塔里木盆地巴楚隆起边界断裂演化及时空展布研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
断裂识别及其发育演化研究是落实圈闭和评价圈闭有效性的重要因素及内容。巴楚地区是塔里木盆地断裂最发育的地区之一,并且具有丰富的油气资源,随着勘探程度的不断深入,油气勘探面积不断扩大。然而,由于巴楚隆起及其周围地区受多期次构造运动的影响,地质特征较为复杂,地球物理勘探程度较低,钻井较少且分布不均,导致在基础地质特征和油气成藏条件等许多方面还存在着迫切需要回答的问题。
     本文以现有的基础地质、物探、地震、钻井、地层等综合资料为基础,以地震精细解释和断裂的演化为主要依托,分析其纵横展布特征、对边界断裂的典型剖面进行精细刻画和演化分析。在此基础上,分析隆起边界断裂对沉积、内部次级断裂的影响、后期断裂演化的控制和影响,结合前人关于油气演化的成果,探讨隆起边界断裂与油气的关系。取得了以下主要结论与认识:
     (1)本论文综合利用地震剖面上断层断开层位、断距大小,断层上、下盘厚度差异等现象,配合追踪走向变化、特殊沉积体系或相变佐证,识别出吐木休克北等一系列现今基底正断裂和色力布亚、海米罗斯1号、玛扎塔格南等一系列反转断裂,指出巴楚隆起经历了多期次构造运动。
     (2)巴楚地区断裂展布具有平面分带、分段、垂向分层的特征:自西向东,边界断裂走向逐渐转变为NWW向直到近EW向展布,总体上断裂呈向北凸出的弧形。
     (3)根据构造剖面演化及构造样式的分析将巴麦地区的构造演化划分为加里东早中期、加里东晚期-海西早期、海西晚期、印支-燕山期和喜马拉雅期五个阶段,提出巴楚隆起是在加里东中晚期和田古隆起的隆后斜坡的基础上,在大型NW向古断裂继承性活动控制之下,最终在喜山中晚期强烈挤压和扭动双重作用发育起来的一个继承性古隆起。多期次的构造活动逐步改变早期的构造格局,加里东中期、晚海西运动和喜山中期运动是主要构造变革期。
     (4)根据主干断裂的剖面演化以及主要活动期断裂平面发育特征,按照断裂初始发育期和最终定型期进行对比分析,将断裂活动归纳为四种方式即:①一次性形成、后期运动未活动再改造的断裂(断层);②早期形成、后期一次继承改造的断裂(断层);③早期形成、后期多次继承改造的断裂(断层);④早期伸展、后期反转改造的断裂(断层)。在此基础上,总结巴楚断裂演化模式,即:①震旦纪~早奥陶世基底卷入式伸展断裂发育阶段;②晚奥陶世末正反转逆冲断裂发育阶段;③志留纪~中泥盆世末弱挤压继承性基底卷入逆冲断裂发育阶段;④早二叠世末“裂而未陷”局部伸展断裂发育阶段;⑤二叠纪末基底卷入式强烈逆冲断裂发育阶段;⑥中新世~全新世基底卷入型压扭断裂-盖层滑脱型推覆断裂叠置发育阶段。
     (5)在统计巴楚地区油气显示的纵横向差异的基础上,探讨大型断裂带对油气聚集成藏的控制作用:①大型断裂控制烃源岩发育及热演化;②大型断裂控制储集相带发育;③多期断裂控制圈闭类型与展布;④多期断裂控制油气运聚与保存。
     (6)以构造演化为主线,从断裂控藏的角度,综合考虑参考依据,认为海西期及以前开始发育的近东西向古构造是油气最富集的区域,并划分出三类有利区带。
Identification,development and evolution of faults are Important factor and content of ascertaining and appraisaling the trap's validity.Bachu area,in Tarim Basin,is One of the most developed areas of fracture,and has abundant oil and gas resources, with deepening the extent of the exploration,hydrocarbon exploration area has expanded.However, Bachu uplift and its surrounding areas affected by multi-periods tectonic movement, geological characteristics are more complex,geophysical exploration degree is lower, drilling fewer and unevenly distributed which lead to an urgent need to answer the question that basic geological features and conditions of hydrocarbon accumulation and in many respects . (etc.)
     In this paper, on the basis of the present geological, geophysical, seismic, drilling and other Integrated Information,(etc.) Detailed interpretation of seismic and fracture of the evolution as the main support which to analyze the vertical and horizontal distribution of features,describe the typical profile of the boundary faults and analysis its evolution. On this basis, analysis of uplift boundary fault influence on the deposition, the control of post-fault evolution, combined with previous results on the evolution of hydrocarbon,investigate the relationship between hydrocarbon and the boundary faults of uplift.Getting the following main conclusions and understanding:
     (1).The paper Utilization of fault which on seismic profile,the cut off horizon,the size of the fault displacement, the phenomenon of differences in the thickness of the hanging wall and the foot wall etc. with the evidence of the trace the change of the strike, specific depositional system and facies change, identify a series of the present foundational down fault In the Northern TUMUXIUKE and Selibuya, Hemmi Ross 1, Mazatagenan and a series of reverse faults, that has indicated Bachu uplift experienced multi-periods tectonic movement.
     (2).Faults distribution,in Bachu area,has the characteristic that plane zonation,block,vertical layering: from west to east, the strike of boundary fault changes from NWW to nearly EW distribution gradually, overall the fault which is To the North protruding arc.
     (3).According to the analysis for the structure profile evolution and the structure style,Bamai area Division of tectonic evolution pattern of Caledonian early medium-term, early Caledonian to later hercynian, hercynian for advanced, indosinian-yanshanian and Himalayan five stages to propose bachu uplift developed at tiangu uplift’s back slopes in early Caledonian and under the control of a large NW trending fossil fracture’s inherited tectonics, eventually inherited palaeohigh formed by highly compress and strike slip motion in Himalayan orogeny early-medium term. multi-periods tectonic change the early tectonic style gradually, the Middle Caledonian、Late Hercynian and the MiddleIndosinian are main tectonic process periods.
     (4).According to the profile’s evolution of the main fault as well as the developmental features of the faulting plane in the main active state and by the analyze that compared from the initial development stage of the faulting to its final fixed form:①One form、post-fault is not active;②Early form、post-fault is active again;③Early form、and fault reconstructed;④Early Stretch、and late fault reverse.The faulting active can be concluded by 4 ways and as a basic, the Bachu-faulting model can be dropped.
     (5).Based on the counting of the difference of the evidences of hydrocarbon between the longitudinal and the horizontal in the Bachu area, the controlling affection of the large scale faulting belt to the oil and gas accumulated and became the mineral reserves can be researched:①the development of the source rock and its thermal evolution were controlled by the large scale faulting belt;②the development of the accumulate facies belt was controlled by the large scale faulting belt;③the trapping types and the throughgoing were controlled by the multi-periods faulting;④the transformation and the conservation of the hydrocarbon were controlled by the multi-periods faulting.
     (6).Put the development of the tectonic as a clue and to consider from the faulting controls the reservoir, such conclusions can be dropped: the nearly east-west palaeotectonics that developed in the Hercynian or before is the most concentrated area of the hydrocarbon. Besides 3 types of vantage zones were divided.
引文
[1].贾承造.中国塔里木盆地构造特征与油气.石油工业出版社. 1997.
    [2].汤良杰,1996,塔里木盆地演化与构造样式。北京:地质出版社
    [3].王清华,1999,塔里木盆地巴楚凸起构造特征及其对油气藏分布的控制.新疆石油地质, 20(3):208-209.
    [4].付建奎,等.塔里木盆地巴楚地区构造样式与演化.石油勘探与开发,1999,26(5) 10-11.
    [5].李洪辉,等.塔里木盆地巴楚断隆油气勘探模式.石油勘探与开发,1998,25(5):11-13.
    [6].谢晓安,胡素云,卢华复,探讨塔里木盆地巴楚的正反转构造.地质论评,1998,44(1):
    [7].李曰俊,等,1999,塔里木盆地巴楚断隆古生代沉积构造背景和物源区性质的探讨.古地理学报,1(4):45-53.
    [8].李良辰等,1992,塔里木盆地中央隆起断裂构造特征与油气勘探方向。
    [9].刘志宏,林东成,王文革,等.塔里木盆地吐木休克断裂带的研究[J].长春科技大学学报,2001, 31(3):219-223.
    [10].吕修祥,周新源,皮学军.塔里木盆地巴楚凸起油气聚集及分布规律[J].新疆石油地质.2002,23(6):490-492.
    [11].任朝波、漆立新、丁文龙,等,2008,平衡剖面技术在塔里木盆地阿克库勒凸起构造演化分析中的应用[J].新疆石油地质.4(2):5-10.
    [12]. Dahlstrom C D A. Balanced cross sections [J].Canadian Journal of Earth Sciences, 1969, 6(4): 743-757.
    [13]. Depaor D G. Balanced section in thrust belts, construction [J]. AAPG, 1988, 72(1): 73-90.
    [14]. ElliottD. The construction ofbalanced cross section [J].Journal ofStructuralGeology, 1983, 5(2): 101-103.
    [15].梁顺军.平衡观点与地震观点的解释效果分析与评价[J].石油物探,2002,41(3):377-384.
    [16].毛小平,吴冲龙,袁艳斌.地质构造的物理平衡剖面法[J].地球科学:中国地质大学学报,1998, 23(2):167-170.
    [17].张向鹏、杨晓薇.平衡剖面技术的研究现状及进展[J].煤田地质与勘探,2007,35(2):78-80.
    [18].张进铎.平衡剖面技术在国内外油气勘探中的最新应用[J].地球物理学进展,2007,22(6):1856-1861.
    [19].刘家铎,赵锡奎,周文,等.塔里木盆地巴楚小海子南部含油气远景评价[R].中国新星公司西北石油局规划设计研究院,1999.
    [20].丁文龙.巴楚隆起断裂特征、构造演化与区带优选[R].中国石化西北油田分公司勘探开发研究院,2009.
    [21].肖安成,杨树锋,李曰俊,等.塔里木盆地巴楚隆起断裂系统主要形成时代的新认识[J].地质科学,2005,40(2): 291-302.
    [22].肖安成,杨树锋,王清华,等.塔里木盆地巴楚—柯坪地区南北向断裂系统的空间对应性研究[J].地质科学,2002, 37(增刊):64-72.
    [23].陈强路,竺知新.塔里木盆地巴楚隆起构造演化与含油气性分析[R].中国石化石油勘探开发研究院西部分院,2007.
    [24].丁文龙,林畅松,漆立新,等.塔里木盆地巴楚隆起构造格架及形成演化[J].地学前缘,2008,15(2):242-252.
    [25].李坤,赵锡奎,张小兵,等.塔里木盆地阿克库勒凸起油气输导体系类型与演化[J].地质科学,2007,42(4):766-778.
    [26].计雄飞.塔里木盆地主干断裂特征及其演化过程研究[D].成都:成都理工大学,2008.
    [27].杨明慧,金之钧,吕修祥,等.塔里木盆地基底卷入扭压构造与巴楚隆起的形成[J].地质学报,2007(2):158-165.
    [28].童亨茂,“不协调伸展”作用下裂陷盆地断层的形成演化模式[J],地质通报, 2010,29(11):1606-1613.
    [29].赵明,孙兆玉,岳勇,巴楚隆起西段色力布亚断裂演化及其封闭性研究[J],石油天然气学报(江汉石油学院学报),2008,30(4):28-32.
    [30].王颖,王英民,赵锡奎,构造模拟实验在构造研究中的应用-以桩西潜山为例[J],石油实验地质,2004,26(3):308-312.
    [31].褚庆忠,含油气盆地反转构造研究综述[J],西安石油大学学报(自然科学版),2004,19(1):28-33.
    [32].张连平,含油气盆地反转构造与油气关系研究[J],科技资讯,2007(18).
    [33].褚庆忠,王长江,含油气盆地反转构造与油气关系研究综述[J],天然气勘探与开发,2003,26(3):69-75.
    [34].童亨茂,聂金英,孟令箭,张红波,李晓宁,基底先存构造对裂陷盆地断层形成和演化的控制作用规律[J],地学前缘(中国地质大学(北京) ;北京大学),2009,16(4).
    [35].刘和甫,伸展构造及其反转作用[J],地学前缘中国地质大学,北京),1995,2(1-2):113-123.
    [36].胡望水,塔里木盆地反转构造与油气聚集[J],新疆石油地质,1995,16(2):89-95.
    [37].胡素云,卢华复,探讨塔里木盆地巴楚断隆的正反转构造[J],地质论评,1998,44(1):1-6.
    [38].殷秀兰,李思田,马寅生,王砚庆,莺歌海盆地晚第三纪构造特征的三维泥料模拟实验及其动力学意义[J],地质论评,2001,47(5):535-541.
    [39].王同和,王根海,赵宗举,中国含油气盆地的反转构造样式及其油气聚集[J],海相油气地质,2001,6(3):27-37.
    [40].汤良杰,金之钧,漆家福,等,中国含油气盆地构造分析主要进展与展望[J],地质论评,2002,48(2):182-192.
    [41]. Mitra S. , Geometry and kinematic evolution of inversion structures , AAPG, 1993 , 77 ( 7) : 1159~1191.
    [42]. McClay K R. 1989. Analogue models of inversion tectonics.Geological Society, London: Special Publications, 44: 41- 59.
    [43]. Brun J P and Nalpas T. 1996. Graben inversion in nature and experiments. Tectonics, 15 (3) : 677 - 687.
    [44]. Buchanan , P. G. , McClay , K. R. , Sandbox experiments of inverted listric and planar fault systems ,Tectonophysics , 1991 , 88 (1/ 2) : 97~115.
    [45]. Koopman , A. , Speksnijde , A. , Horsfield , W. T. , Sandbox model studies of inversion tectonics ,Tectonophysics , 1987 , 137 (1/ 4) : 379~388.
    [46]. Buchanan , P. G. , McClay , K. R. , Experiments on basin inversion above reactivated domino faults , Marine and Petroleum Geology , 1992 , 9 : 486~500.
    [47]. Mitra , S. , Islam , Q. , Experimental (clay) models of inversion structures , Tectonophysics , 1994 , 230 :211~222.
    [48]. Buchanan P Gand McClay KR. 1992. Experiments on basin inversion above reactivated domino faults. Marine and Petroleum Geology , 9 : 486—500.
    [49]. Koyi H. 1995. Mode of internal deformation in sand wedges. Journal of Structural Geology. 17 (2) : 293—300.
    [50]. McClay K R. 1990. Extensional fault systems in sedimentary basins : a reviewof analogue model studies. Marine and Petroleum Geology , 7 : 206—233.
    [51]. McClay K and Bonora M. 2001. Analogue models of restraining stepovers in strike2slip fault systems. AAPG Bull . , 85(2) : 233—260.
    [52]. Jackson M P A , Vendeville B C. Regional extension as a geologic trigger for
    [53]. McClay K, Bonora M. Analog models of restraining stopovers in strike-slip fault systems [J]. AAPG, 2001, 85(2): 233-260.
    [54]. Giacomo Corti, et al. Magma induced strain localization in centrifuge models of transfer zones[J]. Tectonophysics, 2002, 348(2): 205-218.
    [55]. Collier J S, Gupta S, Potter G, et al. Using bathymetry to identify basin inversion structures on the English Channel shelf[J]. Geology, 2006, 34(12): 1001-1004.
    [56]. Bayona G.. Cortes M Jaramillo C, et al. An integrated analysis of an orogen-sedimentary basin pair: Latest Cretaceous-Cenozoic evolution of the linked Eastern Cordillera orogen and the Llanos foreland basin of Colombia[J]. GSA Bulletin, 2008, 120(9): 1171-1187.
    [57]. Bally A W. Tectogenese at seismique reflexion [J]. Bulletin Society Geologique de France. 1984, 7(2): 279-285.
    [58]. Harding T P. Structural inversion at Rambuton oil field, south Sumatra basin [J]. AAPG Bulletin, 1983, 63(8): 1001-1021.
    [59]. Chemenda A, Deverchere J, Calais E. Three-dimensional laboratory modeling of rifting: application to the Baikal Rift, Russia, Tectonophysics, 2002, 356(4): 253-273.
    [60]. McClay K, Bonora M. Anolog models of retraining stepovers in strike-slip fault systems[J]. AAPG Bull, 2001, 85(2): 233-260.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700