用研究。使用口腔医学杂志,1996,12(4):243~245。
    24 胡凯,刘洪臣,方竞,等。探讨人颞下下颌关节三维有限元实体建模方法。口腔颁面修复学杂志。2000,1(1):26。
    25 周学军,赵志河,赵美英,等。下颌骨三维有限元模型的边缘约束设计。华西口腔医学杂志。1999,17(1):29-31。
    26 杨辉,刘洪臣,荣起国,等。磁共振影像颞下颌关节三维有限元模型的建立。口腔颁面修复学杂志。2000,1(1):20。
    27 George Papavasiliou, Phophi Kamposiora, Stephen CB, et al. Three-dimensional finite single tooth implant as function of bony support, prosthesis type, and load during function. J Prosthet Den. 1996 Dec;76(6):633-640.
    28 Meijier HJA, Starmans FJM, Steen MHA. Loading conditions of endosseous implants in an edentulous human mandible: a three-dimensional, finite study. J Oral Rehabil. 1996, 23:757~763.
    29 Hong-so Yang, Lisa A. Lang, David Felton. Finite element stress analysis on the effect of splinting in fixed partial dentures. J Prosthet Den. 1999 Jun;81(6):721-727.
    30 I P van Rossen, L H Braak, C de Putter, et al. Stress-absorbing elements in dental implants. J Prosthet Den. 1990,Aug;64(2): 198-205.
    31 Rieger M R, Adams W K, Kinzel. A finite element survey of eleven endosseous implants. J Prosthet Den. 1990,Apr;63(4):457-465.
    32 Lewinetein I, Bank-Sills L, Eliasi R. Finite element analysis of new system (IL)
    
    for supporting an implant-retained cantilever prosthesis. Int J Oral Maxillofac Implants 1995;10:355-366.
    33 White SN, Caputo AA, Anderkvist T. Effect of cantilever length on stress transfer by implant-supported prosthesis. J Prosthet Den. 1994, 71:493-499.
    34 Clelland NL, Ismail YH, Zaki HS, et al. Three-dimensional finite element stress analysis in and around the Screw-Vent implant. Int J Oral Maxillofac Implants. 1991;6:391-398.
    35 徐君伍主编。口腔修复临床与理论。人民卫生出版社。1999:19。
    36 Balshi TJ. First molar replacement with an osseointegrated implant pair. Quintessence Int, 1990,21:61-65.
    37 Balshi TJ, Hendez RE, Pryszlak MC, et al. A comparative study of one implant versus two replacing a single molar. Int J Oral Maxillofac Implants, 1996,11:372-378.
    38 Stegaroiu R, Kusakari H, Nishiyama S, et al. Influence of prosthesis material on stress distribution in bone and implant: A three-dimensional finite element analysis. Int J Oral Maxillofac Implants, 1998,13:781-790.
    39 巢永烈,杨永丰,赵云风,等。天然牙-末端种植牙固定桥的受力分析。华 西口腔医学杂志,1995,13(1) :6-9。
    40 Melo C, Matsushita Y. Comparative stress analysis of fixed free-end osseointegrated prosthesis using finite element method. J Oral Implantol, 1995,290-294.
    41 Ciftci Y, Canay S. The effect of veneering materials on tress distribution in implant-supported fixed prosthetic restorations. Int J Oral Maxilloffac Implants.2000,15(4) :571-582.
    42 Ivanoff CJ, Gmdahl K, Sennerby L, et al. Influence of variations in implant diameters: A 3-to 5-year retrospective clinical report. Int J Oral Maxilloffac Implants. 1999,14:173-180.
    
    
    43 Evans FG. Mechanical properties of bone. Springfeild: Charles C Thomas,1973:83-94,123-161.
    44 Yamada H. Strength of biological materials. Huntington: RE Krieger, 1973:19-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700