燕麦在甘肃不同生态区域的适应性、生产性能及品质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
试验于2008年3~10月,分别在天祝县打柴沟镇、定西市安定区、通渭县华家岭乡、甘肃农业大学兰州牧草试验站进行。研究了甘肃省不同生态区域343、青引2号、409、709、甜燕麦、丹麦444和白燕7号7个燕麦品种生育期、灌浆速度、种子产量、不同时期的叶面积指数、鲜干比、青干草产量及品质等方面的变化。主要研究结果如下:
     (1)供试的各燕麦品种在不同生态区域其生育期差异显著。随着海拔的升高,气温降低,燕麦营养生长和生殖生长时间较长,导致生育期延长。7个燕麦品种生育期在打柴沟最长,平均为125d,在安定点最短,平均为90d,两者相差35d;华家岭平均109d,甘农大平均98d。
     (2)在不同的生态区域,燕麦籽粒的灌浆速度有着显著的差异。整个籽粒灌浆过程中,随着海拔的升高,降雨量增加,温度降低,燕麦籽粒灌浆速度逐渐变慢。安定点和甘农大点海拔分别为1898.7m和1517.3m,明显低于华家岭(2242m)和打柴沟(2594m),但前两者的籽粒灌浆速度明显快于后两者。青引2号、343、409、709在甘农大的灌浆速度显著快于打柴沟;而丹麦444、白燕7号、甜燕麦在安定点的灌浆速度显著快于打柴沟。
     (3)燕麦植株高度的变化呈现出“S”型特征,从三叶期到抽穗期,植株高度缓慢上升,抽穗期后,株高增长急速加快,乳熟期增长减缓,直至成熟期停止生长。不同生态区域对燕麦各个时期的株高影响显著。在高海拔地区,温度较低,雨量丰富,燕麦生育期延长,株高显著增高;在低海拔地区,温度较高,降雨量少,燕麦营养生长和生殖生长时间变短,植株显著变矮。从三叶期到成熟期,安定点株高始终最低,在成熟期平均株高只有73.74cm,只有打柴沟的52.1%。
     (4)不同的生态区域对燕麦在不同时期的叶面积指数有显著影响。从三叶期到成熟期,随着生态区域环境由干到湿、海拔从低到高,燕麦的叶面积指数逐渐变大,其中水分的供给和热量条件是影响叶面积指数的重要因素。燕麦在不同的生态区域都服从相似的变化规律,即叶面积指数变化趋势呈单峰曲线,从拔节期到抽穗期显著上升,抽穗期达到最高;抽穗期后逐渐降低。供试的7个燕麦品种在甘农大点水分供应充足,其叶面积指数始终最大,为5.3,在安定点由于整个生育期水分胁迫严重,其叶面积指数最小,为1.024。
     (5)不同的生态区域对燕麦灌浆期和成熟期草产量有显著影响。灌浆期,随着海拔的升高、温度降低和水分的增加,株高和叶面积指数相应增大,使得草产量显著增加;成熟期燕麦的草产量与灌浆期的变化规律相似。灌浆期安定点鲜草产量最低,为18776.40 kg/hm~2;华家岭最高,为62390.46 kg/hm~2,比前者高69.90%,差异极显著。就品种而言,甜燕麦、709和343的鲜草量显著高于其它品种,适宜收草。
     (6)对7个供试品种在4个生态区域不同时期鲜干比的分析表明,燕麦鲜干比在不同生长阶段的变化趋势呈倒“S”型,不同生态区域对燕麦不同时期鲜干比影响显著。在高海拔地区,燕麦生育期延长,鲜干比增加,低海拔地区,在高温干旱胁迫下燕麦生育期缩短,鲜干比降低。从三叶期到乳熟期,安定点的鲜干比始终最小,甘农大的鲜干比最高,比前者高41.32%,华家岭和打柴沟差异不显著。
     (7)不同的生态区域对燕麦种子产量影响显著。随着海拔升高,昼夜温差变大,白天光合作用增强,有利于光合物形成,制造的有机物质多,夜间呼吸作用减弱,消耗的有机物少,积累的有机物多,使燕麦种子产量显著增加。供试燕麦籽粒平均产量在华家岭最高,为5618.52kg/hm~2,在安定点最低,仅为1622.96kg/hm~2,差异极显著,适宜收籽。
     (8)在不同的生态区域,燕麦千粒重、有效分蘖和轮层数差异明显。随着生态区域海拔的升高、温度下降,千粒重、有效分蘖增大,轮层数变化不明显。小穗数和穗粒数的变化趋势一致,在打柴沟最多,在安定点最少,后者分别占前者的35.13%和32.48%。
     (9)不同的生态区域对燕麦干草营养成分有着显著影响。总的趋势是随着生态区域环境由干到湿、海拔从低到高,燕麦干草粗蛋白含量下降、酸洗纤维含量增加,粗脂肪含量增加。灌浆期燕麦粗蛋白含量在安定点最高,打柴沟最低,比前者点低26.4%;酸性洗涤纤维含量则是华家岭最高,安定点最低,比前者低36.41%。成熟期粗蛋白和酸洗纤维含量变化与灌浆期相似。
     (10)不同的生态区域对燕麦籽粒中粗脂肪和β-葡聚糖含量影响显著。在降雨量少、水分胁迫严重的区域,燕麦籽粒β-葡聚糖积累量提高;在气候温和、降雨量高的地区,β-葡聚糖含量往往较低。其次,籽粒成熟期温度较高的区域,其β-葡聚糖含量显著高于温度低的区域。试验中燕麦籽粒中粗脂肪含量在打柴沟最高,安定点最低,后者是前者的77.21%;β-葡聚糖含量在安定点含量最高,华家岭含量最低,二者相差32.99%。就品种而言,409和白燕7号的β-葡聚糖含量明显高于其它品种。
     (11)在燕麦整个生育期,生态区域的水热、海拔、光照、温度等因素从不同方面影响燕麦的生长发育。在相对高海拔地区和二阴地区燕麦青干草产量、种子产量明显高于低海拔干旱地区。因此,天祝县和通渭县适宜进行燕麦生产。
The experiment was conducted in DaChaigou Township, Anding District of DingXi City, Huajialing Township of Tongwei County, Forage test site at Lanzhou of Gansu Agricultural University, from March to October in 2008. The effects of ecological regions on days to maturity, grain filling rate, seed yield, LAI at different periods, ratio of fresh to hay, fresh yield and quality of 7 oat cultivars(Baiyan No. 7, 409, 709, Denmark 444, 343, Qingyin No.2, Sweet oat) were studied. The result are as follows:.
     (1) In different ecological regions, The days to maturity of oats varied significantly. With the increasing altitude, temperature diseased, nutritive and reproductive growth of oats prolonged, which caused prolonging of the days to maturity, with the longest in Dachagou (averagely 125d) and shortest in Anding District (averagely 90d). The days to maturity in Huajialing were averagely 109d and GAU 98d.
     (2) In different ecological regions, the grain filling rate was significantly different. During the entire of grain-filling process, with the increasing altitude and decreasing temperature, the speed of grain filling reduced.The aiatitude of Anding and GAU are 1898.7m and 1517.3m, respectively, much lower than that of Huajialing (2242m) and Dachaigou(2594m). However, their grain filling speed was much faster. Among 7 varieties, Qingyin No.2, 343, 409 and 709 had significantly faster filling speed at GAU than in Dachaigou; Denmark 444, Baiyan No. 7 and sweet oat had faster grain filling in Anding District than in Dachaigou.
     (3) Oats had a "S" type plant height variation. From three leaf stage to heading stage, Changes in plant height were mild and increased quickly after the heading stage; then reduced gradually to the end at maturity. The effect of different ecological regions on plant height was significant. At high altitudes regions, with lower temperature and abundant precipitation, oat increased its height significantly; while at low-alatitude areas with higher temperatures and less rainfall, oat shortened its life history with lower plant height. From three leaf stage to maturity, oat height was the lowest in Anding District, with 73.74cm at maturity, which was only 52.1% of that in Dachaigou.
     (4) The effect of different ecological regions on LAI was significant different. From three leaf stage to plant maturity, with the growing environment changing from dry to wet, low to high altitude, LAI increased significantly from booting to heading stage and declined after, with the highest at GAU (5.3) and the lowerest at Anding District (1.024).
     (5) The ecological regions had significant effect on grass yield. At grain-filling stage, with the increasing elevation and rainfall and decreasing temperature, oat grass yield increased significantly. The same trned was observed at maturity. At grain-filling stage, fresh yield was the lowest at Anding(18776.40 kg/hm~2),Hajialing had the highest (62390.46 kg/hm~2), 69.90% more than the former. Within 7 varieties, sweet oat, 709 and 343 had the highest fresh yield which is suitable for grass collection.
     (6) The results of ratio between fresh and hay of 7 varieties at 4 different regions showed that it was a reversing "S" type, and varied significantly at different regions. In the high-alatitude regions, it increased as the prolonging life hiftory, and reduced under higher temperature and drought stress in low-alatitude regions. From three leaf to milk stage, it was the lowest at Anding and the highest at GAU (higher 41.32% than the former). No significant difference was observed in Huajialing and Dachaigou.
     (7) Seed yield also showed significantly difference at different regions. With the increase of elevation and temperature difference between day and night, the photosynthesis enhanced during daylight and respiration reduced at night, resulting in more organic matter accumulation and higher seed yield. The average grain yield was the highest in Hajialing (5618.52kg/hm~2), the lowest at Anding(1622.96kg/hm~2).
     (8) In different ecological regions, signigifant differences were observed on thousand grain weight, effective tillers and number of rings. With the increasing altitude and decreasing temperature, thousand grain weight and effective tillers increased. No significant difference was observed on number of rings. Number of spikelet and grains were the highest at Dachaigou and the lowest at Anding (35.13% and 32.48% of the former, respectively).
     (9) The effect of different ecological regions on oat hay nutrition was significant. The general trend indicated that from dry to wet climate, oat hay reduced its crude protein, increased ADF and CF. During the grain filling stage, crude protein was the highest at Anding and the lowest in Dachaigou (26.41% lower than the former); ADF was the highest in Hajialing and lowest at Anding area (36.41% lower ).
     (10) The crude fat andβ-glucan also showed significant difference. In the low rainfall and drought stress areas, oat accumulated moreβ-glucan; in mild climate areas with rich rainfall,β-glucan content was lower. Secondly, the relatively high temperature during maturity could induce higherβ-glucan content. The crude fat at Anding was 77.12% lower than that in DaChaigou;β-glucan was the highest in Anding, 32.99% higher than in Hajialing. In terms of cultivars, 409 and Baiyan No. 7 had higherβ-glucan than other cultivars.
     (11) During the whole life history, water and heat, elevation, sunlight and temperature in growing areas affected the process of oat growth from different aspects. Oat had higher hay and grain yield in the relatively high altitude areas than lower and drier areas. Therefore, Tianzhu County and Tongwei county are suitable for the production of oats.
引文
[1]杨海鹏,孙泽民.中国燕麦[M].北京:1989:325~387
    [2]段玲玲,月芬主编.寒区麦类栽培技术[M].河北科学技术出版社,2000:324~330
    [3]侯向阳,建忠主编.中国西部牧草[M].化学工业出版社,2003:198~205
    [4]陆家宝.良种燕麦丰产性能的测定[J].青海畜牧兽医杂志,1991,21(5):13~16
    [5]赵桂琴.青藏高原饲用燕麦研究与生产现状、存在的问题与对策[J].草业科学,2004,21(11):17~21
    [6]刘文辉,颜洪波.西宁地区六种燕麦品种比较试验[J].青海畜牧兽医杂志, 2005, 35(1):12~15
    [7]张耀生,周兴民,王启基,等.高寒牧区燕麦生产性能的初步分析[J]草地学报,1998,6(2):115~123
    [8]石德军.北欧四种燕麦在果洛地区的引种栽培试验[J].青海畜牧兽医杂志,1999,29(2):4~7
    [9]周青平.青海燕麦种子产业化生产的思考[J].青海畜牧兽医杂志,2003,33(1):26~28
    [10]杨国柱.青海省牧草种子业的现状和展望[J]. 1994,(1):73~76
    [11]陈洪金,燕洁.麦饼干的开发[J].无锡轻工大学学报,1999,18(1):29~33
    [12]张娟.燕麦营养挂面的研制[J].食品科技,2002,(7):15~18
    [13]刘佩芬.氮肥和播种期对燕麦油脂及β-葡萄糖含量影响[J].国外农学-麦类作物,1995,(5):26~28
    [14]田志芳,陕方.麦增值技术与产业化前景[J].粮油食品科技,2003,(6):22~26
    [15]龚海,李成雄.麦品种资源品质分析[J].山西农业科学,1999,(2):33~35
    [16]韩德林,车敦人.早熟高产燕麦新品种区域试验报告[J].青海畜牧兽医杂志,1996,26(2):3~5
    [17]杨力军,赵志刚,范青慈.几种燕麦引种栽培及品种比较试验研究[J].2002,11(2):1-4
    [18]陈功,李锦华,时永杰.高寒牧区燕麦播种量与生产性能的关系[J].草原与草坪,2000,(4):29~31
    [19]董世魁,蒲小朋等.甘肃天祝高寒地区燕麦品种生产性能评价[J].草地学报,2001,9(1):41~49
    [20]施建军,马玉寿,李青云等.燕麦高产栽培技术的研究[J].草原与草坪,2003,(4):39~41
    [21]王柳英.西宁地区不同燕麦品种生产性能的比较研究[J].青海畜牧兽医杂志,2000,30(2):17~19
    [22]马春晖,韩建国等.高寒地区一年生牧草饲料作物引种评比试验[J].四川草原, 2000,(3):17~22
    [23]孙明德,冀旺荣.高寒牧区氮磷配合施用对燕麦产量的影响[J].青海草业,1993,(3):32-37.
    [24]王柳英.燕麦品种性状变异的研究[J].草业科学,1998,15(3):19-22.
    [25]陈宝书.牧草饲料作物栽培学[M].北京:中国农业出版社,2001:416-418.
    [26]丁文侠.影响小麦开花灌浆因子分析及对策[J].安徽农学通报,2008,14(11):115-116
    [27]王光华,周可琴,金剑.不同碳源对三种溶磷真菌溶解磷矿粉能力的影响[J].生态学杂志,2004, 23(2): 32~36
    [28]朱培淼,杨兴明,徐阳春等.高效解磷细菌的筛选及其对玉米苗期生长的促进作用[J].应用生态学报,2007,18(1):107~112
    [29]郝晶,洪坚平,刘冰等·石灰性土壤中高效解磷细菌菌株的分离、筛选及组合[J].应用与环境生物学报, 2006, 12(3): 404~408
    [30]朱月.凝集素的作用与应用[J].水产科学, 2005, 24(12): 48~49
    [31]周宗民.小麦籽粒灌浆特性及与播期的关系研究[J].安徽农学通报,2008,14(15):111~112
    [32] Darroch B A.Grain filling in three spring wheat genotype: statistical analysis [J].Crop Sci,1995,30: 525-529.
    [33]蔡庆生,吴兆苏.小麦籽粒生长各阶段干物质积累与粒重的关系[J].南京农业大学学报,1993,16 (1):27~32
    [34]李秀君,潘宗东.不同粒重小麦品种籽粒灌浆特性研究[J].中国农业科技导报,2005,7(1):26~30
    [35]李秧秧.灌浆持续期干旱对不同产量潜势小麦品种灌浆特性的影响[J].西北植物学报,1997,6(4) 47~50.
    [36]曾浙荣,庞家智.我国北部冬麦区小麦品种籽粒灌浆特性研究[J].作物学报,1996,22(6):720~728
    [37]王希群,马履一,贾忠奎等.叶面积指数的研究和应用进展[J].生态学杂志, 2005, 24(5):537~541
    [38]吴伟斌,洪添胜,王锡平等.叶面积指数地面测量方法的研究进展[ J].华中农业大学学报(自然科学版),2007, 26(2): 270-275
    [39] Jing MC, Black TA .Defining leaf area index for non-flat leaves[J].Plant Cell Environ, 1992,15: 421~429.
    [40] Gower ST, Kucharik CJ, Norman JM. Direct and indirect estimation of leaf area index, NAPAR and net primary production of terrestrial ecosystems[J].Remote Sensing of Environment, 1999, 70: 29~51.
    [41] Lang ARG, Mcmurtrie RE, Benson M L. Validity of surface area indices of Pinus radiate estimated from transmittance of the sun’s beam[J].Agricultural and Forest Meteorology, 1991, 57: 157~170.
    [42]李轩然,刘琪璟,蔡哲等.千烟洲针叶林的比叶面积及叶面积指数[ J].植物生态学报, 2007, 31(1): 93~101
    [43]崔鲜一.适宜放牧的根蘖型苜蓿生理特性及营养动态研究[J].草原与草坪,2001,(1):22~24
    [44]司马义,巴拉提.不灌溉条件下戈壁伊犁蒿的产量动态及自身因子与相关性的研究[J].中国草地, 1997, (2):6~11
    [45]李举华,林荣芳,刘兆丽等.长期定位施肥对冬小麦叶面积指数及群体受光态势的影响[J].华北农学报,2008,23(3):209~212
    [46]冯伟,朱艳,姚霞等.基于高光谱遥感的小麦叶干重和叶面积指数监测[J].植物生态学报,3009,33(1)33~44
    [47]向佐湘,闫景彩,杨知建等.依据叶面积指数确定牧草适刈期[J].湖南农业大学学报,2003,29(2):158~160
    [48]李凤霞.青海湖地区天然牧草群体生长动态数值模拟[J].草业科学,1997,14(2):44~46
    [49]蒲朝龙.几种栽培豆科牧草生物量与结构的研究[J].四川草原,1997,(2):11~19
    [50] Delany.R.H., A.K.Dobrenz. Morphological and anatomical features of alfalfa leaves as related toCO2 exchange.Crop Science.1974,3:444~447
    [51] Gossen.B.D., Horton.P.B.Field responses and soil fertility. Agronomy Journal,1994,86: 82~88
    [52] Kirk L.E.Self-fertilization in relation to crop improvement. Science Agronomy,8:1~40
    [53]毛凯.一年生春性牧草混播种群生物量动态的研究[J].草业学报,1996,5(2):66~71.
    [54]曹毅.川东山区林间草地动态规律及其生态适应性[J].草业学报,1995,4(1):52~60.
    [55]宁夏农科院小麦室.春麦抗倒伏品种的形态特征及其选育.宁夏农业科技,1974, (2) :3~ 8
    [56]黄祥辉、胡茂兴.小麦栽培生理[M].上海:科技出版,1984. 127~123
    [57]山东农学院主编.作物栽培学.北京:北京农业出版社, 1980. 59~64
    [58]何培祥.精播高产冬小麦茎秆性状的观测.莱阳农学院学报,1986,(2):35~42
    [59] Cenci, CA. Gkanclo, S. Culm anatcnnv in barley. Can.J . Botanv, 1984, 62(10):2023~2027
    [60]杨永兴.三江平原典型湿地生态系统生物量及其季节动态研究[J].中国草地,2002,24:1~7
    [61]罗旭辉,应朝阳,方金梅,等.闽北22个紫花苜蓿品系引种筛选试验初报[J].福建畜牧兽医,2004, 26(4):10~12
    [62]朱旺生,凌明亮,左瑞华,等.皖西地区几种冷季型牧草适应性评价及营养成分比较[J].中国草地,2005,11(27):19~27
    [63]徐长林.高寒牧区燕麦丰产栽培措施的研究[J].草业科学,2003,20(3)1~23
    [64]康海军,杜铁瑛,严振英等.青南牧区不同燕麦品种种植试验报告[J].青海畜牧兽医志,2000,30(2):7~10
    [65]郭孝.苇状羊茅生产性能的综合研究[J].草业科学,1998,15(2):24~26
    [66]九林森.渭北旱塬杨家垄实验分区牧草引种试验研究[J].牧草与饲料,1990,4:38~42
    [67]中国农业百科全书总编辑委员会农业气象卷编辑委员会:中国农业百科全书农业气象卷,农业出版社,1986
    [68]北京农业大学农业气象专业:农业气象学,科学出版社,1982.
    [69]高亮之主编:作物气象生态译丛,农业出版社,1984
    [70]王殿武,刘树庆,霍习良等.高寒半干旱区旱滩地农田施肥与培肥效应.干旱地区农业研究,1998,16(9):12~15
    [71] Seuny,Weon.Effects of nitrogen application to the growth,grain yield and components of the oats.RAD Journal of Agricultural Science,Soil & Fertilizer,1995,37(2):260~267
    [72]王立秋,曹敬山,靳占忠.品种、肥力和播期对春小麦产量及产量构成因素的影响[J].1995,1(11):18~22
    [73] Kalu B.A.,Fick G.W.1983.Morphological stage of development as a predictor of alfalfa herbage quality Crop Science,23:1167~1172.
    [74] Kalu B.A.,Fick G.W.1981.Quantifying morphologica development of alfalfa for studies of herbage quality. Crop Science,21:267~270.
    [75] Sanderson M.A.,Hornestein G.S.1989.Alfalfa morphological stage and its relationn to in situdigestibility of detergent fiber fractions of stems.Crop Science,29:1315~1319.
    [76] Sanderson M.A.,Wedin W.F.1988.Cell wall compostion of alfalfa stems at similar morphlolgical stage and chronological age during spring growth and summer regrowth.Crop Science,28:342~347.
    [77] Iwaase A.D.,eauchemin K.A.,uchanan J.G.1996.A shearing technique measuring resistance properties of plant stems.Animal Feed Science Technology.57:225~237.
    [78] Iwaase A.D.,Beauchemin K.A.,Acharya S.N.1999.Shearing force of alfalfa stems:effect of cultivar and shearing site.Canadian Journal of Plant Science,79:49~55.
    [79]李希来,杨力军,张国胜等.不同播量对燕麦生长发育的影响[J],2001,3(23):26~28
    [80]贾慎修主编.草地学(第二版)[M].北京:农业出版社,1995.88~92
    [81]李永宏,汪诗平译.放牧研究:设计方法与分析[M].北京:气象出版社,1997,128~133
    [82]郑凯.牧草品质评价体系及品质育种的研究进展[J].2006,23(5):57~60
    [83]付爱良,郭选政.高寒牧区的优质高产饲草—初岛燕麦[J].草食家畜,2000,1:43~44
    [84]崔读昌.我国北方旱地作物降水量利用系数及其提高途径[J].中国农业气象,1986,2,15~17
    [85]秦武发,李宗智.小麦的氮素同化和转移与籽粒产量和蛋白质含量的关系[J].麦类作物学报,1998,2,2(11):15~16
    [86]肖文一,陈德新,吴渠来编著.饲用植物栽培与利用[M].农业出版社,1989,213~215
    [87]尹大海.燕麦穗重与其它性状间通径分析的研究.中国草地,1991,(5):28~29
    [88]杨凤主编.家畜饲养学[M].北京:农业出版社,1979,256~261
    [89] Oba M, Allen M S·Evaluation of the importance of the digestibility of neutral detergent fiber from forage: effects on dry matter intake and milk yield of dairy cows [J]·Dairy Sci, 1999, 82:589~596
    [90] GRAM L,MELCHIORSEN J,SPANGGAARD B,et al. Inhibition of Vibrio anguillarum by Pseudononas fluorescens AH2,a possible probiotic treatment of fish[J].Appl Environ Microbiol,1999,65(3):969~973
    [91] OLSSON C,WESTERDAHL A,CONWAY P L, et al.Intestinal colonization potential of turbot(Scophthalmus maximus L.)and dab (Limanda limanda)-associated bacteria with inhibition effects against Vibrio anguillarum[J].Appl Environ Micro,1992,58(3):551~556
    [92]陈天寿.微生物培养基的制造与应用[M].北京:中国农业出版社,1995,214~220
    [93]杨恩忠,蒋瑞芬,陈容.牧草营养物质及消化动态的研究[J].中国草地,1987,(6):36~39
    [94]裴彩霞,董宽虎,范华.不同刈割期和干燥方法对牧草[J].中国草地,2002,1(24):33~36
    [95]顾尧臣.小宗粮食加工(一)[J].粮食与饲料工业,1999,(4):10~14
    [96] Michcaelu U. Beer, W Arrigoni Extraction of Oal Gum from Oat Bran: Effect of Process on yield , Molecular Weight Distribuction ,Viscosity and(l,3)(l,4)-β-D -Gluean Content of the Gum[J]. Cereal Chemistry,1996,17(1):58~62
    [97] Inglett G E, Newman R K. Oatβ-glucan-anylodextrins :Preliminary Preparation and Biological Properties[J]. Plant Foods for Human Nutrition,1994,(45):53-61
    [98]刘雨田,郭文中.葡聚糖与葡聚糖酶[J].酶制剂, 2000,123(7):42~43
    [99] Temelli Feral. Extraction of functional properties of barlyβ-Glucan as a affected by pH and temperature [J].J. Food Sci,1997,62(5):1194~1197.
    [100]刘森,马晓凤,陕方等.改性燕麦麸的保健营养功效初探[J].粮油食品科技,2002,10(3):14~16
    [101] Johannes P .Roubroeks, Domenico I .Mastromauro, Roger Andersson. Molecular Weight, structure, and Shape of Oat(1-3,1-4)-β-D-Glucan Fractions Obtained by Enzymatic degradationwith Lichenase. Biomacro molecules 2000,1,584~591.
    [102]申瑞玲,王章存.燕麦β-葡聚糖对小鼠结肠菌群及其功能的影响[J].营养学报,2006,28(5): 430~433.
    [103] Murphy E A, DavisJM,Brown A S, eta.l Effect of oatβ-glucan on susceptibility to respiratory infection in agedmice [J]. Faseb journal ,2004,18 (4):149~149.
    [104] Delaney B, Nicolosi R J, Wilson TA, et a.l Beta-glucan fractions from barley and oats are similarly antiatherogenicin hypercholesterolemic Syrian golden hamsters[J].Journal of Nutrition,2003 (133): 468~495.
    [105] Burnett. Studies of viscosity as the probable factor involved in the improvement of certain barleys for chickens by enzyme supplementation[J].Br.Poult.Sci,1996(7):55~75.
    [106] White W B,Brid H R, Sunde M I., et a1.Viscosity of 13-D-glucan as a factor in the enzymatic improvement of barley for chicks[J].Poult Sci,1983,62:853~862
    [107] Sanlinier L, Gerandam S, Thibant J F. Extraction and partial characterization ofβ-glucan from the endosperms of two barley cultivars[J].J Cereal Sci,1994(19):171~178.
    [108] Mc Cleary B V. Enzymic quantification of(1-3)(1-4)-β-glucan in barley and malt[J].J. Inst. Brew,1985,91:285~295.
    [109] Barry V.McCleary. Determination ofβ-glucan in barley and oats by Streamlined Enzymetic Method summary of collaborative study[J].Journal AOAC Internationa1,1997,80(3):580~583.
    [110] Arran P, Graham H. Analysis of total and insoluble mixed-linked(1-3)(1-4)β-glucan in barley and oats. Agric [J].Food Chem,1987,35:704~709.
    [111] Wood P J, Flucher R G. Stone B A. Studies on the specificity of interaction of cereal cell wallcomponents with Congo Red and Calcofluor-specificity detection and his to chemistry of (1-3)(1-4)-β-D-Glucan [J].Journal of Cereal Science,1983(1):95~110
    [112]汪海波.改进荧光法测定β-葡聚糖含量研究[J].中国粮油学报,2004,19(1):70-74
    [113] Sgrulletta D, Stefanis E de, Scalfati G,et al. Variability of dietary fibre content (T.D.F. andβ-glucan) for oat cultivars (A .sativa sp.) in low input growing conditions[J].Cereal ResearchCommunications,2004,32(1):127~134.
    [114] Redaelli R,Sgrulletta D,Stefanis E,et al.Genetic variability for chemical components in sixty European oat (Avena sativa L.)cultivars[J]. Cereal Research Communications, 2003, 31:185~192.
    [115] Conciator A,Stafanis E,Redaelli R,et al.Chemical characteristics of some kernel traits in naked oat genotypes[J].Journal of Genetics and Breeding,2000,(4):299~302.
    [116] Miller S S, Fulcher R G. Distribution of(1-3),(1-4)-beta-D-Glucan in Kernels of Oats and Barley Using Micro spectrofluorometry [J].Cereal Chem,1994,71:64~68.
    [117] Lee C J,Horsley R D,Manthey F A,et al.Comparisons ofβ-glucan content of barley and oat[J].ereal Chemistry,1997,74 (5):571~57.
    [118] Sgrulletta D, Stefanis E de, Redaelli R, et al.Glucan and hull fiber content in oat cultivars grown under different agronomic conditions[A]. In Biologically-active phytochemicals in food: analysis metabolism bioavailability and function[C].Proceedings the Euro Food Chem XI Meeting,Norwich,UK,2001.36~39.
    [119]李贞,樊明寿.燕麦β-葡聚糖积累规律的研究[J].内蒙古农业大学学报,2007,5,16~18
    [120]邓万和,王强,吕耀昌等.品种和环境效应对燕麦β-葡聚糖含量的影响[J].中国粮油学报,2005,20(2):30~32.
    [121] G.Zhang, J.Chen, J.Wang, etc. Cultivar and Environmental Effectson(1-3,1-4)-β-D-Glucan and Protein Content in Malting Barley[J].Journal of Cereal Science,2001,34:295~301.
    [122]马得泉,田长叶.中国燕麦优质种质资源[J].作物品种资源,1998,(2):4~6.
    [123] Brunner B R, Freed R D. Oat grain-glucan content as affected by nitrogen level ,location, and year[J].Crop Science,1994,34(2):473~476.
    [124] D. G. Humphreys.氮肥和播期对燕麦蛋白质、油及β-葡聚糖含量的影响[J].国外农学麦类作物,1995,5:26~28.
    [125] Jackson G D, Berg R K, Kushnak G D,et al. Nitrogen effects on yield beta-glucan content, and other quality factors of oat and waxy hulless barley[J].Communications in Soil Science and Plant Analysis,1994,25:3047~3055.
    [126] Baur S K, Geisler G. Glucan content in caryopses of oat varieties with regard to cultivar year and nitrogen level[J].Journal of Agronomy and Crop Science,1996,176(1):5~14.
    [127] Doehlert D C, McMullen M S, Hammond J J. Genotypic and Environmental Effects on Grain Yield and Quality of Oat Grown in North Dakota[J].Crop Sci.,2001,41:1066~1072.
    [128]德科加,王德利,周青平等.施肥对青藏高原燕麦种子生产的增产效应[J].草业科学, 2008,1,25 (1):26-30
    [129]李小坤,鲁剑巍,陈防.牧草施肥研究进展[J]草业学报,008,4,17(2):136~142
    [130] Jackson G D, Berg R K, Kushnak G D,etc.Nitrogen effects on yield, beta glucancontent, and otherquality factors of oat and waxy hulless barley[J].Communication in Soil Science and Plant Analysis,1994,25:17~18.
    [131]马雪琴,赵桂琴,龚建军.高寒牧区播期和施氮对不同燕麦品种氮素利用的作用[J].草业科学,2008,5,25 (5):36~41
    [132]牛俊义,杨祁峰.作物栽培学研究方法[M].甘肃兰州:甘肃民族出版社,1997
    [133]杨胜.饲料分析及饲料质量监测技术[M].北京:北京农业大学出版社,1998.330~338
    [134] American Association of Cereal Chemists,1995.Approved methods of the AACC[J].10th edition,method 32-23.the Association:st paul,MN
    [135]于强.水稻叶面积指数的普适增长模型.中国农业气象[J].1995,16(2):6~8
    [136] M.E.希斯.牧草—草地农业科学[M].农业出版社,1989.
    [137]沈景林.高寒地区栽培牧草的生产性能和营养价值的研究[J].草业科学, 1997, 14(4):28~31
    [138] Anderson Bruce. Alfalfa Analyst[M]. Revised Edition Published by Cooperative Extension, Institute of Agriculture and Natural Resources, University ofNebrea-Lincoln.1995:254~259

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700