移栽期和氮肥对烤烟氮素吸收利用及烟碱积累的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环神农架地区是我国中部重要的烟叶生产基地,生产的“金神龙”烟叶具有“清香淡雅”的特点。然而,该地区土壤和气候两大主要生态条件随海拔高度变化而不同,导致烤烟产量和品质有所差异。探索在不同生态条件下,烤烟高产、稳产优质的农艺技术措施,对于彰显该地区烤烟的烟叶质量风格特色和提高产、质量都有重要意义。本研究以烤烟(Nicotiana tabacum L.)品种K326为试验材料,采用大田试验与稳定同位素(~(15)N)示踪微区试验,研究烟苗不同移栽期、不同基肥施用时间和氮肥对2个不同植烟生态区[低海拔的赵家山(N 31°28′E 111°15′,海拔:903m)和高海拔的老湾(N 31°27′E 111°14′,海拔:1130m)]烤烟氮素吸收利用、生长发育、产量产值、烟碱含量以及烟碱氮素来源的影响,旨在明确环神农架烟区适宜的移栽期和基肥施用时间,为“金神农”优质烤烟生产提供科学理论指导。主要结果如下:
     1.不同移栽期试验结果表明,低海拔和高海拔两个植烟生态区,与不施用氮肥相比,施用氮肥显著促进烤烟各生育期地上部干物质累积,干物质累积量分别平均提高109%~238%和85%~175%;烤烟产量分别增加29.0%和19.2%,产值分别增加24.8%和25.7%。与5月5日移栽相比,推迟移栽期至5月15日~25日移栽,烤烟地上部干物质总累积量分别平均增加8.9%~17.8%和4.6%~11.7%;推迟移栽期对低海拔地区烤烟产量产值影响不明显,但显著提高高海拔地区烤烟产量产值10%~30%。另外,推迟移栽期,低海拔地区植株吸氮量增加25%~45%,而高海拔地区植株吸氮量平均下降6%~20%。低海拔赵家山和高海拔老湾试验点烤烟地上部氮肥利用率分别为30%和21%左右。推迟移栽期显著提高生育前期氮肥利用率,但在中后期无明显影响。与总氮积累趋势相反,推迟移栽期,烤烟各部位肥料氮占总氮的比例,低海拔地区下降10%~40%,而高海拔地区增加15%~50%。
     2.烤烟烟碱含量和烟碱氮占总氮的比例均随生育进程而逐渐增加。打顶之前,烟碱含量下部叶>中部叶>上部叶,打顶之后为上部叶>中部叶>下部叶。烤烟各部位烟叶烟碱氮中来源于肥料氮的比例随着生育进程和叶位上升均逐渐下降,尤其是打顶后烤烟上、中部叶中烟碱氮中肥料氮的比例急剧下降。由此可以推断,烤烟打顶后,土壤氮供应是影响烤烟上、中部叶,尤其是上部叶最终烟碱含量和累积量状况的主要因素。与不施氮相比,施用氮肥显著提高烟碱含量和烟碱氮占总氮比例,低海拔的赵家山地点分别平均提高44%~86%和3%~286%;高海拔的老湾地点分别为26%~33%和5%~127%。与5月5日移栽相比,5月15日~25日移栽,烟碱含量、烟碱氮占总氮比例以及烟碱氮中来源于肥料氮占总烟碱氮的比例,低海拔的赵家山地点分别平均降低5%~25%、13%~45%、13%~36%;而高海拔的老湾地点,分别平均增加10%~85%、5%~110%、21%~56%。
     3.不同基肥施用时间试验结果表明,低海拔和高海拔地区,施用氮肥烤烟地上部干物质积累分别平均增加0.78~3.05倍和2.10~2.72倍,烤烟产量和产值分别增加13%~40%和14%~35%。3个基肥施用时间对2个海拔试验点烤烟产量影响不显著,但是与移栽当天施用基肥相比,提前15d~30d施用基肥有利于提高烤烟的产值,高海拔试验点平均增加10%~30%。与提前0d或者15d相比,提前30d施用基肥还提高两个海拔地区烤烟对氮素的吸收累积量8%~26%。基肥施用时间对低海拔地区氮肥利用率的影响不显著,但是提前30d施用基肥显著提高高海拔地区烤烟生育中后期氮肥利用率3~6个百分点。在不同试验点,基肥施用时间对肥料氮占总氮的比例影响不同。提前施用基肥,低海拔地区,来自肥料氮的比例下降幅度为8%~32%,而高海拔地区增加25%~32%。结果说明,在光、温条件较差的高海拔地区,适当提前施用基肥(提前15d左右),有利于提高肥料利用率,提高烤烟产量、产值。
     4.提前施用基肥(15d~30d)显著提高低海拔地区烤烟下部叶和高海拔地区各部位烟叶中烟碱含量,增幅为6%~19%。与提前0d或15d施用基肥相比,提前30d施用基肥,低海拔的赵家山地点,烤烟各部位烟叶中烟碱氮占总氮比例平均增加11%~34%:高海拔的老湾地点,中部叶和茎中烟碱氮占其对应总氮的比例分别显著增加14%~43%。低海拔赵家山地点,打顶之前,基肥施用时间对烤烟各部位烟叶烟碱氮中肥料氮占总烟碱氮比例的影响不显著,打顶之后,与提前0d相比,提前15d~30d施用基肥,中部叶肥料氮比例显著增加38%~43%。高海拔老湾地点,提前施用基肥显著增加烤烟生育前、中期上部叶烟碱氮中肥料氮占总烟碱氮的比例,但是基肥施用时间对成熟期各器官中肥料氮比例影响不显著。
     综上所述,施用氮肥是实现烤烟增产增收的重要农艺措施。在低海拔植烟生态区,推迟移栽期至5月15日~25日既有利于烤烟地上部对氮素的吸收利用、生长发育又能有效降低烟叶(尤其是中、上部叶)烟碱含量;而高海拔植烟生态区,适当提前移栽期(5月5日左右)既有利于烤烟地上部对氮素的吸收利用,又有利于降低烟叶(尤其是中、上部叶)烟碱含量。另外,两个海拔植烟生态区,提前15d~30d施用基肥有利于提高烤烟产值和促进烤烟对氮素的吸收利用。然而,基肥施用时间并不是越提前越好,建议提前15d左右施用基肥既有利于避免在移栽当天用工集中的矛盾又有利于降低烤烟烟叶烟碱含量。
The area around Shenlongjia is a main flue-cured tobacco(FCT) production area, and the FCT leaves of"Jinshengnong" produced exhibit a character of"faint scent,sweet and refined".However,the soil and climate,the two main ecological conditions,change with the altitude hight,and lead to the difference of the production and the quality of tobacco.Investigating the agricultural techniques of high,stable and good quality of tobacco under different ecological conditions is of great importace for manifestating the characteristics of tobacco leaf and improving production and quality of tobacco in this district.Using FCT cultivar(Nicotiana tabacum L.K326),a field experiment with ~(15)N isotope tracing micro-plots was carried out to study the effects of different transplanting date,different basal N fertilization time and N fertilizer application on N uptake, utilization and distribution,the yields and market values,the growth and development,the nicotine concentrations and the origin of nicotine~N in different organs of plants FCT plants in two ecological tobacco production areas[Zhaojiashan(N 31°28′,E 111°15′, 903m above sea level) and Laowan(N 31°27′,E 111°14′,1130m above sea level)]of Xiangfan city,Hubei province.The object of this experiment is to work out the best transplanting date and basal N fertilization time,and to provide the scientific and theoretical guidance for production of good quality of tobacco leaves "Jinshengnong". The main results were as follows:
     1.The results from experiment of different transplanting date showed that in two ecological district,lower altitude and higher altitude,applying N fertilizer significantly increased dry matter accumulation in shoot of FCT plants at different growing stages by 109%~238%fold and 85%~175%respectively,increaced the yield by 29.0%and 19.2%, and the market values by 24.8%and 25.7%for the lower and higher sites,respectively. Compared to the transplanting date at 5~(th) May,the transplanting date at 15~(th)~25~(th) May,dry matter accumulation in the same organs of shoot of FCT plants at the same growing stages increaced gradually by 8.9%~17.8%and 4.6%~11.7%respectively;although there was no significant effect on the yield and market values of tobacco at the lower altitude site,but the yields and market values of tobacco were increased by 10%~30%at the higher altitude.When the transplanting date was put off to 15~(th)~25~(th) May,the total N accumulation by tobacco increased by 25%~45%at the lower altitude site,but decreased by 6%~20%at the higher altitued.The use efficiencies of nitrogen fertilizer were 30%(at the lower altitude site) and 21%(at the higher altitude),which were improved significantly at earlier growing stage by delaying the transplanting time.On the contrary to total N accumulation,putting off the transplanting time decreased the use efficiency of N fertilizer by 10%~40%at the lower altitude site and increased by 15%~50%at the higher altitude.
     2.The nicotine concentrations of tobacco leaves and the proportion of nicotine N to total N in different parts of FCT plants,increased gradually with the development of the plant and the increasing order of nicotine concentrations was lower leaf>middle leaf>upper leaf before the removal of apex,and was upper leaf>middle leaf>lower leaf affter the removal of apex.The proportion of nicotine N from fertilizer to total nicotine N decreased with the growing of FCT plants and the rising of leaf position.So,it was inferred that soil N application was the main factor that affected the nicotine concentrations and accumulations in middle and upper leaves(especially the upper ones) of FCT plants,after the removal of apex.Compared to without N fertilizer application, applying N fertilizer significantly increased nicotine concentrations and the proportion of nicotine N to total N by 44%~86%and 3%~286%at lower altitude,and by 26%~33% and 5%~127%at higher altitude,respectively.Compared to the transplanting date of 5~(th) May,postponing the transplanting date to 15~(th)~25~(th) May decreased the nicotine concentrations,the proportion of nicotine N to total N,and the proportion of nicotine N from fertilizer in organs of FCT plants,by 5%~25%,13%~45%,13%~36%at lower altitude,but increased by 10%~85%,5%~110%and 21%~56%at higher altitude, respectively.
     3.Results of the experiment with different basal N fertilization time showed that in two different FCT ecological districts,supplying N fertilizer significantly increased the dry matter accumulation by 0.78~3.05 fold and 2.10~2.72 fold,respectively;and the yields and market values of FCT plants by 13%~40%and 14%~35%for the experimental site of Zhaojiashan(lower altitude) and Laowan(higher altitude),respectively.Basal fertilization time had no significant effects on the yields of FCT plants at both the two experimental sites,and compared to basal N fertilization time 0d before transplanting, basal N fertilization time 15d~30d before transplanting increased market values by 10%~30%at higher altitude.Early application of basal N fertilizer(30 d before transplanting) increased N uptake by 8%~26%as compared to that of applying basal N fertilizer at 0d or 15d before transplanting at the two ecological areas.There was no significant effects of basal N fertilizer application time on N fertilizer efficiency at lower altitude,but basal N fertilization time 30d before transplanting increased by 3%~6%at higher altitude.The proportion of fertilizer N to total N in FCT plants decreased by 8%~32%at lower altitude,but increased by 25%~32%at higher altitude when basal N fertilizer was supplied 30d before transplanting.These results indicated that properly earlier supplication of basal N fertilizer could improve the N fertilizer efficiency,and thus increase the yields and market values of FCT,especially at higher altitude areas with less sunshine and lower temperature.
     4.Early basal N fertilization time 15d~30d before transplanting significantly increased nicotine concentrations of lower leaves by 6%~19%at lower altitude and organs of shoot of FCT plants at higher altitude.Compared to the basal fertilization time 0d or 15d before transplanting,applying basal fertilizer 30d before transplanting increased the proportion of nicotine N to total N of organs of shoot of FCT plants at Zhaojiashan site(lower altitude) and that of middle leaves and stem at higher altitude by 11%~34%and 14%~43%,respectively.There was no significant effects of basal N fertilization time on the proportion of nicotine~N from fertilizer to total nicotine~N in organs of FCT plants before and after topping,in Zhaojiashan site and Laowan site respectively.But compared to basal N fertilization time 0d before transplanting,applying basal N fertilizer 15~30d before transplanting increased it that of middle leaves by 38%~43%significantly in Zhaojiashan site.Early basal fertilization time increased the proportion of nicotine~N from fertilizer to total nicotine~N of upper leaves significantly before topping in Laowan site.
     In summary,N fertilizer application was an important agricultural technique for improving yields and market values of FCT plants.Postponing the transplanting date to 15~(th)~25~(th) May was benefiting in promoting N uptake and utilization,growth and development and decreasing nicotine concentrations of FCT plants leaves(especially middle and upper leaves) effectively at lower altitude.Transplanting date at 5~(th) May or earlier was good for N uptake and utilization of shoot and decreasing nicotine concentrations of tobacco leaves.At two ecological districts,the basal N fertilization time 15d~30d before transplanting was helpful in improving the market values and the N uptake and utilization of FCT plants,which the basal N fertilization time 15d or so before transplanting could specially avoid the contradiction of workforce stress and decreasing nicotine concentrations.
引文
1.晁逢春.氮对烤烟生长及品质的影响.[博士学位论文].北京:中国农业大学图书馆,2003
    2.陈德鑫.中国烟草种植区划.中国烟草科学,2008,4
    3.曹槐,潘蓄林,宋仲容.烤烟烟叶中几种化学元素对评吸质量的影响.中国化学会第六届全国微量元素研究和进展学术研讨会论文集,福建,2004,150-152
    4.柴家荣,戴福斌,李天飞,杨宏光,尚志强,郭生云,黄学跃,殷端,管仕军,字正东.氮素营养及磷钾比对自肋烟产质量影响的研究.云南农业大学学报,2003,18(1):20-25
    5.陈萍,李天福,张晓海,冉邦定,王树会,谢萍,杨硕媛,杨璧愫.利用~(15)N示踪技术探讨烟株对氮素的吸收与分配.云南农业大学学报,2003,18(1):1-4
    6.陈永红,王少先,王雪云.烤烟生物复合肥应用研究进展.中国农学通报,2004,20(3):152-156
    7.陈永明,柯油松,邱妙文,朱祖明,刘阳.不同施肥方法对南雄烟区烤烟生长和产质量的影响.广东农业科学,2007,3:19-22
    8.曹志洪.优质烤烟生产的土壤与施肥.南京:江苏科技出版社,1991
    9.崔喜艳,史岩玲,赵艳,王思远.土壤pH值对烤烟叶片光合特性和烟碱含量的影响.吉林农业大学学报,2005,27(6):591-593,602
    10.窦逢科,张景略.烟草品质与土壤肥料.郑州:河南科学技术出版社,1994
    11.戴冕.烟草植物体内中的烟碱积累.中国烟草,1981a,1:40-45
    12.邓世嫒,陈建军.氮素营养对烤烟抗旱适应性的影响.干旱区研究,2007,24(4):499-503
    13.代晓燕,苏以荣,魏文学,范业宽,陈香碧.打顶对烤烟烟碱累积和烟碱合成关键酶表达调控研究.见:李保国,张福锁主编,中国土壤学会第十一届全国会员代表大会暨第七届海峡两岸土壤肥料学术交流研讨会论文集(上).中国土壤学会第十一届全国会员代表大会暨第七届海峡两岸土壤肥料学术交流研讨会,北京,2008,204-212
    14.邓小华,周冀衡,李晓忠,陈新联,肖汉乾.烤烟烟碱含量与评吸质量的关系.中国烟草自主创新高层论坛论文集,武汉,2007,189-196
    15.郭培国,陈建军.ABT生根粉对烤烟生理生化特性及产量、品质的影响研究.广东农业科学,1996,3:21-23
    16.高炳德.关于化肥利用率的影响因素及提高氮肥利用率技术措施之浅见.内蒙古农业科技,1999,1:3-6
    17.谷海红,刘宏斌,王树会,李天福,张云贵,焦永鸽,李志宏.应用~(15)N示踪研究不同来源氮素在烤烟体内的累积与分配.中国农业科学,2008,41(9):2693-2702
    18.郭鸿雁.不同施氮水平和移栽期下烤烟碳氮代谢关键酶活性变化及其与品质关系.[硕士学位论文].广州:华南农业大学图书馆,2005
    19.胡国松,郑伟,于震东,等.烤烟营养原理.北京:科学出版社,1997:83
    20.胡国松,杨林波,魏巍,章新军,熊斌,张光辉,陈丙辉,黄立新.海拔高度、品种和某些栽培措施对烤烟香吃味的影响.中国烟草科学,2000,3:9-13
    21.胡国松,李志勇,穆琳,韩锦峰.烤烟烟碱累积特点研究.中国烟草学报,2000,6(2):6-9
    22.何礼军,周冀衡,杨虹琦.12种不同基因型烤烟种苗特性及其烟碱动态探讨.广西农业科学,2006,37(1):73-75
    23.韩锦峰.烟草栽培生理.北京:中国农业出版社,1996
    24.韩锦峰,赫冬梅,刘华山,杨素勤,王德勤,张秀英.不同植物激素处理方法对烤烟内烟碱含量的影响.中国烟草学报,2001,7(2):22-25
    25.华水金,杨宇虹,赵菊英,王光贤,王利云,王学德.氮肥对水田与旱地烤烟烟叶氮浓度和相关酶活性的影响.植物营养与肥料学报,2007,13(4):689-694
    26.黄一兰,陈顺辉,李文卿.揭膜时间对烟株生长和烟叶产质量的影响.烟草科技,2003,7:33-35,48
    27.贾宝辉,李建国,王焱林,詹佳,雷利荣,杜朝晖,周青.烟碱对腹腔感染败血症小鼠保护作用的实验研究.基础医学与临床,2004,650
    28.季淑梅,秦惠霞,李志彪.烟碱和一氧化碳对大鼠学习记忆及脑发育的影响.河北科技大学学报,2003,1:91-94
    29.金闻博,戴亚.烟草化学.北京:清华大学出版社,1994
    30.金银根,曹显祖.不同施氮量的烟叶形态结构与品质.江苏农业科学,1991,4:26-28
    31.简永兴,王成伟,董道竹,陈亚,邹国林.密度与云烟87上部烟叶性状及烟碱含量的关系.中南林学院学报,2006,26(1):6-9
    32.简永兴,易建华,蒲文宣,孙在军,袁仕豪.α-萘乙酸棉球扎项对烤烟上部烟叶烟碱含量及糖碱比值的影响.作物杂志,2008,6:22-25
    33.李保江.烟草行业五年改革发展路.http://www.echinatobacco.com/101542/101576/101938/101953/12491.html
    34.李东亮,许自成,毕庆文,蔡冰,何结望.烤烟烟碱含量与物理性状的关系分析.中国烟草学报,2008,14(3):36-40
    35.娄成后,阎隆飞.植物生理学.北京:农业出版社,1980
    36.罗春燕,龙怀玉,张延春,李良勇,邹喜明.覆盖液态地膜对烟田土壤温度及烤烟生长的影响.中国农学通报,2005,21(9):296-298
    37.刘德玉,李树峰,罗德华,元野.移栽期对烤烟产量、质量和光合特性的影响.中国烟草学报,2007,13(3):40-46
    38.龙芳羽,王宝维,张旭辉.同位素示踪技术在动物消化代谢研究中的应用.农业科学研究,2005,26(3):66-69
    39.刘绚霞,刘朝侠.影响烟叶烟碱含量的因素分析.甘肃农业科技,1996,7:39-40
    40.刘贯山,李章海.不同氮素水平下对烤烟生长发育的影响.烟草科技,1997,2:37-39
    41.刘国顺,乔新荣,王芳,杨超,郭桥燕,云菲.光照强度对烤烟光合特性及其生长和品质的影响.西北植物学报,2007,27(9):1833-1837
    42.刘国顺,赵春华,王彦亭,王佩,李亚娟.施氮量对考研根系发育和某些生理指标的影响.河南农业大学学报,2007,41(2):133-136
    43.刘华山,孟凡庭,韩锦峰,李连利,王勇,魏跃伟.2,4-D对烤烟烟碱和钾含量的影响.中国烟草科学,2007,28(5):15-18
    44.刘华山,朱大恒,韩锦峰,孟凡庭,曾涛,张玉丰.喷施IAA对烤烟烟碱含量及其合成酶的影响.中国烟草学报,2005,11(6):41-43
    45.龙怀玉,刘建利,徐爱国,李志宏,张维理,张云贵.我国部分烟区与国际优质烟区烤烟大田期间某些气象条件的比较.中国烟草学报,2003,9(增刊):41-47
    46.梁洪敏.日本烟草地膜班盖栽培现状.中国烟草,1983,1:38-40
    47.李立新,何宽信,肖仁平,张德远,彭耀东.不同施磷量对烤烟主要产质性状的影响.中国烟草科学,2004,1:28-31
    48.李进平,高友珍.湖北省烤烟生产的气候分区.中国农业气象,2005,4:250-255
    49.李进平,王昌军,戴先凯,谭军,赵传良,袁吉武,陈培华.白肋烟烟碱的田间积累与施肥、覆膜及采收方式的关系研究.中国烟草科学,2001,(3):30-33
    50.刘晶,苟正贵,陈颖.密度和纯氮用量对烤烟总氮和烟碱含量的影响.山地农业生物学报,2008,27(3):195-199
    51.罗建新,肖汉乾,彭建伟,周万春.施钾方法对土壤供钾能力及烤烟钾累积的影响.湖南农业大学学报(自然科学版),2000,26(5):352-354
    52.李敏华.施氮水平和移栽期对烤烟碳氮代谢的影响.[硕士学位论文].广州:华南农业大学图书馆,2004
    53.李天祸.云南烟草施肥现状问题与对策.云南烟草,2001,4:25-26
    54.刘太义,高琼玲.烤烟干物质积累和氮、磷、钾养分吸收分配规律的研究.贵州农业科学,1984,(3):39-46
    55.李文卿,陈顺辉,江荣风,张福锁,张仁椒,李春英,李春俭,巨晓棠,林祖斌.不同施氮量对烤烟总氮和烟碱积累的影响.中国烟草学报,2007,13(4):31-35
    56.刘卫群,郭群召,张福锁,晁逢春.氮素在土壤中的转化及其对烤烟上部叶烟碱含量的影响.烟草科技,2004,5:36-39
    57.刘卫群,韩锦锋,史宏志.数种烤烟品种中碳氮代谢与酶活性的研究.中国农业大学学报,1998,3(1):22-26
    58.李娅莉.不同光周期对山茶花成华影响的研究.[硕士学位论文].雅安:四川农业大学图书馆,2005
    59.慕萍丽,崔红,宋志红,刘国顺.不同理化网子对烟草发状根生长及烟碱合成的影响.中国烟草学会2004年学术年会论文集,武汉,2004,359-364
    60.马红辉.烤烟的质量评价.重庆烟草,2004,6:32-33
    61.马兴华,于振文,梁晓芳,颜红,史桂萍.施氮量和底追比例对小麦氮素吸收利用及子粒产量和蛋白质含量的影响.植物营养与肥料学报,2006,12(2):150-155
    62.马新明,李春明,刘海涛,史丽芳.Cd、Pb污染对烤烟ATP酶活性及烟叶品质的影响.农业环境科学学报,2006,26(2):708-712
    63.马新明,李春明,袁祖丽,熊淑萍.铅污染对烤烟光合特性、产量及其品质的影响.植物生态学报,2006,30(3):472-478
    64.牛雅娟,吉中孚.精神分裂症认知功能障碍的烟碱能机制.国外医学精神学分册,2001,28(2):79-82
    65.欧阳铎声,苏国栋.氮肥施用期对烤烟产量及品质的影响.湖南农学院学报,1991,17(增刊):326-330
    66.潘瑞炽,董愚得.植物生理学.北京:高等教育出版社,1995
    67.邱妙文,凌寿军,王军.不同氮肥形态对烤烟烟碱含量以及产质量的影响.中南片2003年烟草学术交流会论文集,郑州,2004,23-26
    68.乔晓磊,黄向东,刘世亮,刘芳,化党领.不同氮素供应对烟草品质指标的影响.土壤通报,2007,38(6):1150-1153
    69.秦艳青,李春俭,赵正雄,武雪萍,张福锁.不同供氮方式和施氮量对烤烟生长和氮素吸收的影响.植物营养与肥料学报,2007,13(3):436-442
    70.秦艳青.不同氮肥用量和施肥方式对烤烟生长、产量和质量的影响.[硕士学位论文].北京:中国农业大学图书馆,2007
    71.单德鑫,杨书海,李淑芹,许景钢.~(15)N示踪研究烤烟对氮的吸收及分配.中国土壤与肥料,2007,2:43-44
    72.史宏志,张建勋.烟草生物碱.北京:中国农业出版社,2004
    73.史宏志,韩锦锋,刘国顺.烤烟碳氮代谢与烟草香吃味关系的研究.中国烟草学报,1998,4(2):56-63
    74.石俊雄.基追肥比例和施肥方法对烤烟产质量的影响.贵州农业科学,2002,30(增刊):19-22
    75.时向东,刘艳芳,文志强,黄克久,程刚.打顶对烟株根系活力及内源激素含量的影响.西北农林科技大学学报(自然科学版),2008,36(2):143-147
    76.陶卫宁.明末清初吸烟之风及烟草在国内的传播方式与途径研究.中国历史地理论丛,2002:6
    77.王林,许自成,卢秀萍,肖汉乾.烤烟烟碱含量与土壤有机质、氮素含量的关系分析.中国土壤与肥料,2007,6:58-61
    78.王峰吉,高文霞,江志辉,江豪.α-NAA对烤烟游离氨基酸含量及烟碱含量的影响.亚热带农业研究,2007,3(4):271-274
    79.魏成熙,钱晓刚,杨宏敏,陆引罡,王伟.烟草对氮吸收利用的研究.土壤肥料,1995,3:1-3
    80.汪邓民,龚文丰,吴福如,杨红娟,陈建军.覆膜条件下氮磷肥对土壤理化性质、酶活性及烟草生长的影响.烟草科技,2004,6:33-36
    81.王林,许自成,卢秀萍,肖汉乾.烤烟烟碱含量与土壤有机质、氮素含量的关系分析.中国土壤与肥料科学,2007,6:57-60
    82.汪丽,刘雷,杨文钰,刘卫国.种植密度与施钾量对烤烟品质的影响.华北农学报,2007,22(增刊):106-110
    83.尉芹,张一平,龚明贵.水热耦合效应对烟叶中烟碱含量的影响.西北农林科技大学学报(自然科学版),2004,32(5):77-80
    84.王昌军,戴先凯,刘学斌,黄庭勇.移栽和打顶时间对白肋烟烟碱积累的影响.烟草科技2001,6:35-37
    85.王瑞新,齐群纲,韩锦峰.烟草生物碱的生物合成与代谢.河南农业大学学报,1988,22(1):65-77
    86.王瑞新,齐群纲,韩锦峰.烟草生物碱的生物合成与代谢(续).河南农业大学学报,1988,22(2):254-264
    87.王树声,李春俭,梁晓芳,陈爱国.施氮水平对烤烟根冠平衡及氮素积累与分配的影响.植物营养与肥料学报,2008,14(5):935-939
    88.汪银生.明清时期福建烟草的传入与发展.农业考古,2006:1
    89.徐茜,周泽启,巫常标.烟苗不同移栽期对烤烟生长、产量和质量的影响.福建热作科技,2003,28(3):8-10
    90.徐晓燕,孙五三,李章海.烟碱的生物合成及控制烟碱形成的相关因素.安徽农业科学,2001,29(5):663-664,666
    91.许旭明.烟草的起源与进化.三明农业科技,2007,3:25-27
    92.习向银.烟碱氮素来源和供氮低烤烟生长、氮素吸收、烟碱含量的影响.[博士学位论文].北京:中国农业大学图书馆,2005
    93.习向银,赵正雄,李春俭.肥料氮和土壤氮对烤烟氮素吸收和烟碱合成的影响.土壤学报,2008,45(4):750-753
    94.熊艳,李永梅,尹增松,孔令郁.不同形态氮在土壤中的转化及烤烟生长的影响.植物营养与肥料学报,2003,9(4):500-502
    95.解莹莹.施肥和打顶对烤烟中主要含氮化合物含量的影响.[硕士学位论文].郑州:河南农业大学图书馆,2004
    96.谢渝湘,刘强,张杰,郭树红,胡有持,赵保路.烟碱预防帕金森氏综合症和老年痴呆症的分子机理.中国烟草学报,2006,4:25-30
    97.阎玉秋,方智勇,王与宇,郭在宏,许萍.试论烟草中烟碱含量及其调节因素.烟草科技,1996a,6:31-34104.
    98.杨景宏,陈拓,王勋陵.增强紫外线B辐射对小麦时片内源ABA和游离脯氨酸的影响.生态学报,2000,20(1):39-42
    99.晏娟,尹斌,张绍林,沈其荣,朱兆良.不同施氮量对水稻氮素吸收与分配的影响.植物营养与肥料学报,2008,14(5):835-839
    100.杨兰芳.烤烟化学品质与土壤施硒的研究.湖北民族学院学报(自然科学版),2001,19(1):13-16
    101.云南省烟草科学研究所.云南烟草栽培学.北京:科学出版社,2007
    102.姚晓红,许彦平,王润元,姚晓琳.地膜栽培烤烟的生态及生长效应研究.中国农业气象,2007,28(4):426-429
    103.周初跃,徐晓燕,江晓红,苏瑶,李凌.喷施Mg、B、Mo、Ca对烤烟烟碱、多酚类等成分的影响.烟草科技,2007,7:27-29
    104.赵宏伟,邹德堂,袁丽梅.氮素用量对烤烟生长发育及产质量影响的研究.黑龙江农业科学,1997,5:16-19
    105.周宽余,韩国彪.不同施氮量对烤烟生长的影响.山西农业科学,1998,26(2):58-59
    106.邹凯,于庆涛.湖南邵阳烤烟不同覆盖栽培模式探讨(下).http://www.tobaccochina.com/tobaccoleaf/tutorial/farming/20093/200922413485_346651.shtml
    107.中国农业科学院烟草研究所.中国烟草栽培学.上海:上海科学技术出版社,2005,1-2
    108.左天觉著,朱樽权等译.烟草的生产、生理和生物化学.上海:上海远东出版社,1993:35-186
    109.张允政.烤烟片烟醇化过程中化学成分变化及与醇化质量的关系研究.[硕士学位论文].武汉:华中农业大学图书馆,2008
    110.周应兵.烤烟主要农艺性状、经济性状和烟叶主要化学成分的遗传研究.[硕士学位论文].南京:南京农业大学图书馆,2004
    111.张延春,陈治锋,龙怀玉,罗春燕.不同氮素形态及比例对烤烟长势及部分品质因素的影响.植物营养与肥料学报,2005,11(6):787-792
    112.张彦东,罗昌荣,卢国藩.微生物降解烟碱研究进展.烟草科技,2003,12:3-7
    113.张文君,刘兆辉,江丽华,郑福丽,仲子文,王梅,林海涛,宋效宗.氮素对大蒜产量影响和氮素供应目标值的研究.中国农学通报,2008,24(7):254-259
    114.朱尊权.中国烟叶生产科研现状与展望.中国烟草学报,2008,14(6):70-73
    115.#12
    116.YC/T 161-2002中华人民共和国烟草行业标准,烟草及烟草制品总氮的测定-连续流动法,2002年9月12发布,409-413
    117.YC/T 31-1996中华人民共和国烟草行业标准,烟草及烟草制品试样的制备和水分的测定-烘箱法,1996年10月7日批准,427-429
    118.al'Absi M,Amunrud T,Wittrners LE.Psycho-physiological effects of nicotine abstinence and Behavioral challenges in habitual smokers.Pharnacol Biochem Behav,2002,72(3):707-716
    119.Atkison W O,Ragland J L,Sims J L.Nitrogen composition of burley tobacco.Ⅰ:The influence of irrigation on the response of burley tobacco to nitrogen fertilization.Tobacco Science,1969,17:63-66.
    120.Baldwin I T.The alkaloid responses of wild tobacco to real and simulated herbivore.Oecology,1988,77:378-381
    121.Baron J A.Beneficial effects of nicotine and cigarette smoking:the real,the possible and the spurious.Br Med Bull.1996,52(1):58-73
    122.Bremner J M,Mulvaney C S.Nitrogen-Total.In:Page A L,Miller R H,Keeny D R(eds.),Methods of soil analysis.Part 2.Chemical and micro-biological properties,2nd edition.Number 9 in the series Agronomy.American Society of Agronomy and Soil Science Society of America,Inc.,Madison,Wisconsin Pages,1982.595-624
    123.Buchan G D,Grewal K S,Claydon J J,Mcpherson R J.A Ccomparison of sedigraph and pipette methods for soil particle-size analysis.Journal of Soil Research,1965,31(4):407 -417
    124.Buresh R J,Austin E R,Craswell E T.Analysis methods in ~(15)N research.Fertilizer research.1982,3:37-62
    125.Chaplin J F.breeding for varying of nicotine in tobacco.Proc.Chem.Soe.Symp.Recent advaces in the chemical composition of tobacco and tobacco smoke. New Orleans LA. Tobacco Abstracts.1978. 156-158.
    
    126. Collins W K, Hawks Jr S N. Principles of FCT production. Raleigh, N C: North Carolina State University, 1994: 23-98
    
    127. Crockford R H. Effect of amount and time of application of nitrogen on the nicotine content of tobacco leaves. Aust. J. Exp. Agrc. Anim. Husb., 1977, 17(86): 469-474
    
    128. Doolittle D J, Winegar R, Lee C K, Caldwell W S, Hayes A W, Donald deBethizy J. The genotoxic potential of nicotine and its major metabolites. Mutation research, 1995, 344: 95-102
    
    129. Dawson R F. Accumulation of nicotine in reciprocal grafts of tomato and tobacco. Am.J. Bot,1942a, 29: 66-72
    
    130. Elliot J M. Production factors affecting chemical properties of FCT leaf: Nutrition. Recent Advance in Tobacco Science, 1974, Inaugural volume: 17-38
    
    131. Elvira G L, Rafael J L B, Luis L B. Effect of N rate, timing and splitting and N type on bread-making quality in hard red spring wheat under rainfed Mediterranean conditions. Field Crops Res., 2004, 85:213-236
    
    132. Friesen J B. Leete E. Nicotine synthease-an enzyme from Nicotine species which catalyses the formation of (s)-nicotine from nicotinic acid and 1-methvl-A'pyrrolinium chlotide. Tetrachedr Lett, 1990,31:6295-6298
    
    133. Flower K C A. Review of experiment on the effects of ripeness at harvest on the yield and quality of FCT in Zimbabwe. CORESTA Agronomy/Phytopathology Joint Conf. Abstracts. 1995, 8-12 October, Oxford, UK
    
    134. Hibi N, Higashiguchi S, Hashimoto T, Yamada Y. Gene expression in tobacco low-nicotine mutants. Plant cell, 1994, 6: 723-725
    
    135. Huang S, Dai Q, Peng S. Influence of supplemental ultraviolet-B on indoleacetic acid and calmodulin in the leaves of rice. Plant Growth Regul., 1997, 21: 59- 64
    
    136. Jacobi J, Jang J J, Sundram U, et al. Nicotine Accelerates Angiogenesis and Wound Healing in Genetically Diabetic Mice. American Journal of Pathology, 2002, 161(1): 97-104
    
    137. Jarvik M E. Benefieial effects of nicotine. Br J Addie, 1991, 86: 571-579
    
    138. Ju X T, Chao F C, Li C J, Jiang R F, Zhang F S. Yield and nicotine content of FCT as affected by soil nitrogen mineralization. Pedosphere, 2008, 18(2): 227-235
    
    139. Linert W, Bridge M H, Huber M, et al. In vitro and in vivu studies investgating possible antioxidant actions of nicotine: releance to Parkinsons and alzheiners diseases. Binchim Biophys Acta, 1999, 1454(2): 143-152
    
    140. Legg P D, Chaplin J F, Collins G B. Inheritance of percent total alkaloids in Nicotiana tabacum L.J. Hered., 1969,60:213-217
    
    141. Legg P D, Collins G B. Inheritance of percent total alkaloids in Nicotiana tabacum L II. Genetic effect of two loci in Burley 21 × LA Burley 21 populations. Can. J. Genet. Cytol., 1971, 13:287-291
    142. Leggett J L, Sims J L, Gossett D R, Pal U R, Benner J F. Potassium and magnesium nutrition effect on yield and chemical composition of burley tobacco leaves and smoke. Journal of Plant Science 1977,57(1): 159-166
    
    143. Moore E L, Gwynn G R, Powell N T. Some alkaloid relationships among seedings and mature plants of FCT. Tobacco Science, 1963, 7: 170-178
    
    144. Moustakas N K, Ntzanis H. Dry matter accumulation and nutrient uptake in FCT (Nicotiana tabacum L. Field Crops Research, 2005, 94: 1-13
    
    145. Mulder E G. The importance of molybdenum trace element, especially in connection with nitrogen fertilization of as agricultural and horticultural crops. Stikst of (The Hague) 1954a, 3:85-96 (C.A.49:5588h)
    
    146. Miner G S, Tucker M R. Plant analysis as an aid in fertilizing tobacco A Westerman R L (edd.).Soil testing and plant analysis. Madison, WI: SSSA Book, Ser.31, SSSA, 1990,645-657
    
    147. McCants C B, Woltz W G. Growth and mineral nutrition of tobacco. Adv. Agron, 1967, 19:211-265
    
    148. Muramatu M, Umemura S, Fukui J, Arai T, Kira S. Estimation of personal exposure to ambient nicotine in daily environment. Int Arch Occup Environ Health, 1987,59(6) :545-50
    
    149. Mothes K. physiology of alkaloids. Plant physiology, 1956, 31: 393431
    
    150. Mengel D K. Principle of plant nutrition. International Potash Institute. 1982, 335-359
    
    151. Mumba P P, Banda H L. Nicotine content of FCT (Nicotiana tabaccum L.) at different stages of growth. Tobacco science, 1990, 30: 179-183
    
    152. Mohapatra B K, Lenka D, Naik D. Effect of plastic mulching on yield and water use efficiency in maize. Annals of Agric. Res., 1998,19: 210-211
    
    153. Misuzaki S, Tanabe Y, Roguchi M, Tamaki E. Changes in the activities of ornithine decarboxylase,putrescine N-methyltransferase and N-methylputrescine oxidase in tobacco roots to nicotine biosynthesis. Plant cell physiology, 1973,14: 103-110
    
    154. Nelson D W, Sommers L E. Total carbon, organic carbon and organic matter. In: Page A L, Miller R H, and Keeney D R (eds.), Methods of soil analysis, Part II: Chemical and microbiological properties. Madison, WI: Soil Science Society of America, 1982. 539-580
    
    155. Olsen S R, Sommers L E. Phosphorus. In: Page A L, Miller R H, Keeny D R (eds.), Methods of Soil Analysis. Part 2. American Society of Agronomy, Soil Science Society of America, Madison,Wis, 1982.403-430
    
    156. Polletier S W. Alkaloids. Chemical and Biological Perspectives, New York: 1983
    
    157. Patel S H, Patel N R, Patel J A, Patel, K B. Patel. Planting time, spacing, topping and nitrogen requirement of bidi tobacco varieties. Tobacco Research, 1989,15(1): 42-52
    
    158. Patel J A, Patel B K, Patel G R. Influence of dates of planting and nitrogen levels on the smoke constituents of bidi tobacco cultivars.Tobacco Research, 1989, 15 (1) :53-58
    
    159. Quezada M, Maria R, Munguia L, Juan P, Linares C. Plastic mulching and availability of soil nutrients in cumuber crop. Terra (Mexico), 1995, 13: 136-147
    160. Recous S, Machet J M. Short-term immobilisation and crop uptake of fertilizer nitrogen applied to winter wheat: Effect of date application in spring. Plant Soil, 1998, 206: 137-149
    
    161. Rosa N. Nicotine and physiolosy of the tobacco plant. The Canadian Tob Grower, 1983, 7:388-391
    
    162. Shi Q M, Li C J, Zhang F S. Nicotine synthesis in Nicotiana tabaccum L. induced by mechanical wounding is regulated by auxin. Journal of Experimental Botany, 2006, 57(11): 2899-2907
    
    163. Saunders J W, Bush L P. Nicotine biosynthetic enzyme activities in Nicotiana tabacum L.genotypes with different alkaloids levels. Plant physiology, 1979, 64: 236-240
    
    164. Schenk S, Hoelz A, Kraub B, et al. Gene structures and properties of enzymes of the plasmid-encoded nicotine catabolism of Arthrobacter nicotinovorans. Mol Biol, 1998, 284:1323-1339
    
    165. Spangler D T. Smoking and hormone-related disorders. Prim Care, 1999, 26(3): 499-511
    
    166. Tso T C, Kasperbauer M J, Sorokin T P. Effect of photoperiod and end-of-daylight quality on alkaloids and phenolic compounds of tobacco. Plant Physiology, 1970,45: 330-333
    
    167. Takahashi T. Studies on the control of nicotine in tobacco. 3~(rd) World Tobacco Congress, Salisburg,So, Rhodesia. 1963
    
    168. Thomas G W. Exchangeable cations. In: Page A L, Miller R H, Keeney D R (eds.), Methods of soil analysis, Part II: Chemical and microbiological properties. Madison, WI: Soil Science Society of America, 1982. 159-166
    
    169. Uramastu M, s. Umemura, Fukui J, Arai T, Kira S. T1-Estimation of personal exposure to ambient nicotine in daily environment. Int. Arch. Occup. Environ. Health. 1987, 59(6): 545-50
    
    170. Vepraskas M J, Miner G S. Tillage effects on alkaloid production in tobacco as influenced by soil texture, root distribution and rainfall. Tobacco Science, 1987, 31: 52-56
    
    171. Wilbert J. Tobacco and shamanism in south america. New Haven: Yale University Press, 1989;
    
    172. Warbuton D M, Walters A. Attentional processing, smoking and human behaviour. New York:Wiley Press, 1987
    
    173. Whitty B, McCants E B, Show L. Influence of width of fertilizer band of soil burley tobacco to nitrogen and phosphorus. Tobacco science, 1966, 10: 17-22
    
    174. Willits C O, Swan Margaret L, Connelly J A, Brice B A. Spectrophotometric determination of nicotine. Analytical Chemistry. 1950, 22: 430-433
    
    175. Xi X Y, Li C J, Zhang F S. Nitrogen supply after removing the shoot apex increases the nicotine concentration and nitrogen contents in tobacco plants. Annals of botany, 2005, 96: 793-797
    
    176. Yoshida D. Mechanisms of tobacco plants containing lower alkaloid. Bull Hatano, Tob. Exp. Sta.,1973,73:245-257

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700