西南地区17种(33份)不同来源的野生悬钩子属植物种间遗传多样性的RAPD分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国西南地区是悬钩子属植物(Rubus L.)的多样性中心,拥有丰富的种质资源,其野生资源在各种抗性、易成活性、果实风味都优于从国外引进的栽培品种,具有重要的栽培价值和育种价值。本实验采用RAPD分子标记方法,对采自西南地区空心莓组(Sect.Idaeobatus)和木莓组(Sect.Malachobatus)10个亚组的33份野生悬钩子属植物材料进行遗传多样性分析,以期为合理利用西南地区悬钩子属野生种质资源和将我国特有的悬钩子属植物基因资源引入现有优良品种,创造出新的适合我国悬钩子属植物生产的优良品种提供参考。其试验结果如下:
     (1)通过比较CTAB法、SDS法和核DNA法等三种不同DNA提取方法表明,核DNA法是提取悬钩子属植物DNA的一种理想方法,能得到高纯度高质量的DNA。
     (2)从85条引物中筛选出扩增效果较好的25条引物用于扩增供试材料,所有引物能够对材料进行有效的分离。得到扩增条带589条,每个引物扩增的DNA带数在19~33条之间,平均每个引物扩增23.56条带,其中多态性带580条,多态性为98.47%,其中16条引物扩增的多态性条带百分率高达100%,表现出较高的多态性。
     (3)通过反复试验建立的适用悬钩子属植物的RAPD技术最佳反应体系为:25μL反应体系中含模板DNA20ng,10×buffer2.5μL,Mg~(2+)2.0mmol/L,引物0.6μmol/L,dNTPs0.24mmol/L,TaqDNA聚合酶1.5U。
     反应程序为:94℃预变性4min;94℃变性1min,36℃退火50sec,72℃延伸2min,45个循环;完成最后一个循环后,在72℃继续延伸10min,然后在4℃保温。最后用1.5%的琼脂糖凝胶电泳检测其扩增产物。
     (4)PCR-RAPD结果分析表明,我国西南地区的野生悬钩子属植物遗传多样性非常丰富,从分子水平上支持西南地区是悬钩子属起源中心的观点,且能为扩大树莓育种范围提供多种选择。
     (5)遗传差异分析表明,组和亚组间的进化顺序与形态学标记、孢粉学标记和细胞学标记相吻合,这为研究悬钩子属的系统演化提供了分子生物学依据。
     (6)33份材料可分为9类,空心莓组(Sect.Idaeobatus)和木莓组(Sect.Malachobatus)的亚组间交叉聚类,表明了野生悬钩子属植物遗传关系的复杂性。供试材料间的遗传距离(GD)变异范围为0.1957~0.9088,平均为0.5397。来源于雅安老板山和张家山的红泡刺藤(R.niveus)遗传距离最近,GD值为0.1957,来源于雅安的山莓(R.corchorifolius)与来源于西充的陕西悬钩子(R.piluliferus)的遗传距离最远,GD值为0.9088,聚类结果与形态学标记结果基本相似。
     (7)以上结果表明了RAPD技术在悬钩子属植物资源的鉴定、分类及遗传多样性研究上应用的可行性。
The southwest of China was the center of diversity of Rubus L. and its gerrnplasm resource was abundant. Their resistance to various enviroments, survival rate and fruit flavour were better than the introduced cultivars from abroad, which were a very important characteristic for Rubus breeding. The genetic diversity of 33 materials belonging to 10 subsetion of Sect. Idaeobatus and Sect. Malachobatus collected from southwest of China were studied by using RAPD analyses in order to utilizate the wild germplasm resource better and introduce their special gene to varieties and create new superior cultivars. The results were as follows:
     (1) Compared DNA extraction of CTAB method, SDS method and nuclear DNA method. The results were shown that nuclear DNA method was a better DNA extraction method of Rubus L., the purity and quality of DNA was high.
     (2) The 85 random primers screened, 25 primers exhibited sufficient polymorphic band patterns. All the primers can discriminate the materials. Total 589 bands were produced, in which 580 bands were polymorphic. The numbers of DNA bands amplified by each primer were between 19 and 33. The average numbers of DNA bands amplified by each primer were 23.56, the percentage of polymorphic bands was 98.47%, in which the percentage of polymorphic bands of 16 primers was 100%. The materials showed high polymorphism.
     (3) The optimum reaction system of RAPD-PCR and program for Rubus L. were established. DNA was amplified in 25μL using the reaction mixtures containing 1×PCR buffer, 2.0mmol/L Mg~(2+), 0.24mmol/L of dNTPs, 1.5U of Taq Polymerase, 0.6μmol/L of primer, 20ng of template DNA. The PCR reactions were performed in a thermal cycler (eppendorf) programmed for 1 cycle of 4 min at 94℃followed by 45 cycles of 1 min at 94℃, 50 sec at 36℃and 2 min at 72℃for denaturing, primer annealing and extension, respectively. The last cycle was followed by incubation for 10 rain at 72℃. Amplification products were conserved at 4℃. Amplification RAPD products were analysed by gel electrophoresis run in 1.5% agarose.
     (4) The result of PCR-RAPD showed the genetic diversity of Rubus L. was abundant in the southwest of China, and it supported the view that the southwest of China was the center of the origin of Rubus L. at molecule level. Abundant germplasm resource could provide more breeding materials and enlarge breeding extent.
     (5) The genetic diversity of materials was studied and obtained evolution seriatim of subsetion. The results of RAPD analyses were coincident with morphological markers, pollen morphological markers and cytological markers. It demonstrated molecule markers could supply the molecular biology evidence for studying phylogeny of Rubus L..
     (6) The 33 materials were clustered into 9 groups. The results showed that the genetic relationship and diversity of wild Rubus L. were very complex. The genetic distance among 33 materials were between 0.1957~0.9088. The genetic distance between R. niveus from ya'an laoban mountain and zhangjia mountain was the nearest (0.1957), while R. corchorifolius from ya'an and R. piluliferus from xichong was the farthest (0.9088). The RAPD results were roughly resemble with the materials' morphology.
     (7) RAPD analyses were useful for identification, classification and genetic diversity analyses of germplasm resource of Rubus L..
引文
[1] 孙长清,邵小明,王黎明,祝天才,邹国辉.悬钩子属植物的开发利用概述[J].广西植物,2004,24(6):578~582.
    [2] 张志勇,赖小荣.井冈山悬钩子属植物资源的初步研究[J].江西农业大学学报,1999,21(3):395~398.
    [3] 王小蓉,汤浩茹,邓群仙.中国悬钩子属植物多样性及品种选育研究进展[J].园艺学报,2006,33(1):190~196.
    [4] 刘建华,张志军.树莓产业化开发的现状与展望.天津农业科学,2004,10(3):45~47.
    [5] 赵晓光.澳洲红树莓的离体培养[J].中国农学通报,2004,20(5):55~56.
    [6] 徐玉秀,王友升,王贵禧.树莓的利用研究及其在我国的发展前景[J].经济林研究,2003,21(1):64~66.
    [7] 姚振生,杨武亮.江西省悬钩子属药用植物及利用建议[J].中药材,1995,18(11):551~554.
    [8] 仲山民,田荆祥,吴美春.悬钩子果实的营养成分分析[J].浙江林学院学报,1993,10(4):485~489.
    [9] ——.中国悬钩子属资源综合利用[J].林产化工通讯,1994,28(6):50~52.
    [10] 田家祥.第三代新兴水果一树莓[J].脱贫与致富,2000(137):19~19.
    [11] 陆玲娣.我国悬钩子属植物的研究[J].植物分类学报,1983,21(1):13~25
    [12] 顾姻.悬钩子属植物资源及利用[J].植物资源与环境,1992,1(1):50~60
    [13] 俞德浚,陆玲娣,谷粹芝.中国植物志(第37卷)[M].北京:科学出版社,1985,10~218
    [14] 戴启金.大别山区悬钩子属种质资源分布及开发利用研究[J].信阳师范学院学报(自然科学版),1996,9(3):306~310.
    [15] 李继仁,于陆琼,赵汝能,冯建华.若干种分类群悬钩子属药用植物托叶的形态比较观察[J].中草药,2000,31(2):137~138.
    [16] 李继仁,赵汝能.甘肃省悬钩子属药用植物资源[J].中草药,2001,32(12):1134~1136
    [17] 张志勇,俞志雄.江西县钩子属的分类和地理分布[J].热带亚热带植物学报,2003,11(1):27~33.
    [18] 陈蔚辉,张桂充,张福平,朱秋容.粤东地区野生悬钩子植物资源[J].汕头大学学报,2004,19(2):39~46
    [19] 李维林,贺善安.悬钩子属部分分类群的分类订正[J].植物研究,2001,21(3):346~349
    [20] 李维林,贺善安,顾姻,舒璞,濮祖茂.中国悬钩子属花粉形态观察[J].植物分类学报,2001,39(3):234~247.
    [21] 潘建国.试论应用孢粉学及其新进展[J].微体古生物学报,2002,19(2):206~214.
    [22] 李维林,贺善安,晁无疾.秦巴山区悬钩子属植物的地理分布及花粉形态观察[J].木本植物研究,2000,20(2):221~228.
    [23] 方从兵.我国果树孢粉学研究进展(综述)[J].安徽农业大学学报,2002,29(2):154~157.
    [24] Tomlik-Wyremblewska A, Ham R W J M, Van der Kosinski P. Pollen morphology of genus Rubus L. Part Ⅲ. Studies on the Malesian species of subgenera Chamaebatus L. and Idaeobatus L [J]. Acta Societatis Botanicorum Poloniae, 2004, 73 (3) : 207~227.
    [25] 陈少风,叶居新,朱祥玲,余扬帆.若干悬钩子属植物的花粉形态研究[J].植物研究,1996,16(4):463~466.
    [26] 周丽华,韦仲新,吴征镒.国产蔷薇科蔷薇亚科的花粉形态[J].云南植物研究,1999,21(4):455~460.
    [27] Naruhashi N, Iwatsubo Y, Peng Ching I. Botanical Bulletin of Academia Sinica [J] . Institute of Botany, Academia Sinica, 2002, 43 (3): 193~201.
    [28] Meng, R G, Finn C. Determining ploidy level and nuclear DNA content in Rubus by flow cytometry [J]. J Amer Soc HortiSci, 2002, 127 (5) : 767~775.
    [29] 林盛华,张冰冰,方成泉,林凤起,蒲富慎.中国树莓属8个种染色体数目与核型[J].园艺学报,1994,21(4):313~319.
    [30] 李润唐.湖南野生宽皮柑桔核型研究[J].湖南农业大学学报,2000,26(1):54~57.
    [31] 胡进耀,苏智先,岳宝良,张桥英.植物核型分析方法的研究进展[J].四川师范学院学报:自然科学版,2002,23(3):239~244.
    [32] Krahulcova A, Holub J. Chromosome number variation in the genus Rubus in the Czech Republic Ⅲ [J] . Preslia, 1998, 70 (1) : 33~50.
    [33] Mezzetti B, Landi L, Phan B H, Taruschio L, Lim K Y. Peg-mediated fusion of Rubus idaeus (raspberry) and R. fruticosus (blackberry) protoplasts, selection and characterisation of callus lines [J] . Plant Biosystems, 2001, 135 (1) : 63~69
    [34] Lira K Y, Leitch I J, Leitch A R. Genomic characterization and the detection of raspberry chromatin in polyploidy Rubus [J] . Theo App Genetics, 1998, 97 (7) : 1027~1033.
    [35] 彭建营,束怀瑞,孙仲序.分子标记技术及其在果树种质资源研究上的应用[J].山东农业大学学报(自然科学版),2001,32(1):103~106.
    [36] Graham J, McNicol R J. An examination of the ability of RAPD markers to determine the relationships within and between Rubus species [J]. Springer-Verlag, 1995, 90 (8/7) :1128~1132.
    [37] Dallas D, Trople P, Moore P. Taxonomic Relationships in Rubus based on RAPD analysis [J]. Acta Hort, 1999, 505: 373~378.
    [38] Zvingila D, .Patamsyte J, Kleizaite V, Labokas J, Baliuckas V, Baliuniene L, Ranelis V. A study of genetic variability and adaptation in wild Rubus idaeus L. using molecular markers [J].. Biologija, 2004 (3) : 21~26.
    [39] Gelvonauskis B, Stanys V, Kavaliauskas S. Application of DNA fingerprinting for evaluation of polymorphism in Rubus species[J]. Sodininkyste ir Darzininkyste, 2001 (20) : 16~24.
    [40] Li W L. Applicability of RAPD to systematics and genetic diversity of Rubus L [J]. Acta Hort, 2002, 585: 139~142.
    [41] Pamfil D. Investigation of Rubus breeding anomalies and taxonomy using RAPD analysis [J] . Small Fruits Review, 2000, 1 (1) : 43~56.
    [42] Parent J G, Page D. Identification of raspberry cultivars by sequence characterized amplified region DNA analysis [J] . HortiSci, 1998, 33 (1) : 140~142.
    [43] Morden C W, Gardner D E, Weniger D A. Phylogeny and biogeography of Pacific Rubus subgenus Idaeobatus (Rosaceae) species: investigating the origin of the endemic Hawaiian raspberry R, macraei [J] . Pacific Science, 2003, 57 (2) : 181~197.
    [44] Parent J G, Fortin M G, Page D. Identification of raspberry cultivars by random amplified polymorphic DNA (RAPD) analysis [J] . Canadian Journal of Plant Science, 1993, 73 (4) : 1115~1122.
    [45] 马翠兰,刘星辉,张玉兰.DNA分子标记技术在果树上的应用[J].内蒙古农业大学学报,2001,22(2):105-112.
    [46] Stafne E T, Clark J R, Pelto M C, Lindstrom J T. Discrimination of Rubus cultivars using RAPD markers and pedigree analysis [J] . Acta Hort, 2003, 626:119~124.
    [47] Dale A, McNicol R J, Moore P P, Sjulin T M. Pedigree analysis of red raspberry[J]. Acta Horticulturae, 1989, 262: 35~39.
    [48] Bruzzese E, Hasan S. Infection of blackberry cultivars by the European blackberry rust fungus, Phragmidium violaceum [J] . Journal of Horticultural Science, 1987, 62 (4) : 475~479.
    [49] Nybom H, Kraft T. Application of DNA fingerprinting to the taxonomy of European blackberry species [J] . Electrophoresis, 1995, 16 (9) : 1731~5.
    [50] Korpelainen H, Antonius-Klemola K, Werlemark G. Clonal structure of Rubus chamaemorus populations: comparison of different molecular methods [J] .Plant Ecology, 1999, 143 (1) : 123~128.
    [51] Graham J, Smith K, MacKenzie K, Jorgenson L, Hackett C, Powell W. The construction of a genetic linkage map of red raspberry (Rubus idaeus subsp, idaeus) based on AFLPs, genomic-SSR and EST-SSR markers [J]. Theo Appl Genetics, 2004, 109 (4): 740~749.
    [52] Graham J, Marshall B, Squire G R. Genetic differentiation over a spatial environmental gradient in wild Rubus ideaus populations [J]. New Phytologist, 2003, 157: 667~675.
    [53] Amsellem L, Noyer J L, Le Bourgeois T, Hossaert-Mckey M. Comparison of genetic diversity of genetic diversity of the invasive weed Rubus alceifolius Poir. (Rosaceae) in its native range and in areas of introduction, using amplified fragment length polymorphism (AFLP) markers [J] . Molecular Ecology, 2000, 1 (9) .
    [54] Keane B, Smith M K, Rogstad S H. Genetic variation in red raspberries (Rubus idaeus L.; Rosaceae) from sites differing in organic pollutants compared with synthetic tandem repeat DNA probes [J]. Environmental Toxicology & Chemistry, 1998, 17(10) 2027.
    [55] Weber C A. Genetic diversity in black raspberry detected by RAPD markers [J]. HortScience, 2003, 38 (2) : 269~272.
    [56] Randell R A, Howarth D G, Morden C W. Genetic analysis of natural hybrids between endemic and alien Rubus (Rosaceae) species in Hawai'i [J]. Conservation Genetics, 2004, 5 (2) : 217~230.
    [57] 李维林.我国野生悬钩子资源及其开发利用[J].中国野生植物,1991,3:14~18.
    [58] 王传永,吴文龙.几种野生悬钩子家化的生物学基础研究[J].植物资源与环境,1993,2(3):33~40.
    [59] 王传永,吴文龙,孙醉君.悬钩子属基因库的建立与维护[J].植物资源与环境,1996,5(1):14~17.
    [60] 李维林.秦岭茅莓资源及其开发利用[J].中国水土保持,1991,11:34~35.
    [61] 李维林,贺善安,顾姻.中国悬钩子属植物的利用价值概述[J].武汉植物学研究,2000,18(3):237~243.
    [62] 李维林,晁无疾.黄果悬钩子资源开发利用研究[J].中国水土保持,1993,(1):41~42.
    [63] 郭军战,陈铁山,彭少兵.秦岭山区黄果悬钩子种质资源分析与评价[J].西北林学院学报,2004,19(2):41~43.
    [64] 邵则夏,陆斌,刘爱群,姚京洲.廉价资源—云南悬钩子[J].云南农业科技,1993,5:23~24.
    [65] 傅承新,沈朝栋,黄爱军.浙江悬钩子属植物的综合研究—资源调查,引种及开发利 用前景[J].浙江农业大学学报,1995,21(4):393-397.
    [66] 金炜,黄树芝,顾渊.福建省悬钩子属植物资源的调查,收集,评价和利用的研究[J].武汉植物学研究,1992,10(4):371~376.
    [67] 何家庆,任静.皖南悬钩子植物资源及开发利用[J].天然产物研究与开发,2001,13(2):55~58.
    [68] 田春元,姜益泉,吴金清.河南鸡公山国家级自然保护区悬钩子属植物资源开发利用研究[J].武汉植物学研究,2003,21(6):521~525.
    [69] 王昌腾.丽水生态示范区悬钩子植物资源及其开发利用[J].中国林副特产,2005,2:51~53.
    [70] 张珂,王德群.安徽省悬钩子属药用植物资源[J].现代中药研究与实践,2005,19(3):44~46.
    [71] 和加卫,唐开学,杨静全,和秀云,龙春林,程在全.云南省悬钩子属药用植物资源研究[J].中草药,2005,36(7):1078~1081.
    [72] 李继仁,赵汝能.甘肃悬钩子属药用植物的资源调查[J].中草药,1999,30(4):302~304.
    [73] 郭捍忠.山西省悬钩子属药用植物资源[J].实用医技杂志,2001,8(1):23~23.
    [74] 田春元,周秀佳.天目山自然保护区悬钩子属药用植物资源研究[J].广西植物,2004,24(4):297~301.
    [75] 汪新,刘四运,吴新民.池州悬钩子的食用价值与茶多酚含量研究[J].资源开发与市场,2005,21(4):275~276,280.
    [76] 李春奇,叶永忠,王志强,高磊,高致明,段增强.河南野生悬钩子属植物资源[J].果树科学,1995,12(4):258~261.
    [77] 徐小彪,陈华,张秋明.样品不同保存方法对猕猴桃总DNA提取效果的影响[J].江西农业大学学报,2004,26(3):321~323,328.
    [78] 陈桂信,潘东明,吕柳新,王凤华,赖钟雄.果树核DNA提取、目的基因分离与克隆技术研究进展[J].福建农林大学学报,2002,31(1):44~50.
    [79] 周延清.DNA分子标记技术在植物研究中的应用[M].北京:化学工业出版社,2005,9~34.
    [80] 卞贵建.树莓品质评价及其RAPD反应体系的建立与优化[D].雅安:四川农业大学硕士论文,2004.
    [81] Nei M, Li W H. Mathematical modeling for studying genetic terms of restriction endonucease [J] . Proceedings of the national academy of science, 1979, 76: 5268~5273.
    [82] 李焕秀.番茄RAPD聚类分析、抗病cDNA文库构建和分离RGAs的研究[D].重
    版社??庆:西南农业大学博士学位论文,2005.
    [83] 吴红.利用RAPD标记技术进行葡萄品种遗传多样性研究[D].甘肃:甘肃农业大学硕士学位论文,2005.
    [84] 郑成木主编.植物分子标记原理与方法[M].长沙:湖南科学技术出版社,2003.
    [85] 王水琦,林彦铨,汤浩,高三基,潘世明.果蔗种质资源的RAPD和ISSR分析[J].江西农业大学学报(自然科学版),2003,25(3):412~417.
    [86] Bowers J E, .Meredith C P. Genetic Similarities among wine grape cultivars revealed by restriction fiagment length polymorphism (RFLP) analysis [J] . J Amer Soc Horti Sci, 1996, 121 (4) : 620~624.
    [87] Lerebvre V, Palloix A, Rives M. Nuclear RFLP between pepper cultivars ( Capsicum annuum L.) [J]. Euphytica, 1993, 71: 189~199.
    [88] Paran I, Aftergoot E, Shifriss C. Variation in Capsicum annuum revealed by RAPD and AFLP markers [J]. Euphytica, 1998, 99: 167~173.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700