基于三(4-咪唑基苯)胺配体的配位聚合物的合成、结构和拓扑类型探究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要研究了三齿配体—三(4-咪唑基苯)胺(简写为Tipa)与过渡金属离子合成的具有多种新颖的网络拓扑结构类型,研究这些化合物的合成条件及规律,分析这些化合物网络所属的拓扑及缠结结构类型,同时考察了辅助配体对于整个网络拓扑的影响规律,探究分子自组装原理,探索新类型的缠结网络,努力寻找拓扑类型和结构的内部联系,预言新型缠结网络和拓扑类型的形成、以及新物质结构和性能间的关系。
     利用水热技术合成方法,合成了19个新型的基于金属-有机网络构筑的高维网络结构,通过元素分析、IR、XRPD、TG和单晶X-射线衍射对晶体结构进行了表征,对—些化合物的热稳定性和荧光性质进行了初步研究。
     1.利用三(4-咪唑基苯)胺三齿配体、过渡金属离子及不同的羧酸阴离子在水热条件下得到了4个高维的化合物。化合物1是(3,5)连接(42·6)(42·67·8)的2D层状拓扑结构。化合物2是由具有44拓扑层形成的2D→3D结构。化合物3是(3,4)连接的(5·62·82·9)(63·72·9)(73)(62·8)的3D网络拓扑结构。化合物4是具有(3,4,6)连接的(42·62·7.8)(4·6·83·10)(6·8·10)(44·52·67·7·8)(42·82·102)的3D网络拓扑结构。[Mn(Tipa)(m-bdc)·H2O (1) [Zn(Tipa)(m-bdc)]·H2O (2) [Zn2(Tipa)(btc)(μ2-O)]·2H2O (3) [Zn2(Tipa)(btca)]·3.5H2O (4)
     2.在水热条件下,利用三(4-咪唑基苯)胺配体、不同的阴离子和过渡金属合成了4个3D的互穿缠结网络。化合物5是一个3D的(3,5)连接的(63)(65·85)的二重互穿网络。化合物6是4重互穿的(10,3)-b拓扑网络结构。化合物7是(3,4)连接的(4·82)(4·85)的以2+2形式互穿的四重互穿网络。化合物8是一例极其罕见的54重互穿的(10,3)-a拓扑网络。[Cd(Tipa)(NH2-bdc)]·CH3OH·H2O (5) Cd(Tipa)(badc)(H2O) (6) [Ni2(Tipa)2(p-bdc)(H2O)2]2·Cl4·4H2O (7) [Ag3(OH)(H2O)2(Tipa)2.5] [Mo2O7]·4.5H2O (8)
     3.结合三(4-咪唑基苯)胺配体,合理选择阴离子和过渡金属,利用分子识别和自组装原理成功合成了6个新缠结类型的金属-有机网络结构。化合物9和10都是2D→2D聚轮烷网络,游离的羧酸有机配体夹在聚轮烷层中间。化合物11和12是类似的2D→3D的聚轮烷网络结构。化合物13是一例极为特殊的配合物,具有2D→2D和2D→3D两种线穿特征的聚轮烷网络结构。化合物14是以平行方式穿插的2D→3D聚轮烷网络。[Ni2(Tipa)2(p-bdc)(H2O)4]·(p-bdc)·0.5H2O (9) [Cu2(Tipa)2(p-bdc)(CH3OH)(H2O)]·(p-bdc)·1.5(CH3OH)·4.5(H2O) (10) [Cd(Tipa)(NH2-bdc)2]·H2O (11) [Mn(Tipa)(NH2-bdc)2]·H2O (12) [Ni2(Tipa)2(p-bdc)2(H2O)2]·2.25H2O (13) [Cd(Tipa)Cl2]·H2O (14)
     4.利用对苯二甲酸阴离子和三(4-咪唑基苯)胺配体,在水热条件下变换过渡金属离子,得到了2个新颖的具有自穿插的新类型缠结互穿网络结构。化合物15是3D的二重互穿结构,单一的3D网络结构是具有轮烷和自穿插特性的网络。化合物16同样是具有轮烷特性的3D二重互穿的自穿插的(4·62)(42·54·62·75·72·92)(52·66·75·82)网络。[Cd3(Tipa)2(p-bdc)2Cl2]·4H2O (15) [Co3(Tipa)2(p-bdc)3] (16)
     5.利用三(4-咪唑基苯)胺配体和多元羧酸阴离子—1,2,3-苯三酸,在水热条件下合成了3个含有金属簇的化合物。化合物17是由Tipa配体连接五核锌簇和锌-氧链形成的3D网络。化合物18是基于三核镉簇的3D网络,其网络可归结为(3,6)连接(63)(44·611)拓扑。化合物19是基于十二核镉簇的3D网络,其网络可归结为10连接的312·426.57拓扑。[Zn7.5(Tipa)(1,2,3-bta)4(OH)3]·4H2O (17) [Cd3(Tipa)2(1,2,3-bta)2]·2.5H2O (18) [(Cd6(Tipa)2(1,2,3-bta)3(H2O)3]·3H2O (19)
The aim of this thesis is the study of new coordination compounds based on tridentate tri(4-imidaolyphenyl)amine ligand and transition metal ions. The study on synthetic conditions and rules for these new compounds, topological analyses, and the exploration of relationships between structures and properties for these new compounds are also carried out.
     Nineteen new coordination compounds have been synthesized on the basis of hydrothermal technique and structurally characterized by elemental analyses, IR, XRPD, TG and single crystal X-ray diffractions. The thermal stabilities properties and fluorescent properties of some compounds have been studied.
     1. Four compounds based on tri(4-imidaolyphenyl)amine and different carboxylates have been synthesized. Compound 1 shows a 2D wave layer with (3,5)-connected (42·6)(42·67·8) topololgy. Compound 2 is a 2D→3D network with 44 topological layers. Compound 3 exhibits 3D framework with (3,4)-connected (5·62·82·9)(63·72·9)(73)(62·8) topology. Compound 4 is a 3D framework with (3,4,6)-connected (42·62·7·8)(4·6·83·10)(6·8·10)(44·52·67·7·8)(42·82·102) topology. [Mn(Tipa)(m-bdc)]·H2O (1) [Zn(Tipa)(m-bdc)]·H2O (2) [Zn2(Tipa)(btc)(μ2-O)]·2H2O (3) [Zn2(Tipa)(btca)]·3.5H2O (4)
     2. Four entangled coordination polymers based on tri(4-imidaolyphenyl)amine ligand and different carboxylates have been synthesized under hydrothermal condition. Compound 5 shows a 2-fold interpenetrated 3D framework with (3,5)-connected (63)(65·85) topology. Compound 6 is a 4-fold interpenetrated 3D framework with (10,3)-a topology. Compound 7 exhibits (3,4)-connected (4·82)(4·85) topological 3D network, where four independent networks interpenetrate each other to form a 4-fold interpenetation. Compound 8 is a fascinating 54-fold interpentration with (10,3)-a topology. [Cd(Tipa)(NH2-bdc)]·CH3OH·H2O (5) Cd(Tipa)(badc)(H2O) (6) [Ni2(Tipa)2(p-bdc)(H2O)2]2·Cl4·4H2O (7) [Ag3(OH)(H2O)2(Tipa)2.5][Mo2O7]·4.5H2O (8)
     3. Six new entangled polythreaded networks based on tri(4-imidaolyphenyl)amine ligand, different anions and transition metal ions have been synthesizd. Compounds 9 and 10 are 2D→2D polyrotaxane networks, where the free carboxylate anions sandwiching between polyrotaxane layers. Compounds 11 and 12 show the 2D→3D polyrotaxane frameworks. Compound 13 is a special polyrotaxane framework with both 2D→2D and 2D→3D features. Compound 14 is the first example of 2D→3D polyrotaxane in parallel fashion. [Ni2(Tipa)2(p-bdc)(H2O)4]·(p-bdc)·0.5H2O (9) [Cu2(Tipa)2(p-bdc)(CH3OH)(H2O)]·(p-bdc)·1.5(CH3OH)·4.5(H2O) (10) [Cd(Tipa)(NH2-bdc)2]·H2O (11) [Mn(Tipa)(NH2-bdc)2]·H2O (12) [Ni2(Tipa)2(p-bdc)2(H2O)2]·2.25H2O (13) [Cd(Tipa)Cl2]·H2O (14)
     4. Two interesting self-penetrating networks based on p-bdc anion, tri(4-imidaolyphenyl)amine ligand and metals have been synthesized under the hydrothermal condition. Compound 15 is a 3D self-penetrating framework with polyrotaxane feature, where two 3D frameworks interpenetrate each other to form a 2-fold interpentration. Compound 16 is a 3D self-penetrating framework with (4·62)(42·54·62·75·72·92)(52·66·75·82) topology, where two 3D frameworks interpenetrate each other to form a 2-fold interpentration. [Cd3(Tipa)2(p-bdc)2Cl2]·4H2O (15) [Co3(Tipa)2(p-bdc)3] (16)
     5. Three compounds based on 1,2,3-bta anion, tri(4-imidaolyphenyl)amine ligand and different metals have been synthesized under hydrothermal condition. For compound 17, tri(4-imidaolyphenyl)amine ligands connected pentanuclear ZnⅡclusters and ZnⅡ-O chains to form an infinite 3D framework. Compound 18 is a 3D framework with (3,6)-connected (63)(44·6n) topology based on trinuclear CdⅡcluster. Compound 19 is a novel 3D framework based on dodecanuclear CdⅡcluster with (3,6)-connected (63)(44·611) topology. [Zn7.5(Tipa)(1,2,3-bta)4(OH)3]·4H2O (17) [Cd3(Tipa)2(1,2,3-bta)2]·2.5H2O (18) [(Cd6(Tipa)2(1,2,3-bta)3(H2O)3]·3H2O (19)
引文
[1]Champness N R, Schroder M. Current Opinion in Solid State & Materials [J]. Science,1998,3: 419-424.
    [2]Bruser H J, Schwarzenbach D, Petter W, et al. The crystal structure of Prussian Blue: Fe4[Fe(CN)6]3.xH2O [J]. Inorg Chem,1977,16:2704-2710.
    [3]Hosking B F, Robson R. Infinite polymeric frameworks consisting of three dimensionally linked rod-like segments[J]. J Am Chem Soc,1989,111:5962-5964.
    [4]Leong W L, Vittal J J. One-Dimensional Coordination Polymers:Complexity and Diversity in Structures, Properties, and Applications [J]. Chem Rev,2011,111:688-764.
    [5]Chen E. Y.-X. Coordination Polymerization of Polar Vinyl Monomers by Single-Site Metal Catalysts[J]. Chem Rev,2009,109:5157-5214.
    [6]Swiegers G. F, Malefetse T. J. New Self-Assembled Structural Motifs in Coordination Chemistry [J]. Chem Rev,2000,100:3483-3538.
    [7]South C. R, Burd C, Weck, M. Modular and Dynamic Functionalization of Polymeric Scaffolds [J]. Acc. Chem. Res.,2007,40:63-74.
    [8]Evans O. R, Lin W B. Crystal Engineering of NLO Materials Based on Metal Organic Coordination Networks [J]. Acc. Chem. Res.2002,35,511-522.
    [9]O'Keeffe M, Peskov M A, Ramsden S J, et al. The Reticular Chemistry Structure Resource (RCSR) Database of, and Symbols for, Crystal Nets [J]. Acc. Chem. Res.2008,41,1782-1789.
    [10]Hong M C. Inorganic Organic Hybrid Coordination Polymers:A New Frontier for Materials Research [J]. Crystal Growth & Design,2007,7,10-14.
    [11]Hempleman A J, Oxton I A, Powell D. B. et al. Vibrational spectra of metal cluster complexes containing the μ3-bridging sulphur ligand. A possible model for sulphur atoms on metal surfaces [J]. J Chem Soc Faraday Trans.1981,77,1669-1679.
    [12]Kulkarni A, Lobo-Lapidus R J, Gates B C. Metal clusters on supports: synthesis, structure, reactivity, and catalytic properties [J]. Chem Commun,2010,46,5997-6015.
    [13]Salz Dirk, Lamber R, Wark M, et al. Metal clusters in plasma polymer matrices Part II. Silver clusters [J]. Phys Chem Chem Phys,1999,1,4447-4451.
    [14]Adams R D, Captain B. Unusual Structures and Reactivity of Mixed Metal Cluster Complexes Containing the Palladium/Platinum Tri-t-butylphosphine Grouping [J]. Acc. Chem Res,2009,42, 409-418.
    [15]Selby H D, Roland B K, Zheng Z. Ligand-Bridged Oligomeric and Supramolecular Arrays of the Hexanuclear Rhenium Selenide Clusters Exploratory Synthesis, Structural Characterization, and Property Investigation [J]. Acc Chem Res,2003,36,933-944.
    [16]Moulton B, Zaworotko M J, et al. From Molecules to Crystal Engineering:Supramolecular Isomerism and Polymorphism in Network Solids [J]. Chem Rev,2001,101,1629-1658.
    [17]Robin A Y, Fromm K M. Coordination polymer networks with O- and N-donors:What they are, why and how they are made [J]. Coordination Chemistry Reviews,2006,250,2127-2157.
    [18]Biradha K, Hongo Y, Fujita M. Open Square-Grid Coordintion Polymers of the Dimensions 20 × 20 A:Remarkably Stable and Crystalline Solids Even after Guest Removal [J]. Angew Chem Int Ed, 2000,39,3843-3845.
    [19]Yang J, Ma J-F, Batten S R, et al. Unusual parallel and inclined interlocking modes in polyrotaxane-like metal-organic frameworks [J]. Chem Commun,2008,2233-2235.
    [20]Rowsell J L C, Millward A R, Park K S, et al. Hydrogen Sorption in Functionalized Metal-Organic Frameworks [J]. J. Am. Chem. Soc.2004,126,5666-5667.
    [21]Liang J, Shimizu G K H. Crystalline Zinc Diphosphonate Metal-Organic Framework with Three-Dimensional Microporosity [J]. Inorg. Chem.2007,46,10449-10451.
    [22]Li F-F, Ma J-F, Song S-Y, et al. Influence of Neutral Ligands on the Structures of Silver(I) Sulfonates [J]. Inorg. Chem.2005,44,9374-9383.
    [23]Hoffart D J, Dalrymple S A, Shimizu G K H, et al. Structural Constraints in the Design of Silver Sulfonate Coordination Networks:Three New Polysulfonate Open Frameworks [J]. Inorg. Chem. 2005,44,8868-8875.
    [24]Hong M, Zhao Y, Su W, et al. A Silver(Ⅰ) Coordination Polymer Chain Containg Nanosized Tubes with Anionic and Solvent Molecule Guests. Angew. Chem. Int. Ed.2000,39,2468-2470.
    [25]Hoskins B F, Robson R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuⅠZnⅡ(CN)4] and CuⅠ[4,4',4",4'"-tetracyanotetraphenylmethane]BF4.xC6H5NO2 [J]. J. Am. Chem. Soc.,1990,112, 1546-1554.
    [26]A.F. Wells. Structural Inorganic Chemistry, fifth ed, Oxford University Press, Oxford,1984.
    [27]A.F. Wells. Three-Dimensional Nets and Polyhedra, Wiley, New York,1977.
    [28]A.F. Wells, Further Studies of Three-Dimensional Nets, AC A Monograph 8,1979.
    [29]Eddaoudi M, Moler D B, Li, H, et al. Modular Chemistry:Secondary Building Units as a Basis for the Design of Highly Porous and Robust Metal-Organic Carboxylate Frameworks [J]. Acc. Chem. Res, 2001,34,319-330.
    [30]Yan X, Cai Z, Yi C, et al. Anion-Induced Structures and Luminescent Properties of Chiral Lanthanide-Organic Frameworks Assembled by an Achiral Tripodal Ligand [J]. Inorg. Chem.,2011, 50,2346-2353.
    [31]Gil-Hernndez B, Gili P, Vieth J K, et al. Magnetic Ordering in Two Molecule-Based (10,3)-a Nets Prepared from a Copper(Ⅱ) Trinuclear Secondary Building Unit [J]. Inorg. Chem.,2010,49, 7478-7490.
    [32]Zou W-Q, Wang M-S, Li Y, et al. Unprecedented (3,10)-Connected 2-D Metal-Organic Framework Constructed from Octanuclear Cobalt(II) Clusters and a New Bifunctional Ligand [J]. Inorg. Chem., 2007,46,6852-6854.
    [33]Liu X, Guo G-C, Fu M-L, et al. Three Novel Silver Complexes with Ligand-Unsupported Argentophilic Interactions and Their Luminescent Properties [J]. Inorg. Chem.,2006,45,3679-3685.
    [34]Thakuria R, Sarma B, Nangia A. Guest Control in the Self-Assembly of H-Shaped Host to Cyclopentanoid (5,43) Net [J]. Crystal Growth & Design,2008,8,1471-1473.
    [35]Li X, Wu B-L, Niu C-Y. Syntheses of Metal-2-(Pyridin-4-yl)-1H-imidazole-4,5-dicarboxylate Networks with Topological Diversity: Gas Adsorption, Thermal Stability and Fluorescent Emission Properties [J]. Crystal Growth & Design,2009,9,3423-3431.
    [36]Shyu E, Supkowski R M, LaDuca R L. A Chiral Luminescent Coordination Polymer Featuring a Unique 4-Connected Self-Catenated Topology Built from Helical Motifs [J]. Inorg. Chem.,2009,48, 2723-2725.
    [37]Zhang J, Song Y, Yang J, et al. A Single-Bridge Strategy for Synthesis of a 3-D Heterobimetallic Cluster with a Heavily Distorted Diamondoid Topology and Enhanced Third-Order Nonlinear Optical Properties [J]. Crystal Growth & Design,2008,8,387-390.
    [38]Zheng B, Liang Z, Li G, et al. Synthesis, Structure, and Gas Sorption Studies of a Three-dimensional Metal-Organic Framework with NbO Topology [J]. Crystal Growth & Design,2010,10,3405-3409.
    [39]Zhang J, Chew E, Chen S, et al. Three-Dimensional Homochiral Transition-Metal Camphorate Architectures Directed by a Flexible Auxiliary Ligand [J]. Inorg. Chem.,2008,47,3495-3497.
    [40]Liu T-F, Lu J, Guo Z, et al. New Metal-Organic Framework with Uninodal 4-Connected Topology Displaying Interpenetration, Self-Catenation, and Second-Order Nonlinear Optical Response [J]. Crystal Growth & Design,2010,10,1489-1491.
    [41]Qi Y, Luo F, Che Y, et al. Hydrothermal Synthesis of Metal-Organic Frameworks Based on Aromatic Polycarboxylate and Flexible Bis(imidazole) Ligands [J]. Crystal Growth & Design,2008,8, 606-611.
    [42]Zhang Y, He X, Zhang J, et al. CuⅠ Cluster-Based Organic Frameworks with Unusual 4- and 5-Connected Topologies [J]. Crystal Growth & Design,2011,11,29-32.
    [43]Xue M, Zhu G, Li Y, et al. Structure, Hydrogen Storage, and Luminescence Properties of Three 3D Metal-Organic Frameworks with NbO and PtS Topologies [J]. Crystal Growth & Design,2008,8, 2478-2483.
    [44]Guo X, Zhu G, Li Z, et al. Rare Earth Coordination Polymers with Zeolite Topology Constructed from 4-Connected Building Units [J]. Inorg. Chem.,2006,45,4065-4070.
    [45]Fang Q-R, Zhu G-S, Jin Z, et al. A Novel Metal-Organic Framework with the Diamondoid Topology Constructed from Pentanuclear Zinc-Carboxylate Clusters [J]. Crystal Growth & Design,2007,7, 1035-1037.
    [46]Paul A K, Natarajan S. Amine-Templated Aluminoborates Exhibiting Graphite and Diamond Nets [J]. Crystal Growth & Design,2010,10,165-114.
    [47]Gao Q, Jiang F-L, Wu M-Y, et al. Mn(II)-Binaphthalenyl Dicarboxylate Complexes:Helical Rectangular Tubes, (4,4) Grid Chiral Layer and Three-Dimensional Cubic Diamond Frameworks [J]. Crystal Growth & Design,2010,10,184-190.
    [48]Wang J-G, Huang C-C, Huang X-H, et al. Three-Dimensional Lanthanide Thiophenedicarboxylate Framework with an Unprecedented (4,5)-Connected Topology [J]. Crystal Growth & Design,2008,8, 795-798.
    [49]Zhang Y, He X, Zhang J, et al. CuI Cluster-Based Organic Frameworks with Unusual 4- and 5-Connected Topologies [J]. Crystal Growth & Design,2011,11,29-32.
    [50]Zhang Y, Wu T, Liu R, et al. Three-Dimensional Photoluminescent Frameworks Constructed from Size-Tunable Cul Clusters [J]. Crystal Growth & Design,2010,10,2047-2049.
    [51]Krivovichev S V, Cahill C L, Burns P C. Syntheses and Crystal Structures of Two Topologically Related Modifications of Cs2[(UO2)2(MoO4)3] [J]. Inorg. Chem.,2002,41,34-39.
    [52]Yang G, Raptis R G, Safa P. Cadmium(II) Complexes of 4-(4-Pyridyl)Pyrazole:A Case of Two Conformational Supramolecular Isomers Polythreaded in the Same Crystal and a Rare Example of 5-Connected nov Net [J]. Crystal Growth & Design,2008,8,981-985.
    [53]Ma L-F, Wang L-Y, Du M, et al. Unprecedented 4- and 6-Connected 2D Coordination Networks Based on 44-Subnet Tectons, Showing Unusual Supramolecular Motifs of Rotaxane and Helix [J]. Inorg. Chem.,2010,49,365-367.
    [54]Yang Y, Luo F, Che Y, et al. Employing An Unprecedented Ferromagnetic Molecular Building Block (MBB) of [Co2Ln(μ3-OH)(CO2)5(N3)]2 (Ln= Tb, Gd, Dy, Eu, Sm) to Construct a 6-Connected a-Po Net [J]. Crystal Growth & Design,2008,8,3508-3510.
    [55]Martin D P, Supkowski R M, LaDuca R L. A Three-Dimensional Mixed-Ligand Coordination Polymer Featuring Strongly Antiferromagnetically Coupled Dinuclear Copper Paddlewheels Linked into a 6-Connected Self-Penetrated Network [J]. Crystal Growth & Design,2008,8,3518-3520.
    [56]Montney M R, Krishnan S M, Patel N1 M, et al. Divalent Metal Succinate/4,4'-Dipyridylamine Extended Solids:From Helical Chains to Diverse Three-Dimensional Networks Featuring Double, Quadruple, or Self-Interpenetration [J]. Crystal Growth & Design,2007,7,1145-1153.
    [57]Liu D, Huang G, Huang C, et al. Cadmium Coordination Polymers Constructed from in Situ Generated Amino-Tetrazole Ligand: Effect of the Conditions on the Structures and Topologies [J]. Crystal Growth & Design,2009,9,5117-5127.
    [58]Zhai Q-G, Lu C-Z, Wu X-Y, et al. Coligand Modulated Six-, Eight-, and Ten-Connected Zn/Cd-1,2,4-Triazolate Frameworks Based on Mono-, Bi-, Tri-, Penta-, and Heptanuclear Cluster Units [J]. Crystal Growth & Design,2007,7,2332-2342.
    [59]Alkordi M H., Brant J A, Wojtas L, et al. Zeolite-like Metal-Organic Frameworks (ZMOFs) Based on the Directed Assembly of Finite Metal-Organic Cubes (MOCs) [J]. J. Am. Chem. Soc.,2009,131, 17753-17755.
    [60]Chen P, Batten S R, Qi Y, et al. Two 3-D Cluster-Based Frameworks:Highly Eight-Connected Molecular Topology and Magnetism [J]. Crystal Growth & Design,2009,9,2756-2761,
    [61]Braverman M A, Nettleman J H, Supkowski R M, et al. Copper Phthalate Coordination Polymers Incorporating Kinked Dipyridyl Ligands: An Unprecedented 8-Connected Network and One-Dimensional Chiral Nanobarrels with Hydrophobic Channels Constructed from Septuple Helical Motifs [J]. Inorg. Chem.,2009,48,4918-4926.
    [62]Chun H, Jung H, Koo G, et al. Efficient Hydrogen Sorption in 8-Connected MOFs Based on Trinuclear Pinwheel Motifs [J]. Inorg. Chem.,2008,47,5355-5359.
    [63]Zhai Q-G, Lu C-Z, Wu X-Y, et al. Coligand Modulated Six-, Eight-, and Ten-Connected Zn/Cd-1,2,4-Triazolate Frameworks Based on Mono-, Bi-, Tri-, Penta-, and Heptanuclear Cluster Units [J]. Crystal Growth & Design,2007,7,2332-2342.
    [64]Zhang Z, Xiang S, Zheng Q, et al. A Rare Uninodal 9-Connected Metal-Organic Framework with Permanent Porosity [J]. Crystal Growth & Design,2010,10,2372-2375.
    [65]Zou W-Q, Wang M-S, Li Y, et al. Unprecedented (3,10)-Connected 2-D Metal-Organic Framework Constructed from Octanuclear Cobalt(Ⅱ) Clusters and a New Bifunctional Ligand [J]. Inorg. Chem., 2007,46,6852-6854.
    [66]Lan Y-Q, Li S-L, Shao K-Z, et al. A (3,12)-Connected 3D Metal-Organic Framework Based on Nanosized Octanuclear Zinc Clusters [J]. Crystal Growth & Design,2008,8,3490-3492.
    [67]Luo F, Che Y, Zheng J. The First Self-Penetrating Topology Based on an Unusual a-Po Net with Double Edges Constructed from a 12-Connected Gd2(μ2-Ocarboxylate)2(μ2-OH2)2(μ3-OH)2Cu2 Core [J]. Crystal Growth & Design,2006,6,2432-2434.
    [68]Liu X, Huang K-L. A 12-Connected Dodecanuclear Copper Cluster with Yellow Luminescence [J]. Inorg. Chem.,2009,48,8653-8655.
    [69]Robinson S A. K, Mempin M-V L, Cairns A J, et al. A Cubic,12-Connected, Microporous Metal-Organometallic Phosphate Framework Sustained by Truncated Tetrahedral Nodes [J]. J. Am. Chem. Soc.,2011,133,1634-1637.
    [70]Cairns A J, Perman J A, Wojtas L, et al. [J]. Supermolecular Building Blocks (SBBs) and Crystal Design: 12-Connected Open Frameworks Based on a Molecular Cubohemioctahedron [J]. J. Am. Chem. Soc.,2008,130,1560-1561.
    [71]Gu Z-G, Xu Y-F, Kang L-C, et al. A Family of Polynuclear Clusters Containing Cyano-Bridged T-Shaped FeⅢMⅡ(M=Cu, Co, Mn) Metal Cores:Syntheses, Structures, and Magnetic Properties [J]. Inorg. Chem.,2009,48,5073-5080.
    [72]Li X, Sun H-L, Wu X-S, et al. Unique (3,12)-Connected Porous Lanthanide-Organic Frameworks Based on Ln4O4 Clusters:Synthesis, Crystal Structures, Luminescence, and Magnetism [J]. Inorg. Chem.,2010,49,1865-1871.
    [73]Shi F-N, Cunha-Silva L, Trindade T, et al. Three-Dimensional Lanthanide-Organic Frameworks Based on Di-, Tetra-, and Hexameric Clusters [J]. Crystal Growth & Design,2009,9,2098-2109.
    [74]Morris J J, Noll B C, Henderson K W. High-connectivity networks:characterization of the first uninodal 9-connected net and two topologically novel 7-connected nets [J]. Chem. Commun.,2007, 5191-5193.
    [75]Shi Y-J, Chen X-T, Li Y-Z, et al. Pb(dca)2 (dca=dicyanamide):a novel 3D compound with unusual coordination modes of dicyanamide [J]. New J. Chem.,2002,26,1711-1713.
    [76]Hou L, Zhang W-X, Zhang J-P. et al. An octacobaltcluster based, (3,12)-connected, magnetic, porous coordination polymer [J]. Chem. Commun.,2010,46,6311-6313.
    [77]Jia J, Lin X, Wilson C, et al. Twelve-connected porous metal-organic frameworks with high H2 adsorption [J]. Chem. Commun.,2007,840-842.
    [78]Song W-C, Pan Q, Song P-C, et al. Two unprecedented 10-connected bct topological metal-organic frameworks constructed from cadmium clusters [J]. Chem. Commun.,2010,46, Donus Tuncel and Joachim H. G. Steinke-4892.
    [79]Wang X-L, Qin C, Lan Y-Q, et al. Metal-organic replica of y-Pu: the first uninodal 10-connected coordination network based on pentanuclear cadmium clusters [J]. Chem. Commun.,2009,410-412.
    [80]Su Z, Song Y, Bai Z-S, et al. Unprecedented three-dimensional 10-connected bct nets based on trinuclear secondary building units and their magnetic behavior [J]. CrystEngComm,2010,12, 4339-4346.
    [81]Qin J, Qin C, Wang X-L, et al. Metal-organic replica of chiral natural materialβ-SnF2:an enantiopure binodal (3,5)-connected net based on triangular and trigonal bipyramidal coordination [J]. Chem. Commun.,2010,46,604-606.
    [82]Xiao D, Chen H, Zhang G, et al. An unprecedented (5,12)-connected 3D self-penetrating metal-organic framework based on dinuclear barium clusters as building blocks [J]. CrystEngComm, 2011,13,433-436.
    [83]Lan Y-Q, Li S-L, Shao K-Z, et al. Construction of different dimensional inorganic-organic hybrid materials based on polyoxometalates and metal-organic units via changing metal ions:from non-covalent interactions to covalent connections [J]. Dalton Trans.,2008,3824-3835.
    [84]Luis R F, Mesa J L, Urtiaga M K, et al. Topological description of a 3D self-catenated nickel hybrid vanadate Ni(bpe)(VO3)2. Thermal stability, spectroscopic and magnetic properties [J]. New J. Chem., 2008,32,1582-1589.
    [85]Hou L, Zhang J-P, Chen X-M, et al. Two highly-connected, chiral, porous coordination polymers featuring novel heptanuclear metal carboxylate clusters [J]. Chem. Commun.,2008,4019-4021.
    [86]Bo Q-B, Zhang Z-W, Miao J-L, et al. Novel metal-organic frameworks (MOFs) based on heterometallic nodes and 5-methylisophthalate linkers [J]. CrystEngComm,2011,13,1765-1767.
    [87]Wang X, Liu G, Zhang J, et al. A novel 3D Cd(II) metal-organic framework with an unprecedented (5,6)-connected topology based on isophthalate and 2-(3-pyridyl)imidazo[4,5-f]1,10-phenanthroline [J]. Dalton Trans.,2009,7347-7349.
    [88]Tuncel D, Steinke J H. G. Catalytically self-threading polyrotaxanes [J]. Chem. Commun.,1999, 1509-1510.
    [89]Araki J, Ito K. Recent advances in the preparation of cyclodextrin-based polyrotaxanes and their applications to soft materials [J]. Soft Matter,2007,3,1456-1473.
    [90]Batten S R. Topology of interpenetration [J]. CrystEngComm,2001,18,1-7.
    [91]Carlucci L, Ciani G, Proserpio D M. Borromean links and other non-conventional links in 'polycatenated' coordination polymers:re-examination of some puzzling networks [J]. CrystEngComm,2003,5(47),269-279.
    [92]Carlucci L, Ciani G, Proserpio D M. Polycatenation, polythreading and polyknotting in coordination network chemistry [J]. Coord Chem Rev,2003,246,247-289.
    [93]Batten S R, Robson R, Interpenetrating Nets:Ordered, Periodic Entanglement [J]. Angew. Chem. Int. Ed.1998,37,1460-1494.
    [94]Zhu H F, Fan J, Okamura T, et al. H-bonded nets.2 ladders interpenetrating with inclined mean planes but a coincident direction of propagation; NH4+ counterions may bridge ladders. Chem. Lett.,2002, 898-899.
    [95]Kuehl C J, Tabellion F M, Arif A M, et al. 1D chains of alternating rings and rods, held together by H-bonding. Chains entangle in pairs. Further H-bonding may connect all together each chain further connected to four adjacent strands in this way [J]. Organomet.,2001,20,1956-1959.
    [96]Fraser C S A, Jennings M C, Puddephatt R J. 1D chains of alternating rings and rods, held together by H-bonding. Chains entangle in pairs [J]. Chem. Commun.,2001,1310-1.
    [97]Wang Z, Cheng Y, Liao C, et al. Iodine chains with alternating rings and rods [J]. CrystEngComm, 2001,50,1-6.
    [98]Liu J-Qiang, Wang Y-Y, Liu P, et al. Two coordination polymers displaying unusual threefold D→1D and threefold 2D→3D interpenetration topologies [J]. CrystEngComm,2009,11,1207-1209.
    [99]Blake A J, Champness N R, Khlobystov A, et al. Undulating 1D ladders which lie parallel; each ladder is penetrated by four others.2D sheets formed [J]. J. Chem. Soc, Dalton Trans.,2000, 4160-4166.
    [100]Ferguson G, Glidewell C, Gregson R M, et al. Ladders held together by O-H...O=S and O-H...N H-bonding. Each ladder is penetrated by two others (parallel), giving an overall 2D sheet. Linked by C-H...O H-bonds into 3D net [J]. Acta Crystallogr., Sect. B,1999,55,573-590.
    [101]Wang X L, Qin C, Wang E B, et al. Entangled Coordination Networks with Inherent Features of polycatenation, Polythreading, and Polyknotting [J]. Angew. Chem. Int. Ed.,2005,44,5824-5827.
    [102]Carlucci L, Ciani G, Proserpio D M. Parallel and Inclined (1D f 2D) Interlacing Modes in New
    [103]Polyrotaxane Frameworks [M2(bix)3(SO4)2][M=Zn(Ⅱ), Cd(Ⅱ); Bix= 1,4-Bis(imidazol-1-ylmethyl)benzene] [J]. Cryst. Growth Des.,2005,5,37-39.
    [104]Zhu H F, Fan J, Okamura T, et al. Syntheses and Structures of Zinc(II), Silver(Ⅰ), Copper(Ⅱ), and Cobalt(II) Complexes with Imidazole-Containing Ligand: 1-(1-Imidazolyl)-4-(imidazol-1-ylmethyl)benzene [J]. Cryst. Growth Des.,2005,5,289-294.
    [105]Carlucci L, Ciani G, Proserpio D M. Self-assembly of novel co-ordination polymers containing polycatenated molecular ladders and intertwined two-dimensional tilings [J]. J. Chem. Soc, Dalton Trans.,1999,1799-1804.
    [106]Su C Y, Goforth A M, Smith M D, et al. Assembly of large simple 1D and rare polycatenated 3D molecular ladders from T-shaped building blocks containing a new, long N,N'-bidentate ligand [J]. Chem. Commun.,2004,2158-2159.
    [107]Zaman M B, Udachin K, Ripmeester J A, et al. Synthesis and Characterization of Diverse Coordination Polymers. Linear and Zigzag Chains Involving Their Structural Transformation via Intermolecular Hydrogen-Bonded, Interpenetrating Ladders Polycatenane, and Noninterpenetrating Square Grid from Long, Rigid N,N'-Bidentate Ligands:1,4-Bis[(x-pyridyl)ethynyl]benzene (x=3 and 4) [J]. Inorg. Chem.,2005,44,5047-5059.
    [108]Ma Y, Cheng A-L, Gao E-Q. Novel 2D f 2D Entanglement Pattern in the Coordination Network with Both Polyrotaxane and Polycatenane Features [J]. Crystal Growth & Design,2010,10, 2832-2834.
    [109]Wei G-H, Yang J, Ma J-F, et al. Syntheses, structures and luminescent properties of zinc(Ⅱ) and cadmium(Ⅱ) coordination complexes based on new bis(imidazolyl)ether and different carboxylate ligands [J]. Dalton Trans.,2008,3080-3092.
    [110]Yang Q-Y, S-R Zheng, Yang R, et al. An unusual 3D coordination polymer assembled through parallel interpenetrating and polycatenating of (6,3) nets [J]. CrystEngComm,2009,11,680-685.
    [111]Martin D P, Supkowski R M, LaDuca R L, et al. Cadmium Glutarate Coordination Polymers Containing Hydrogen-Bonding Capable Tethering Organodiimines:From Double Interpenetration to Supramolecular Cavities Containing an Unprecedented Water Tape Morphology [J]. Crystal Growth & Design,2008,8,3091-3097.
    [112]Dong Y-B, Xu H-X, Ma J-P, et al. Silver(Ⅰ) Coordination Polymers Based on A Nano-Sized Bent Bis(3-acetylenylphenyl-(4-cyanophenyl))oxadiazole Ligand:The Role of Ligand Isomerism and the Templating Effect of Polyatomic Anions and Solvent Intermediates [J]. Inorg. Chem.2006,45, 3325-3343.
    [113]Li M-X, Miao Z-X, Shao M, et al. Metal-Organic Frameworks Constructed from 2,4,6-Tris(4-pyridyl)-1,3,5-triazine [J]. Inorg. Chem.2008,47,4481-4489.
    [114]Li X, Cao R, Sun D, et al. Syntheses and Characterizations of Zinc(Ⅱ) Compounds Containing Three-Dimensional Interpenetrating Diamondoid Networks Constructed by Mixed Ligands [J]. Crystal Growth & Design,2004,4,775-780.
    [115]Xiao D-R, Li Y-G, Wang E-B, et al. Exceptional Self-Penetrating Networks Containing Unprecedented Quintuple-Stranded Molecular Braid,9-Fold Meso Helices, and 17-Fold Interwoven Helices [J]. Inorg. Chem.2007,46,4158-4166.
    [116]Yang J, Ma J-F, Liu Y-Y, et al. Four-, and six-connected entangled frameworks based on flexible bis(imidazole) ligands and long dicarboxylate anions [J]. CrystEngComm,2009,11,151-159.
    [117]Carlucci L, Ciani G, Proserpio D M, et al. Three Novel Interpenetrating Diaoid Networks from Self-Assembly of 1,12-Dodecanedinitrile with Silver(Ⅰ) Salts [J]. Chem. Eur. J.2002,8,1519-1526.
    [118]Wang H-Y, Gao S, Huo L-H, et al. Three Interpenetrated Frameworks Assembly from a Long Multicarboxylate Ligand and Transition Metal [J]. Crystal Growth & Design,2008,8,665-670.
    [119]Reddy D S, Dewa K E, Aoyama Y. Charge-Transfer Diamondoid Lattices:An Unprecedentedly Huge and Highly Catenating Diamondoid Network Arising from a Tetraphenol as a Tetrahedral Node and Benzoquinone as a Linear Spacer [J]. Angew. Chem. Int. Ed.2000,39,2466-4268.
    [120]Hsu Y-F, Lin C-H, Chen J-D, et al. A Novel Interpenetrating Diamondoid Network from Self-Assembly of N,N'-Di(4-pyridyl)adipoamide and Copper Sulfate:An Unusual 12-Fold, [6+6] Mode [J]. Crystal Growth & Design,2008,8,1094-1096.
    [121]Shattock T R, Vishweshwar P, Wang Z, et al.18-Fold Interpenetration and Concomitant Polymorphism in the 2:3 Co-Crystal of Trimesic Acid and 1,2-Bis(4-pyridyl)ethane [J]. Crystal Growth & Design,2005,5,2046-2049.
    [122]Farnum G A, LaDuca R L. Zinc Tricarballylate Coordination Polymers with a Threaded-Loop Self-Penetrated Layer and Triply Interpenetrated 3,4-Connected Binodal Network Structures: Topological Control through Anion Inclusion [J]. Crystal Growth & Design,2010,10,1897-1903.
    [123]Sposato L K, Nettleman J H, Braverman M A, et al. Synthesis and Magnetic Properties of Dual-Ligand Divalent Copper Coordination Polymers with Rhomboid Layer, Archimedean Grid, and Self-Penetrated Network Topologies [J]. Crystal Growth & Design,2010,10,335-343.
    [124]Martin D P, Supkowski R M, LaDuca R L. A Three-Dimensional Mixed-Ligand Coordination Polymer Featuring Strongly Antiferromagnetically Coupled Dinuclear Copper Paddlewheels Linked into a 6-Connected Self-Penetrated Network [J]. Crystal Growth & Design,2008,8,3518-3520.
    [125]Shyu E, Supkowski R M, LaDuca R L. Structural Diversity in Luminescent Three-Dimensional Cadmium Aliphatic Dicarboxylate Coordination Polymers Incorporating 4,4'-Dipyridylamine: Interpenetrated, Non-Interpenetrated, and Self-Penetrated Networks [J]. Crystal Growth & Design, 2009,9,2481-2491.
    [126]Li D-S, Fu F, Zhao J, et al. Unique 3D self-penetrating CoⅡ and NiⅡ coordination frameworks with a new (44.610.8) network topology [J]. Dalton Trans.,2010,39,11522-11525.
    [127]Sposato L K, Nettleman J A, LaDuca R L. Isomer dependent self-penetrated topologies and cluster subunits in copper phenylenediacetate coordination polymers with flexible dipyridyl ligands [J]. CrystEngComm,2010,12,2374-2380.
    [128]Jia Q-X, Wang Y-Q, Qi Y, et al. Isomorphous CoⅡ and MnⅡ materials of tetrazolate-5-carboxylate with an unprecedented self-penetrating net and distinct magnetic behaviours [J]. Chem. Commun.,2008,4894-4896.
    [129]Sun H-L, Gao S, Ma B-Q, et al.3D Self-penetrating coordination network constructed by dicyanamide and 1,2-bis(4-pyridyl)ethane-N,N'-dioxide (bpeado) [J]. CrystEngComm,2004,6, 579-583.
    [130]Chen P-k, Qi Y, Che Y, et al. Network topology and property studies for two binodal self-penetrated coordination polymers [J]. CrystEngComm,2010,12,720-724.
    [131]Zhang Z-H, Chen S-C, Mi J-L, et al. Unique Znll coordination entanglement networks with a flexible fluorinated bis-pyridinecarboxamide tecton and benzenedicarboxylates [J]. Chem. Commun., 2010,46,8427-8429.
    [132]Guo H-D, Qiu D-F, Guo X-M, et al. Entangled metal-organic frameworks modulated by N-donor ligands of different conformations [J].CrystEngComm,2010,12,100-108.
    [133]Carlucci L, Ciani G, Macch i P, et al. Eur. J.1999,5,237.
    [134]Yang G-S, Lan Y-Q, Zang H-Y, et al. Two eight-connected self-penetrating porous metal-organic frameworks:configurational isomers caused by different linking modes between terephthalate and binuclear nickel building units [J]. CrystEngComm,2009,11,274-277.
    [135]Kahn O. Chemistry and Physics of Supramolecular Magnetic Materials [J]. Acc. Chem. Res., 2000,33,647-657.
    [136]Wei Y, Yu Y, Wu K. Highly Stable Diamondoid Network Coordination Polymer [Mn(NCP)2]n with Notable NLO, Magnetic, and Luminescence Properties [J]. Crystal Growth & Design,2007,7, 2262-2264.
    [137]Chelebaeva E, Larionova J, Guari Y, et al. A Luminescent and Magnetic Cyano-Bridged Tb3+-Mo5+ Coordination Polymer: toward Multifunctional Materials [J]. Inorg. Chem.,2008,47, 775-777.
    [138]Kaneko W, Ohba M, Kitagawa S. A Flexible Coordination Polymer Crystal Providing Reversible Structural and Magnetic Conversions [J]. J. Am. Chem. Soc.,2007,129,13706-13712.
    [139]Binnemans K, Galyametdinov Y G, Deun R V, et al. Rare-Earth-Containing Magnetic Liquid Crystals [J]. J. Am. Chem. Soc.,2000,122,4335-4344.
    [140]Talham D R. Conducting and Magnetic Langmuir-Blodgett Films [J]. Chem. Rev.,2004,104, 5479-5502.
    [141]Gatteschi D, Cornia A, Mannini M, et al. Organizing and Addressing Magnetic Molecules [J]. Inorg. Chem.,2009,48,3408-3419.
    [142]Terreno E, Castelli D D, Viale A, et al. Challenges for Molecular Magnetic Resonance Imaging [J]. Chem. Rev.,2010,110,3019-3042.
    [143]Manson J L, Lancaster T, Schlueter J A, et al. Characterization of the Crystal and Magnetic Structures of the Mixed-Anion Coordination Polymer Cu(HCO2)(NO3)(pyz){pyz=Pyrazine} by X-ray Diffraction, ac Magnetic Susceptibility, dc Magnetization, Muon-Spin Relaxation, and Spin Dimer Analysis [J]. Inorg. Chem.,2007,46,213-220.
    [144]Demessence A, Rogez G, Welter R, et al. Structure and Magnetic Properties of a New Cobalt(II) Thiophenedicarboxylate Coordination Polymer Showing Unprecedented Coordination [J]. Inorg. Chem.,2007,46,3423-3425.
    [145]Yong Guo-P, Qiao S, Wang Z-Y, et al. A One-Dimensional Coordination Polymer Based on Novel Radical Anion Ligand Generated In Situ:Notable Magnetic and Luminescence Properties [J]. Crystal Growth & Design,2008,8,1465-1467.
    [146]Mole R A, Stride J A, Henry P F, et al. Two Stage Magnetic Ordering and Spin Idle Behavior of the Coordination Polymer Co3(OH)2(C4O4)2-3H2O Determined Using Neutron Diffraction [J]. Inorg. Chem.,2011,50,2246-2251.
    [147]Yoon J H, Yoo H S, Kim H C, et al. Cyanide-Bridged One-Dimensional Ferromagnetic RuⅢMnⅢ Coordination Polymer Exhibiting a Field-Induced Magnetic Phase Transition [J]. Inorg. Chem.,2009, 48,816-818.
    [148]Kim Y, Jung D-Y. Hydrothermal Synthesis and Magnetic Behavior of a Novel Layered Coordination Polymer Generated from Manganese(Ⅱ) Adipate [J]. Inorg. Chem.,2000,39, 1470-1475.
    [149]Marino N, Ikotun O F, Julve M, et al. Pyrophosphate-Mediated Magnetic Interactions in Cu(II) Coordination Complexes [J]. Inorg. Chem.,2011,50,378-389.
    [150]Andruh M, Costes J-P, Diaz C, et al.3d-4f Combined Chemistry: Synthetic Strategies and Magnetic Properties [J]. Inorg. Chem.,2009,48,3342-3359.
    [151]Byrne S J, Corr S A,. Gun'ko Y K, et al. Magnetic nanoparticle assemblies on denatured DNA show unusual magnetic relaxivity and potential applications for MRI [J]. Chem. Commun.,2004, 2560-2561.
    [152]Abrahams B F, Batten S R, Grannas M J, et al. Ni(tpt)(NO3)2-A Three-Dimensional Network with the Exceptional (12,3) Topology:A Self-Entangled Single Net[J]. Angew Chem Int Ed,1999,38: 1475-1477.
    [153]Carlucci L, Ciani G. An unprecedented triply interpenetrated chiral network of square-planar metal centres from the self-assembly of copper(Ⅱ) nitrate and 1,2-bis(4-pyridyl)ethyne[J]. Chem Commun,1998,1837-1838.
    [154]M. O'Keeffe, Hyde B G. Crystal Structures. I. Patterns and Symmetry[M]. Mineral. Soc. Am, Washington,1996.
    [155][4] Friedrichs O D, O'Keeffe M, Yaghi O M. Three-Periodic Nets and Tilings:Semiregular Nets[J]. Acta Cryst,2003, A59:515-525.
    [156]Tong M L, Chen X M, Batten S R. A New Self-Penetrating Uniform Net, (8,4) (or 86), Containing Planar Four-Coordinate Nodes[J]. J Am Chem Soc,2003,125:16170-16171.
    [157]Robson R. A net-based approach to coordination polymers[J]. J Chem Soc Dalton Trans,2000, 3735-3744.
    [158]O'Keeffe M, Eddaoudi M, Li H, et al. Frameworks for Extended Solids:Geometrical Design Principles[J]. J Solid State Chem,2000,152:3-20.
    [159]Biradha K. Crystal engineering:from weak hydrogen bonds to co-ordination bonds[J]. CrystEngComm,2003,5:374-384.
    [160]Hill R J, Long D L, Champness N R, et al. New Approaches to the Analysis pf High Connectivity Materials: Design Frameworks Based upon 44 and 63-Subnet Tectons[J]. Acc Chem Res, 2005,38:337-350.
    [161]Hu S, Chen J C, Tong M L, et al. Cu2+-mediated dehydrogenative coupling and hydroxylation of an N-heterocyclic ligand:from generation of a new tetratopic lignads to the designed assembly of three-dimensional copper(Ⅰ) coordination polymers[J]. Angew Chem Int Ed,2005,44:5471-5475.
    [162]Chun H, Kim D, Dybtsev D N, et al. Metal-Organic Replica of Fluorite Built with an Eight-Connecting Tetranuclear Cadmium Cluster and a Tetrahedral Four-Connecting Ligand[J]. Angew Chem Int Ed,2004,43:911-914.
    [163]Zhang X M, Fang R Q, Wu H S. A Twelve-Connected Cu6S4 Cluster-Based Coordination Polymer[J]. J Am Chem Soc,2005,127:7670-7671.
    [164]Li D, Wu T, Zhou X P, et al. Twelve-Connected Net with Face-Centered Cubic Topology: A Coordination Polymer Based on [Cul2(4-SCH3)6]6+Clusters and CN- Linkers[J]. Angew Chem Int Ed,2005,44:4175-4178.
    [165]Fang Q R, Zhu G S, Xue M, et al. A Metal-Organic Framework with the Zeolite MTN Topology Containing Large Cages of Volume 2.5nm[J]. Angew Chem Int Ed,2005,44:3845-3848.
    [166]Lu W G, Su C Y, Lu T B, et al. Two Stable 3D Metal-Organic Frameworks Constructed by Nanoscale Cages via Sharing the Single-Layer Walls[J]. J Am Chem Soc 2006,128:34-35.
    [167]Ockwig N W, Delgado-Friedrichs O, O'Keeffe M, et al. Reticular Chemistry:Occurrence and Taxonomy of Nets and Grammar for the Design of Frameworks. Acc Chem Res,2005,38:176-182.
    [168]Batten S R, Robson R. Interpenetrating Nets:Ordered, Periodic Entanglement [J]. Angew. Chem. Int. Ed.1998,37,1460-1494.
    [169]Li D, Shi W J, Hou L. Coordination Polymers of Copper(Ⅰ) Halides and Neutral Heterocyclic Thiones with New Coordination Modes [J]. Inorg. Chem.2005,44,3907-3913.
    [170]Liu C M, Gao S, Zhang D Q, et al. A Unique 3D Alternating Ferro- and Antiferromagnetic Manganese Azide System with Threefold Interpenetrating (10,3) Nets [J]. Angew. Chem. Int. Ed. 2004,43,990-990.
    [171]Biradha K, Fujita M. A Springlike 3D-Coordination Network That Shrinks or Swells in a crystal-to-Crystal Manner upon Guest Removal or Readsorption [J]. Angew. Chem. Int. Ed.2002, 3392-3395.
    [172]Almeida P F A, Klinowski J. Two- and Three-Dimensional Cadmium-Organic Frameworks with Trimesic Acid and 4,4-Trimethylenedipyridine [J]. Inorg. Chem.2004,43,3882-3893.
    [173]Ma J P, Dong Y B, Huang R Q, et al. Spontaneously Resolved Chiral Three-Fold Interpenetrating Diaoidlike Cu(II) Coordination Polymers with Temperature-Driven Crystal-to-Crystal Transformation [J]. Inorg. Chem.2005,44,6143-6145.
    [174]Li X, Cao R, Sun D, et al. Syntheses and Characterizations of Zinc(Ⅱ) Compounds Containing Three-Dimensional Interpenetrating Diaoid Networks Constructed by Mixed Ligands [J]. Crystal Growth & Design,2004,775-780.
    [175]Li X, Cao R, Sun D, et al. Syntheses and Characterizations of Zinc(Ⅱ) Compounds Containing Three-Dimensional Interpenetrating Diaoid Networks Constructed by Mixed Ligands [J]. Crystal Growth & Design,2004,775-780.
    [176]Batten S R, Robson R, in Molecular Catenanes, Rotaxanes and Knots:A Journey Through the World of Molecular Topology, ed. J.-P. Sauvage and C. Dietrich-Buchecker, Wiley-VCH, Weinheim, 1999, pp.77-10.
    [177]Chen S-S, Lv G-C, Fan J, et al. Entangled Coordination Frameworks with 1,4-Di(1H-imidazol-4-yl)benzene [J]. Crystal Growth & Design,2011.
    [178]Harpham M R, Szer z, Ma C-Q, et al. Thiophene Dendrimers as Entangled Photon Sensor Materials [J]. J. Am. Chem. Soc.,2009,131:973-979.
    [179]Liu J-Q, Liu B, Wang Y-Y, et al. Inorg. Chem.,2010,49:10422-10426.
    [180]Xue Z, Mayer M F. Actuator Prototype: Capture and Release of a Self-Entangled [1] Rotaxane [J]. J. Am. Chem. Soc.,2010,132:3274-3276.
    [181]Sun L-X, Qi Y, Che Y-X, et al. Crystal Growth & Design,2009,9:2995-2998.
    [182]Qin C, Wang X-L, Wang E-B, et al. Inorg. Chem.,2008,47:5555-5557.
    [183]Montney M R., Krishnan S M, Supkowski R M., Diverse Entangled Metal-Organic Framework Materials Incorporating Kinked Organodiimine and Flexible Aliphatic Dicarboxylate Ligands: Synthesis, Structure, Physical Properties, and Reversible Structural Reorganization [J]. Inorg. Chem., 2007,46:7362-7370.
    [184]Zhang L, Li Z, Tan Y, et al. Influence of a Top Crust of Entangled Nanotubes on the Structure of Vertically Aligned Forests of Single-Walled Carbon Nanotubes [J]. Chem. Mater.,2006,18: 5624-5629.
    [185]Jian-Qiang Liu, Yun-Sheng Huang, Ying-Yong Zhao, et al. Molecular Tectonics of Entangled Metal-Organic Frameworks Based on Different Conformational Carboxylates Mixed with a Flexible N,N'-Type Ligand [J]. Crystal Growth & Design,2011,11:569-574.
    [186]Qin C, Wang X-L, Wang E-B, et al. Correction to Catenation of Loop-Containing 2D Layers with a 3D pcu Skeleton into a New Type of Entangled Framework Having Polyrotaxane and Polycatenane Character [J]. Inorg. Chem.,2010,49:11643.
    [187]Yang J, Ma J-F, Liu Y-Y, et al. Four-, and six-connected entangled frameworks based on flexible bis(imidazole) ligands and long dicarboxylate anions [J]. CrystEngComm,2009,11,151-159.
    [188]Cheng A-L, Liu N, Yue Y-F, et al. Unprecedented 3D entanglement of 1D zigzag coordination polymers leading to a robust microporous framework [J]. Chem. Commun.,2007,407-409.
    [189]Carlucci L, Ciani G, Proserpio D M. Polycatenation, polythreading and polyknotting in coordination network chemistry [J]. Coordination Chemistry Reviews 246 (2003) 247-289.
    [190]Qin C, Wang X, Carlucci L, et al. From arm-shaped layers to a new type of polythreaded array:a two fold interpenetrated three-dimensional network with a rutile topology [J] Chem. Commun.,2004, 1876-1877.
    [191]Wang X-L, Qin C, Wang E-B, et al. Angew. Chem., Int. Ed.2005,44,5824.
    [192]Wang G-H, Li Z-G, Jia H-Q, et al. Cryst. Crowth Des.2008,8,1932.
    [193]Hoskins B F, Robson R, Slizys D A. The Structure of [Zn(bix)2(NO3)]·4.5H2O (bix= 1,4-Bis(irnidazol-1-ylmethyl)benzene):A New Type of Twd-Dimensional Polyrotaxane [J]. Angew. Chem. Int. Ed. Engl.1997,2336-2338.
    [194]Batten S R, Robson R, Interpenetrating Nets:Ordered, Periodic Entanglement [J]. Angew. Chem. Int. Ed.1998,37,1460-1494.
    [195]Zhang Z-H, Chen S-C, Mi J-L, et al. Unique Znll coordination entanglement networks with a flexible fluorinated bis-pyridinecarboxamide tecton and benzenedicarboxylates [J]. Chem. Commun., 2010,46,8427-8429.
    [196]Wu H, Liu H-Y, Liu Y-Y, et al. An unprecedented 2D→3D metal-organic polyrotaxane framework constructed from cadmium and a flexible star-like ligand [J]. Chem. Commun.,2011,47, 1818-1820.
    [197]Xu B, Lin Z, Han L, Cao R. From 2D→3D inclined polycatenation to 2D→3D parallel polycatenation: a central metal cationic induce strategy [J]. CrystEngComm,2011,13,440-44.
    [198]Carlucci L, Ciani G, Proserpio D M, et al. New polymeric networks from the self-assembly of silver(I) salts and the flexible ligand 1,3-bis(4-pyridyl)propane (bpp). A systematic investigation of the effects of the counterions and a survey of the coordination polymers based on bpp [J]. EngComm, 2002,4,121-129.
    [199]Du M, Zhang Z-H, Wang X-G, et al. Structural modulation of polythreading and interpenetrating coordination networks with an elongated dipyridyl building block and various anionic co-ligands [J] CrystEngComm,2008,10,1855-1865.
    [200]Liu J-Q, Wang Y-Y, Liu P, et al. Two coordination polymers displaying unusual threefold 1D→1D and threefold 2D->3D interpenetration topologies [J] CrystEngComm,2009,11,1207-1209.
    [201]Hoskins B F, Robson R, Slizys D A. The Structure of [Zn(bix)2(NO3)2]-4.5H2O (bix= 1,4-Bis(irnidazol-1-ylmethyl)benzene):A New Type of Twd-Dimensional Polyrotaxane [J] Angew. Chem. Int. Ed. Engl.1997,36,2336-2338.
    [202]Kornienko A, Huebner L, Freedman D, et al. Lanthanide-Transition Metal Chalcogenido Cluster Materials [J] Inorg. Chem.,2003,42 (25),8476-8480.
    [203]Norton J, Valentine Jr D, Collman J P. Novel nitrosyl-substituted metal carbonyl cluster [J]. J. Am. Chem. Soc.,1969,91 (26),7537-7538.
    [204]Klotzbucher W E, Mitchell S A, Ozin G A. Metal atom-metal cluster chemistry.1. Alkane matrices [J]. Inorg. Chem.,1977,16 (12),3063-3070.
    [205]Woolley R G. Bonding in transition-metal cluster compounds.2. The metal cluster-borane analogy [J]. Inorg. Chem.,1985,24 (22),3525-3532.
    [206]Wooley R G. Bonding in transition-metal cluster compounds.1. The M6(.mu.3-X)8 cluster [J]. Inorg. Chem.,1985,24 (22),3519-3525.
    [207]Day V W, Day R O, Kristoff J S, et al. Fluxional, catalytically active metal cluster, heptakis(tert-butylisocyanide)tetranickel [J]. J. Am. Chem. Soc.,1975,97 (9),2571-2573.
    [208]Bullett D W. Metal-metal bonding in transition-element and lanthanoid cluster compounds.2 [J]. Inorg. Chem.,1985,24 (21),3319-3323.
    [209]McCandlish L E, Bissell E C, Coucouvanis D, et al. [J]. J. Am. Chem. Soc.,1968,90 (26), 7357-7359.
    [210]Zhou J, Holm R H. Synthesis and Metal Ion Incorporation Reactions of the Cuboidal Fe3S4 Cluster [J]. J. Am. Chem. Soc.,1995,117 (45),11353-11354.
    [211]Wang X-W, Dong Y-R, Zheng Y-Q, et al. A Novel Five-Connected BN Topological Network Metal-Organic Framework Mn(II) Cluster Complex [J]. ystal Growth & Design,2007,7 (4), 613-615.
    [212]Armentrout P B, Loh S K, Ervin K. Transition-metal cluster chemistry:reactions of manganese dimer ion (Mn2+) with molecular oxygen [J]. J. Am. Chem. Soc.,1984,106 (4),1161-1163.
    [213]Armentrout P B, Loh S K, Ervin K. Transition-metal cluster chemistry: reactions of manganese dimer ion (Mn2+) with molecular oxygen [J]. J. Am. Chem. Soc.,1984,106 (4),1161-1163.
    [214]Bertrand J A, Kelley J A. Five-Coordinate Complexes. Ⅱ.1 Trigonal Bipyramidal Copper(Ⅱ) in a Metal Atom Cluster [J]. J. Am. Chem. Soc.,1966,88 (20),4746-4747.
    [215]Crawford N R M, Hee A G, Long J R, et al. Cluster Synthesis via Ligand-Arrested Solid Growth: Triethylphosphine-Capped Fragments of Binary Metal Chalcogenides [J]. J. Am. Chem. Soc.,2002, 124 (50),14842-14843.
    [216]Song L-C, Fan H-T, Hu Q-M. The First Example of Macrocycles Containing Butterfly Transition Metal Cluster Cores via Novel Tandem Reactions [J]. J. Am. Chem. Soc.,2002,124 (17),4566-4567.
    [217]Meier D C, Goodman D W. The Influence of Metal Cluster Size on Adsorption Energies:CO Adsorbed on Au Clusters Supported on TiO2 [J]. J. Am. Chem. Soc.,2004,126 (6),1892-1899.
    [218]Femoni C, Iapalucci M C, Longoni G, et al. Magnetic Behavior of Odd-and Even-Electron Metal Carbonyl Clusters:The Case Study of [CogPt4C2(CO)24]n- (n=1,2) Carbide Cluster [J]. J. Am. Chem. Soc.,2010,132 (9),2919-2927.
    [219]Meier D C, Goodman D W. The Influence of Metal Cluster Size on Adsorption Energies:CO Adsorbed on Au Clusters Supported on TiO2 [J]. J. Am. Chem. Soc.,2004,126 (6),1892-1899.
    [220]Chen X-Y, Zhao B, Shi W, et al. Microporous Metal-Organic Frameworks Built on a Ln3 Cluster as a Six-Connecting Node [J]. Chem. Mater.,2005,17(11),2866-2874.
    [221]Brylev K A, Mironov Y V, Naumov N G, et al. New Compounds from Tellurocyanide Rhenium Cluster Anions and 3d-Transition Metal Cations Coordinated with Ethylenediamine [J]. Inorg. Chem., 2004,43 (16), pp 4833-4838.
    [222]He J, Zhang J-X, Tsang C-K, et al. Mixed-Valence CuⅡCuⅠ15I7 Cluster Builds up a 3D Metal-Organic Framework with Paramagnetic and Thermochromic Characteristics [J]. Inorg. Chem., 2008,47 (18),7948-7950.
    [223]Wang J, Lin Z, Ou Y-C, et al. Hydrothermal Synthesis, Structures, and Photoluminescent Properties of Benzenepentacarboxylate Bridged Networks Incorporating Zinc(Ⅱ)-Hydroxide Clusters or Zinc(II)-Carboxylate Layers [J] Inorg. Chem.2008,47,190-199.
    [224]Fu Z, Chivers T.{Zn3(Et2O)2[(EtO)PO2(C6H5NH)]62THF}:A Trinuclear Zinc Amidophosphate with an Hourglass Structure [J] Inorg. Chem.2005,44,7292-7294.
    [225]Santra B K, Hung C-M, Liaw B-J, et al. The First, Discrete Zn4 Tetrahedron with a Selenium Atom in the Center: X-ray Structure and Solution Study of [Zn4(μ4-Se){Se2P(OPr)2}6] [J] Inorg. Chem.2004,43,7570-7572.
    [226]Yuan G, Shao K-Z, Wang X-L, et al. A novel pentanuclear Zn(Ⅱ) coordination polymer with double helices: Synthesis, structure and luminescent property [J] Inorganic Chemistry Communications 2008,11,1246-1249.
    [227]Zhai Q-G, Lu C-Z, Wu X-Y, et al. Coligand Modulated Six-, Eight-, and Ten-Connected Zn/Cd-1,2,4-Triazolate Frameworks Based on Mono-, Bi-, Tri-, Penta-, and Heptanuclear Cluster Units [J] Crystal Growth & Design,2007,7,2332-2342.
    [228]Akine S, Dong W, Nabeshima T. Octanuclear Zinc(Ⅱ) and Cobalt(Ⅱ) Clusters Produced by Cooperative Tetrameric Assembling of Oxime Chelate Ligands [J] Inorg. Chem.2006,45, 4677-4684.
    [229]Guo Y-Q, Yang B-P, Song J-L, et al. Zinc(Ⅱ) Phosphonate Cage Compounds Derived from Zn6(Zn)L6 Centered Octahedral Cores [J] Crystal Growth & Design,2008,8,600-605.
    [230]Li J-R, Tao Y, Yu Q, et al. A pcu-type metal-organic framework with spindle [Zny(OH)8]6+ cluster as secondary building units [J] Chem. Commun.,2007,1527-1529.
    [231]Frischmann P D, Facey G A, Ghi P Y, et al. Capsule Formation, Carboxylate Exchange, and DFT Exploration of Cadmium Cluster Metallocavitands:Highly Dynamic Supramolecules [J] J. Am. Chem. Soc.2010,132,3893-3908.
    [232]Wang X-L, Qin C, Wang E-B, et al. Interlocked and Interdigitated Architectures from Self-Assembly of Long Flexible Ligands and Cadmium Salts [J] Angew. Chem. Int. Ed.2004,43, 5036-5040.
    [233]Hernandez-Ahuactzi I F, Hopfl H, Barba V, et al. Pore-Size Tuning in Double-Pillared Metal-Organic Frameworks Containing Cadmium Clusters [J] Eur. J. Inorg. Chem.2008,2746-2755.
    [234]Fang Q-R, Zhu G-S, Zhao J, et al. A Multifunctional Metal-Organic Open Framework with a bcu Topology Constructed from Undecanuclear Clusters [J] Angew. Chem. Int. Ed.2006,45,6126-6130.
    [235]Du Z-Y, Li X-L, Liu Q-Y, et al. Novel Cadmium(Ⅱ) Phosphonatophenylsulfonate Cluster Compounds:Syntheses, Structures, and Luminescent Properties [J] Crystal Growth & Design,2007,7, 1501 1507.
    [236]Zhang Z, Xiang S, Zheng Q, et al. A Rare Uninodal 9-Connected Metal-Organic Framework with Permanent Porosity [J] Crystal Growth & Design,2010,10 (5),2372-2375.
    [237]Song W-C, Pan Q, Song P-C, et al. Two unprecedented 10-connected bct topological metal-organic frameworks constructed from cadmium clusters [J] Chem. Commun.,2010,46, 4890-4892.
    [238]Wang X-L, Qin C, Lan Y-Q, et al. Metal-organic replica of y-Pu:the first uninodal 10-connected coordination network based on pentanuclear cadmium clusters [J] Chem. Commun.,2009,410-412.
    [239]Su Z, Song Y, Bai Z-S, et al. Unprecedented three-dimensional 10-connected bct nets based on trinuclear secondary building units and their magnetic behavior [J] CrystEngComm,2010,12, 4339-4346.
    [240]Wen Y-H, Zhang J, Wang X-Q, et al. A rare metal-organic 3D architecture with a pseudo-primitive cubic topology with double edges constructed from a 12-connected SBU [J] New J. Chem.,2005,29,995-997.
    [241]Hou L, Zhang J-P, Chen X-M, et al. Two highly-connected, chiral, porous coordination polymers featuring novel heptanuclear metal carboxylate clusters [J] Chem. Commun.,2008,4019-4021.
    [242]Jia J, Lin X, Wilson C, Twelve-connected porous metal-organic frameworks with high H2 adsorption [J] Chem. Commun.,2007,840-842.
    [243]Morris J J, Noll B C, Henderson K W, et al. High-connectivity networks:characterization of the first uninodal 9-connected net and two topologically novel 7-connected nets [J] Chem. Commun., 2007,5191-5193.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700