电泳显示微胶囊的制备及Y型微通道反应器搭建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于电泳显示的电子纸已成为当今应用领域的研究热点,其中微胶囊电子墨水是电子纸显示的核心技术。而当前微胶囊电泳显示存在明显的缺点,例如只能做黑白双色显示,更新频率过慢,仅采用彩色滤光板技术,多使用无机颜料作为电泳颗粒等。通过微加工技术和精密加工技术制造的Y型微通道反应器主要用于有机合成的研究。由于反应过程中,两股反应液在混合同时也可进行乳化,故可制备具有高度分散液滴的乳液,从而获得尺寸均一,大小可控的微胶囊。但国内尚无此类相关微胶囊制备研究的文献报道。
     鉴此,本文对由酞菁蓝和TiO2组成的电泳粒子表面进行修饰,以加强其在四氯乙烯介质中的分散性,使其满足电泳显示的要求。采用红外光谱仪、扫描电子显微镜和热失重分析仪等分析测试手段,对电泳粒子的改性效果进行表征。以分散有电泳粒子的四氯乙烯为芯材,蜜胺树脂为壁材通过原位聚合法制备电泳显示微胶囊。并采用光学显微镜、扫描电子电镜、表面张力仪、激光粒径分布仪等分析测试手段,对所制备的微胶囊粒径分布、表面形态、包封率进行表征,探索乳化剂种类、乳化剂浓度、芯壁比和pH值等工艺条件对所制备电泳微胶囊性能的影响。搭建Y型微通道反应装置,通过改变两流动相配比和流速比,采用光学显微镜作为测试手段,研究不同流动相配比和流速比对微胶囊制备的影响。
     得出以下结论:
     酞菁蓝在四氯乙烯中的分散程度较差,用十八胺对酞菁蓝进行表而改性,十八胺与酞菁蓝之间由于形成氢键而吸附在一起,增强了酞菁蓝在油性介质中的分散稳定性。分散程度测试表明十八胺改性后的酞菁蓝在四氯乙烯中的分散程度达到90%,符合电泳粒子的要求。金红石型TiO2密度较大,约为4.0g/cm3且具有亲水表面,使用硅烷偶联剂K570对其进行改性,K570水解生成的Si-OH与TiO2表面的-OH形成氢键接枝于TiO2的表面,成功的使TiO2表面由亲水变为亲油;亲油表面改性后的TiO2用聚苯乙烯进行包覆,苯乙烯单体和TiO2表面的C=C双键共聚从而包覆于TiO2表面,最终形成一种核-壳微球结构。通过热失重分析计算出聚苯乙烯TiO2微球密度为1.78g/cm3,与密度为1.62g/cm3的四氯乙烯较为相近,符合电泳粒子的要求。
     通过对不同类型表面活性剂的筛选,发现高分子型表而活性剂苯乙烯马来酸酐共聚物(PDA)是制备蜜胺树脂电泳显示微胶囊的理想乳化剂,其最佳工艺条件为:乳化剂浓度为1.0wt%、芯壁比为2.5、pH值为5.0。
     实验室搭建的Y型微通道反应器暂时无法成功制备微胶囊,主要与蜜胺树脂壁材的成囊反应有关,但经其流出的乳液大小十分均匀且形态良好,若进一步探索成囊反应机理,有望制得具有极佳的均一性和表面形态的电泳显示微胶囊。
The electronic paper which is based on electrophoretic display has already been a research hotspot. The key technology of the electronic paper is in the preparation of microcapsule electronic ink. Microcapsule electronic display, however, exhibits some defections such as monochrome display, slow renew frequency, only applying color filter tabula rasa and mainly using inorganic particles as electrophoretic particles etc.
     Y-shape micro channel reactor manufactured by the technology both of surface micromachining and of precision machining, is mainly used for the study of organic synthesis. When using Y-shape micro channel reactor, two reaction-liquid can be emulsified evenly and highly dispersed emulsion can be obtained. As the result, the uniform and size-controlled microcapsules can be prepared. So far, the applications of preparing microcapsules by Y-shape micro channel reactor were rarely reported in China.
     In this paper, electrophoretic particles containing phthalocyanine blue and TiO2 were surface modified to improve their dispersibility in tetrachloroethylene (TCE). Infrared Spectrum, Scanning Electron Microscope (SEM) and thermogravimetry analysis (TG) were used to characterize the result of modificated samples. The microcapsules used for electrophoretic display were prepared by in-situ polymerization. The core material contained electrophoretic particles (phthalocyanine blue and TiO2) and TCE, and the wall material were made of melamine-formaldehyde resin. The Optical Microscope, SEM, Surface Tensiometer and Static Light Scattering were used to characterize the particle size distributions, surface morphology and coating rate of microcapsules. The type and concentration of surfactant, the ratio of core material to wall material and the pH values were all experimentally investigated. Meanwhile, Y-shape micro channel reactor was built. The effect of different flowing phase and speed ratio on microcapsules preparation was studied respectively using Optical Microscope.
     The main results are summarized as follow:
     Octadecylamine can used to modify phthalocyanine blue, which had poor dispersibility in TCE. Hydrogen bond can be observed between Octadecylamine and phthalocyanine blue by FTIR, so that the dispersibility of phthalocyanine blue in TCE was enhanced greatly. The results of dispersing extent test suggested that the dispersing extent of phthalocyanine blue in TCE was up to 90%. Hence the modified phthalocyanine blue is suitable for being electrophoretic particles. 3-(trimethoxysilyl) propyl methacrylate (K570) was used to modify the TiO2, whose density is 4.0g/cm3 and surface is hydrophilic. Si-OH can be generated by the hydrolysis of K570. Then the Si-OH and the-OH which was on the surface of TiO2 formed the hydrogen bond. As a result, K570 was fixed to the surface of TiO2. Thus the surface of TiO2 was turned from hydrophilic to lipophilic. If the lipophilic TiO2 was coated with polystyrene (PS), styrene and C=C double bond of TiO2 can copolymerized. Therefore, TiO2/PS Core-Shell particles were obtained. Due to the similar density,1.78g/cm3 of TiO2/PS Core-Shell particles and 1.62g/cm3 of TCE, the modified TiO2 is suitable for using in electrophoretic display.
     After selecting different types of surfactants, macromolecule surfactant of Styrene-maleic anhydride copolymer (PDA) was found to be the appropriate surfactant for the preparation of melamine-formaldehyde resin microcapsules. The optimum preparation condition was as follow: concentration of surfactant is 1.0wt%, mass ratio of core material to wall material is 2.5, and pH value is 5.0.
     Microcapsules could not be formed with the built Y-shape micro channel reactor. It might be related to the capsulation reaction. However, the emulsion was of regular morphology. If the mechanism of capsulation reaction can be studied further, the microcapsules with regular morphology are expected to be prepared.
引文
[1]宋健,刘东志,张天永.微胶囊及微胶囊化技术研究进展[J].化工进展,1999,(1):42-44.
    [2]唐志翔,译.微胶囊技术及其在纺织业中的应用[M].印染译丛,1999,(2):86-94.
    [3]Benita Simon. Microencapsulation[M]. New York. Basel. Hong Kong,1996.
    [4]罗艳,陈水林.微胶囊技术[J].日用化学品科学,1999,(5):181-185.
    [5]邢锋,石开勇,倪卓,等.微胶囊相变储能材料的制备和表征[J].深圳大学学报理工版,2009,(2):151-156.
    [6]Yang W C, Xie R, Pang X Q. Preparation and characterization of dual stimuli-responsive microcapsules with a super paramagnetic porous membrane and thermo-responsive gates[J]. Journal of Membrane Science,2008,321:324-330.
    [7]安立刚,卢胜明,康峰,等.微胶囊技术在医学生物学中的应用[J].实验动物科学,2010,(4):42-47.
    [8]盛家镛.丝织物微胶囊香味整理[J].丝绸,1998,(4):8-11.
    [9]梁治齐.微胶囊技术及其应用[M].北京:中国轻工业出版社,1999.
    [10]刘仁庆.电子纸及其发展[J].中华纸业,2010,(9):77-81.
    [11]赵晓鹏,郭慧林,王建平.电子墨水与电子纸[M].北京:化学工业出版社,2006.
    [12]Comiskey B, Albert J D, Jacobson J. Electrophoretic ink:A printable display material[J]. SID'97 Digest,1997:75-76.
    [13]张卓,邵喜斌,王刚,等.电子纸显示技术的应用与市场情况[J].光机电信息,2009,(11):17-29.
    [14]Y chen, J. Au, P. Kazlas, et al. Flexible active-matrix electronic ink display[J]. Nature,2003, 423:136-139.
    [15]Dan A. Hays. Paper documents via the electrostatic control of particles[J]. Journal of Electrostatics,2001, (51):57-63.
    [16]李路海.明天的显示器-电子纸[M].电子出版社,2002,(4):44-45.
    [17]李路海,张淑芬,杨锦宗等.电子纸显示器技术现状与发展[J].电子器件,2003,26(2):148-154.
    [18]Jin S, Tiefel T H, Wolfe R, et al. Optically Transparent Electrically Conductive Coposite Medium [J]. Science,1992,255:446-448.
    [19]Robert A, Hayes, B. J. Fcenstra. Video-speed electronic paper based on electro-wetting[J]. Nature,2003,425:383-385.
    [20]谢建宇,冯亚青,李祥高,等.电子纸研究进展[J]工中间体,2005,(2):20-21.
    [21]齐成.电子纸和电子墨的特性和发展[J].印艺月刊,2002,(12):15-19.
    [22]刘仁庆.数字纸张挑战传统纸张[J].天津造纸,2009,(4):33-37.
    [23]那福忠.电子纸的迷思[J].印刷杂志,2009,(7):24-27.
    [24]裴广玲,王亭杰,杨毅,等.电泳显示微胶囊的制备和性能[J].物理化学学报,2005,21(4):430-434.
    [25]王允韬,王建平,郭慧林,等.脲甲醛树脂基白色电子墨水材料的制备[J].功能材料,2004,35(1):105-107.
    [26]丁明惠,盖登宇,王永贵,等.蓝色电泳微胶囊的制备条件对其形态的影响[J].化学工程师,2007,138(3):19-21.
    [27]Guo H L, Zhao X P, Wang J P. Preparation of yellow electronic ink microcapsules by the method of interfacial polymerization [J]. Journal of Colloid and Interface Science,2005, 284:646-651.
    [28]王建平,郑晴,郭慧林,等.预聚体特性黏数与电子墨水微胶囊性能的关系[J].材料研究学报,2005,19(2):147-152.
    [29]牛晓伟,徐辉波,路新成,等.尿素/三聚氰胺/甲醛原位聚合制备微胶囊化电子墨水[J].东南大学学报(自然科学版),2009,(3):602-605.
    [30]牛晓伟,徐辉波,路新城,等.脲醛树脂电子墨水微胶囊的制备与固化研究[J].功能材ou ,2008,(10):1608-1611.
    [31]Ehrfeld W, Hessel V, Lowe H.微反应器:现代化学中的新技术[M].骆广生,王玉军,吕阳成译.北京:化学工业出版社,2004.
    [32]骆广生,王凯,吕阳成,等.微反应器研究最新进展[J].现代化工,2009,(5):27-31.
    [33]J. Kubota, N. Hirabayashi, A. Kato. Microreactor utilized preparation of monodispersed polymeric microcapsules by urea/formaldehyde phase separation method[J]. Colloids and Surfaces,2007,302:320-325.
    [34]Ian R. Baxendale, Soren C. Schou, Jorg Sedelmeier. Multi-Step Synthesis by Using Modular Flow Reactors:The Preparation of Yne-Ones and Their Use in Heterocycle Synthesis[J]. Chemistry,2010, (16):89-94.
    [35]Ellen R, Siber D S, Psiorz D C, The use of new blockcopolymeric dispersing agents for waterborne paints-theoretical and practical aspects[J]. Progress in Organic Coating,1999,37 (3-4):161-167.
    [36]J.P. Wang et al. Preparation and response behavior of blue electronic ink microcapsules[J]. Optical Materials,2008,30:1268-1272.
    [37]M. P. L et al. Titanium Dioxide Polymer Core-Shell Particles Dispersions as Electronic Inks for Electrophoretic Displays[J]. Chem. Mater.2008,20,1292-1298.
    [38]T.Y. Zhang et al. Properties of Copper Phthalocyanine Blue (C.I. Pigment Blue 15:3) Treated with Poly(ethylene glycol)s [J]. Dyes and Pigments,1997,35:123-130.
    [39]何厚康,吴文华.纳米二氧化钛粒子的表面处理及其分散性研究[J].合成纤维工业,2003,26(3):12-14.
    [40]Li X Y,WangD S,Luo Q Z, et al. Surface modification of titaniumdioxide nanoparticles by polyaniline via an in situ method [J]. JChem Technol Biot,2008,83:1558-1564.
    [41]Arkles B, Chem T. Tailoring surfaces with silanes[J]. Langmuir,1977,12(7):766-778.
    [42]杭祖圣,陈西如,谈玲华,居法银,应三九.三聚氰胺甲醛树脂壁微胶囊的研究进展[J].微纳电子技术,2010,(5),308-314.
    [43]郝焕英.复合材料自修复用微胶囊的制备及性能表征[D].哈尔滨市:哈尔滨工业大学,2007.
    [44]Yuan Y C, Rong M Z, Zhang M Q. Preparation and characterization of microencapsulated polythiol [J]. POLYMER,2008,49(10):2532-2541.
    [45]Wang H P, Yuan Y C, Rong M Z et al. Microencapsulation of styrene with melamin-formaldehyde resin[J]. COLLOID AND POLYMER SCIENCE,2009, 287(9):1089-1097.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700