基于高光谱成像技术的小麦苗期监测研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦幼苗的发育好坏直接影响最终的产量、品质及安全性,苗期长势是农艺学家、育种家、生物化学家非常关注的作物特性。目前,作物长势无损监测研究大多侧重于采用光谱技术获取中后期的群体参数(叶面积、生物量、覆盖度等)实现。而幼苗的光谱检测研究还较少,除了限于个体分析,在大范围无损监测方法方面更缺乏。光谱成像技术具有“图谱合一”的特性,它能同时获取观测对象的光谱与图像信息,且有很高的光谱分辨率和更精细的波段,海量的图谱信息在研究作物个体差异性方面具有得天独厚的优势。论文利用高光谱成像仪,开展了盐、冻害、干旱等不同胁迫类型下的苗期小麦长势监测研究及穗发芽程度识别研究,初步探索了基于高光谱成像技术的小麦苗期长势监测方法,这为地面、航空和卫星遥感监测小麦苗情提供了理论依据。研究的具体内容如下:
     1.利用高光谱成像诊断小麦苗期盐胁迫程度。通过对中国春(对盐敏感)、洲元9369(普通高产)、长武134(耐盐)的小麦幼苗进行盐胁迫处理,活体采集126个小麦叶片样本在400~1000nm波段范围内的成像光谱数据,分析小麦幼苗叶片光谱与相对叶绿素含量值(SPAD)间的相关性,利用成像光谱仪图谱合一的优势,对盐胁迫状态下小麦幼苗的冠层、单株、叶片的不同尺度、不同区域的特征进行分析,对其叶绿素组分分布情况进行诊断。结果表明在693nm处相关系数绝对值最大,筛选为小麦幼苗的特征波长,通过建立回归模型,进行叶绿素反演填图,从填图结果中可以直观看出叶片不同部位叶绿素的分布情况。为了提高模型预测效果,更充分利用光谱信息,采用偏最小二乘法(PLS)建立预测模型,其相关系数R=0.8138,标准差SEC=4.7552。表明成像光谱能够预测不同盐胁迫处理下的小麦幼苗的组分信息,从而根据组分含量高低对盐胁迫程度进行诊断。
     2.利用高光谱成像监测小麦苗期冻害胁迫。2010年冬季在北京种植30个南方地区主栽的抗冻性较差的小麦品种,在三个不同时期进行冻害程度检测。采集小麦叶片样本在450~900nm波段范围内的成像光谱,并利用多酚测定仪测量小麦的氮平衡指数。结果表明,随着冻害程度的加深,在450~650nm波段,光谱的反射率逐渐增加,而在700~900nm波段,光谱反射率逐渐减小。通过提取光谱图像中小麦的平均光谱,对小麦幼苗冠层的光谱反射率与氮平衡指数进行相关性分析,最大负相关系数出现在650nm~700nm之间的红边位置,相关系数约为-0.7。在680nm处,三个时期冻害胁迫下的相关系数绝对值均为最大,筛选为小麦幼苗冻害诊断的特征波长,根据特征波长下的光谱图像,可直观看出小麦受冻害的区域及程度。研究表明基于高光谱成像技术监测小麦幼苗冻害胁迫是可行的,能够精确反映小麦幼苗受冻害的部位。
     3.利用高光谱成像监测小麦苗期干旱胁迫。分别在三个时期采集小麦幼苗发生干旱胁迫时的成像光谱数据,并记录相应的苗期单株叶片的SPAD值,发现随着干旱胁迫程度的加重,扬麦15、扬麦158、京冬8三个抗旱性较差的小麦中,测得的单株叶片的SPAD平均值逐渐减小,而抗旱性较好的农大211所测得的叶片SPAD值在两个时期的测量值相近,差异不大。分析发现在450nm~700nm光谱波长范围内,小麦干旱胁迫最严重时,其冠层平均光谱反射率最高,且不具有明显的绿色植被的光谱反射率特征波峰。通过对苗期干旱胁迫下的冠层高光谱反射率进行一阶微分,并与所测的叶绿素SPAD平均值建立相关系数曲线,发现在700~780nm范围内光谱与SPAD值正相关,表明干旱胁迫可能对光谱曲线的红边产生了较大的影响,其他波段区内,相关系数均较低。上述结果表明成像光谱能够反映小麦幼苗干旱胁迫下的长势状况。
     4.利用高光谱成像监测小麦苗期的田间长势状况。获取大田正常生长的小麦的成像光谱,基于遗传算法挑选的6个特征波长,分别与小麦幼苗单株叶片的含氮量、叶绿素两个营养组分信息进行预测,采用PIS方法建立相关模型,进行相关分析结果表明:基于遗传算法结合PIS方法建立的小麦氮素、叶绿素GA-PLS模型,均优于基于全谱波长范围的FS-PLS模型和基于经验选择波长范围的ES-PLS模型。预测小麦苗期氮素的GA-PLS模型相关系数R=0.9,校正标准差SEC=0.0841,预测标准差RPD=1.4358,相对百分值RSEP=9.3893%。小麦叶绿素的GA-PLS模型相关系数R=0.8303,校正标准差SEC=0.1169,预测标准差RPD=0.8064,相对百分值RSEP=13.899%。
     5.利用高光谱成像识别小麦穗发芽程度。应用成像光谱仪分别对四种不同水分处理下的120个小麦穗进行分析,采集小麦穗部及籽粒的平均光谱反射率,并进行对比分析研究,结果表明:基于高光谱成像特征波段提取的RGB合成彩色效果图要优于基于机器视觉的小麦穗发芽成像图。小麦穗部发芽与否会在其光谱特性上有所反映,特别是在675nm处,发芽小麦与未发芽小麦的光谱反射率存在明显差异,小麦穗发芽的部位在675nm处会出现吸收谷,而未发芽部分则没有,以此通过光谱曲线在675nm处的变化情况,可判断小麦穗部是否发芽。从而说明,成像光谱可以较好的区分不同水分处理下的小麦穗发芽情况,表明利用高光谱成像技术对小麦穗发芽进行无损监测具有可行性。
Wheat was the world's most widely distributed crops. It is also one of the largest food cropacreage and among the largest food production in China. It was an important commodity grainand strategic reserves of staple food varieties. Seedling growth and development affectes thewheat’s final yield, quality and safety. So seedling vigor agronomists, breeders, biochemists, areconcerning about the crop characteristics. Chlorophyll content as an indicator of the cropphotosynthesis ability and the growing status. Currently, the monitoring of crop growing statuswere mostly focused on the middle and final growth period, where spectroscopy analysis iswidely used to capture group parameters. Seedling monitoring is focused more on the analysisof individual parameter; however it was lack of effective detection method. Hyperspectralimaging, known also as spectroscopic imaging, is an emerging technique that integratesconventional imaging and spectroscopy to attain both spatial and spectral information from anobject. It could obtain the spectrum of each local area, and has great advantage on differentiatingindividual differences. It has been used in aviation and satellite remote sensing for years.Recently, with the reducing of cost, the hyperspectral imager for field purpose is possible. Forthis study, we monitor the wheat seedling growth by hyperspectral imaging technology and highresolution image integration. In this paper, we used the hyperspectral imagers to detect thechlorophyll content for salt stress of the wheat seedling, freezing injury of wheat seedlings underlow-temperature stress, drought injury of wheat seedlings under low-water stress, recognition ofWheat Pre-harvest Sprouting, and the chlorophyll content of wheat seedings.
     1. An auto-development pushbroom imaging spectrometer (PIS) with wavelength range of400-1000nm was applied to measure the detection of chlorophyll content for salt stress of thewheat seedling by hyperspectral imaging. It showed that according to images of spectralimaging for leaves of Chinese Spring (Salt-sensitive), Zhouyuan9369(common and high-yield)and Changwu134(salt-tolerant) wheat seedling under salt stress, growth of salt-sensitiveChinese Spring wheat seedling was inhibited and it was feasible to carry out qualitativeanalysis.We collected the imaging spectrum of126wheat samples in the wavelength range of400~1000nm, selected the average spectrum, exerted Correlation Analysis on the spectrum ofwheat seedlings with the SPAD value, It could be seen that the biggest absolute value of thecorrelation coefficient was at693nm, which was considered as the characteristics wavelength ofwheat seedlings. To establish the linear regression model using this wavelength, and substitutedthe reflectance data of each point into the model, then we got the SPAD value of each point, toform the relative content distribution map of chlorophyll, whereby to diagnose the distribution of seedlings component. Partial least square regression (PLSR) method was used to build thecalibration model. Results showed that the extracted hyperspectral spectra had high correlationwith chlorophyll content. The correlation coefficient of the calibration model is R=0.8138, thestandard error of prediction is SEP=4.75.
     2. Diagnosis of freezing stress in wheat seedlings using hyperspectral imaging technology.Imaging spectrometry and image integration were used to study the extent of freezing injury onwheat seedlings on three dates in2010. Thirty wheat cultivars with limited freezing resistancethat are usually grown in Southern China were grown in pots located outdoors in Beijing.Imaging spectra of potted wheat samples were acquired in the spectral range of450nm to900nm, and a polyphenol tester was used to determine the nitrogen balance index of wheat samples.Increased freezing injury was related to increased spectral reflectance in the450nm to650nmwave band and decreased spectral reflectance in the700nm to900nm wave band. Averagespectral reflectance of wheat seedling canopies was negatively correlated (-0.7) with nitrogenbalance index in the red edge area between650nm and700nm. Absolute values of correlationcoefficients under freezing stress at three measuring dates reached a maximum at680nm, andthis wavelength was used as the characteristic wavelength for freezing-injury diagnosis of thewheat seedlings. From spectral images at this characteristic wavelength, it was feasible tointuitively observe the area and extent of freezing injured wheat seedlings. Our results show thatit is feasible to monitor freezing stress of wheat seedlings by use of hyperspectral imaging whichcould accurately reflect freezing-injured parts of wheat seedlings.
     3. Diagnosis of drought stress in wheat seedlings using hyperspectral imaging technology.The severity of the drought stress conditions different period of three acquisition imagingspectrometer data2011-11-15,2011-11-23,2011-12-01wheat seedlings, respectively, andrecord the corresponding seedling per plant leaf chlorophyll SPAD values, of wheat seedling as2011-11-23periods of drought stress aggravated Yangmai15Yangmai158, the the SPADaverage of Jingdong8monoclonal measured three poor drought resistance of potted wheatleaves begin to reduce small, and better drought resistance Nongda211measured SPAD valueof leaves of wheat seedlings monoclonal close to the measured values in the two periods isinsignificant. Analysis found that hyperspectral imaging technology on Wheat canopy spectracollected under different drought stress period in the wavelength range of400~1000nm,450nm~900nm spectral wavelength range2012-12-01wheat seedlings during drought stress isthe most serious wheat seedling, mean canopy spectral reflectance, and do not have thecharacteristic peaks of the spectral reflectance of green vegetation. Subsequently, seedlingdrought stress under the canopy spectral reflectance, first derivative, and the chlorophyll SPAD average of measured correlation coefficient curve, correlation analysis, we found that thespectral curve in the range of700~780nm red band within a positive effect related to asignificant, suggesting that drought stress had a greater impact may be the curve red edge, theother band area, significant correlation coefficients are very low. We can see from the abovefindings: Imaging Spectrometer PIS has the advantages of imaging and it maps thecharacteristics of unity, to extract the spectral characteristics, and to reflect the growingconditions in the wheat seedling drought stress.4. The application of hyperspectral imaging acquisition field of wheat seedling canopy andindividual plant leaf spectral imaging, based on genetic algorithm selected six characteristicbands corresponding to the characteristic wavelength, the leaves of wheat seedlings per plantwere measured nitrogennutritional component information the amount of chlorophyll tworepresentative wheat growing good or bad, true value, to build mathematical models usingpartial least squares (PIS), correlation analysis, the wheat seedlings per plant leaf componentinformationchoice of different spectral wavelength range of model results, the results show: thecombination of partial least squares (PIS) and the blades of wheat seedlings monoclonalnitrogen, chlorophyll value of the model based on genetic algorithm, are superior based on thefull spectrum of wavelengthsthe range of FS-PLS and ES-PLS model based on experience toselect the wavelength range. Comprehensive evaluation to predict wheat seedling nitrogencomponent information modeling results the correlation coefficient R=0.9, correction standarddeviation of the SEC=0.0841, standard error of prediction of the RPD=1.4358, the relativepercentile RSEP=9.3893%. At the same time, the leaf chlorophyll value of the wheat seedlingper plant based on genetic algorithm combined with partial least squares method to establish themodel results of the correlation coefficient R=0.8303, corrected standard deviation of the SEC=0.1169, standard error of prediction the RPD=0.8064, and the relative percentage value RSEP=13.899%.5. Study on recognition of wheat pre-harvest sprouting based on hyperspectral imagingtechnology. Imaging spectrometer was used to analyze120strains of wheatears under fourdifferent watering treatment ways. Comparative analysis was carried out for mean spectralreflectivity of ears and seeds of the four groups of wheat wheatear, and results showed thatextracted RGB color effect image based on characteristic wavelength of hyperspectral imagingwas better than imaging image of wheat pre-harvest sprouting based on machine vision.Whether wheat pre-harvest sprouting occurred could be reflected by spectral characteristics.Especially at675nm, there was a significant difference for spectral reflectivity betweensprouting wheat and non-sprouting wheat. Sprouting parts of wheatears presented absorption valley at675nm, while non-sprouting parts didn’t present it. Therefore, it was feasible to judgewheatears’ sprouting situations according to changes of spectral curve at675nm. Therefore, it isillustrated that imaging spectra can better differentiate wheat pre-harvest sprouting situationsunder different watering treatment ways, suggesting that it is completely feasible to usehyperspectral imaging technology to carry out nondestructive monitoring for wheat pre-harvestsprouting
     The results above of the all, indicated that hyperspectral imaging were suitable for thenon-invasive detection of chlorophyll content of wheat seedling.
引文
[1]罗珊,康玉凡,夏祖灵.种子萌发及幼苗生长的调节效应研究进展[J].中国农学通报,2009,25(02):28-32.
    [2]邢珍娟,王振营,何康来,等.转Bt基因玉米幼苗残体中Cry1Ab杀虫蛋白田间降解动态[J].中国农业科学,2008,41(2):412-416.
    [3]张敏,蔡瑞国,李慧芝,等.盐胁迫环境下不同抗盐性小麦品种幼苗长势和内源激素的变化[J].生态学报,2008,28(1):310-320.
    [4]彭丹辉.小麦苗期热胁迫基因表达谱分析及相关基因的克隆[D].北京:中国农业大学,2005.
    [5]田梦雨,李丹丹,戴廷波,等.水分胁迫下不同基因型小麦苗期的形态生理差异[J].应用生态学报,2010,21(1):41-47.
    [6]周小云,计巧灵,刘亚萍.低能离子注入对小麦种子发芽及幼苗生理生化的影响[J].生物技术,2005,15(2):69-72.
    [7]赵丽英,邓西平,山仑.渗透胁迫对小麦幼苗叶绿素荧光参数的影响[J].应用生态学报,2005,16(7):1261-1264.
    [8]司江英,汪晓丽,陈冬梅,等.不同pH和氮素形态对作物幼苗生长的影响[J].扬州大学学报,2007,28(3):69-71.
    [9]周小云,刘亚萍,计巧灵.离子束注入对小麦幼苗保护酶活性及脂质过氧化作用的影响[J].新疆大学学报,2005,22(2):195-196.
    [10]刘建新,赵国林.骆驼蓬提取物浸种对小麦幼苗生长及抗氧化酶活性的影响[J].西北植物学报,2005,25(9):175-176.
    [11]刘萍,齐付国,丁义峰,等.青霉素和氨苄青霉素对小麦种子萌发及幼苗生理生化的影响[J].华北农学报,2004,19(3):66-68.
    [12]张凤云,翟梅枝,毛富春,等.核桃青皮提取物对几种作物幼苗生长的影响[J].西北农业学报,2005,14(1):62-65.
    [13]陈遂中,谢慧琴,何应文,等.莎草水提液对3种作物幼苗的化感作用[J].安徽农业科学,2009,37(17):7934-7949.
    [14]Hack G R. The use of image processing under greenhouse conditions for growth andclimate control [J]. Acta Horticulturae,230:215-220.
    [15]Tarbell K A, Reid J F. A computer vision system for characterizing corn growth anddevelopment [J]. Transacations of the ASAE,1991,34(5):2245-2255.
    [16]Shimizu H,Oshital S. Measurement of elongation rate of plants. In: Hashimoto Y, Day W.Mathematical and Control Applications in Agriculture and Horticulture [M]. New York:Pergamon Press,1991.
    [17]Trooien T P, Heermann D F. Measurement and simulation of potato leaf area using imageprocessing: I model development [J]. Transaction of the ASAE,1992,35(5):1709-1712.
    [18]Chen X, Welch S M, Zhang N,et al. Measurement of change in soybean plantcross-sectional area under wind conditions via image processing [J]. Transactions of theASAE,2001,44(6):1923-1929.
    [19]He D. Development of a plug-transplant production system and an image analysis systemfor use in sweet potato [D]. Japan: Chiba University,2002.
    [20]陈晓光,成洪.应用图像处理技术进行蔬菜苗特征量识别[J].农业工程学报,1995,11(4):23-26.
    [21]吕朝辉,陈晓光,郑元杰,等.立体视觉技术在秧苗直立度测定中的应用[J].农业工程学报,2001,17(4):127-130.
    [22]纪寿文,王荣本,陈佳娟.应用计算机图像处理技术识别玉米苗期田间杂草的研究[J].农业工程学报,2001,17(2):154-156.
    [23]徐贵力,毛罕平,胡永光.基于计算机视觉技术参考物法测量叶片面积[J].农业工程学报,2002,18(1):154-157.
    [24]杨劲峰,陈清,韩晓日,等.数字图像处理技术在蔬菜叶面积测量中的应用[J].农业工程学报,2002,18(4):155-157
    [25]李长缨,滕光辉,赵春江,等.利用计算机视觉技术实现对温室植物生长的无损监测[J].农业工程学报,2003,19(3):140-143.
    [26]Duncan W G, Hesketh J D. Net photosynthetic rates, relative leaf growth rates, and leafnumbers of22races of maize grown at eight temperatures [J].Crop Science,1968,8:670-674.
    [27]Mayyer G E,Davion D A. An electronic image plant growth measurement system [J].Transaction of the ASAE,1987,30(1):242-248.
    [28]高亮之,金之庆,黄耀.水稻栽培计算机模拟优化决策系统[M].北京:中国农业科技出版社,1992.
    [29]吕军.作物生长田间水分平衡的系统模拟[J].水利学报,1998(7):68-72.
    [30]潘学标,韩湘玲,石元春.棉花生长发育模拟模型[J].棉花学报,1996,8(4):180-188.
    [31]曹卫星,江海东.小麦温光反应与发育进程的模拟[J].南京农业大学学报,1996,19(1):9-16.
    [32]侯加林,王一鸣,俆云,等.番茄生长发育非线性模拟模型[J].农业机械学报,2006,37(3):80-83.
    [33]罗新兰,李天来,姚运生,等.日光温室气象要素及番茄单叶光合速率日变化模拟的研究[J].园艺学报,2004,31(5):607-612.
    [34]张娟,陈杰,王珊珊.基于遗传算法和RBF网络的番茄生长模型辨识[J].控制与决策,2005,20(6):682-685.
    [35]孙忠富,陈晴,王迎春.不同光照条件下温室黄瓜干物质生产模拟与试验研究[J].农业工程学报,2005,21(增刊):50-52.
    [36]史为民,陈青云,乔晓军.日光温室黄瓜叶片光合速率模型及其参数确定的初步研究[J].农业工程学报,2005,21(5):113-118.
    [37]Ling P P,Giacomelli G A,Russell T. Monitoring of plant development in controlledenvironment with machine vision [J].Advances in space research,1996,18(4):101-112.
    [38]Humphries S, Simonton W. Identification of plant parts using color and geometric imagedata [J]. Transaction of the ASAE,1993,36(5):1493-1500.
    [39]Shimizu H, Heins R D. Computer vision based system for plant growth analysis [J].Transaction of the ASAE,1995,38(3):959-964.
    [40]Ahamd I S, Reid J F. Evaluation of color representations for maize image [J]. Journal ofAgricultural Engineering Research,1996,63:185-196.
    [41]Gopala P S, Tian L. Infield variability detection and spatial yield modeling for corn usingdigital aerial imaging [J]. Transactions of the ASAE.1999,42(6):1911-1920.
    [42]武聪玲.基于计算机视觉的温室黄瓜幼苗营养无损监测研究[D].北京:中国农业大学,2005.
    [43]张彦娥,李民赞,张喜杰,等.基于计算机视觉技术的温室黄瓜叶片营养信息检测[J].农业工程学报,2005,21(8):102-105.
    [44]王克如,李少昆,王崇桃,等.用机器视觉技术获取棉花叶片叶绿素浓度[J].作物学报,2006,32(1):34-40.
    [45]高映宏,左颖.激光在现代农业及生物科学中的应用[J].天津农学院学报,2002,9(1):55-59.
    [46]药林佻,刘木华,刘道金,等.激光技术在农产品质量检测中的研究进展[J].激光生物学报,2007,16(3):369-377.
    [47]赵晔,施德叵,熊宝库.一种漫反射式激光谷物水份检测系统[J].光学技术,2004,30(5):633-636.
    [48]Roberto A, Braga J R, Giovanni F, et a1. Detection of fungiin beans by the laser biospeckletechnique [J]. Biosystems Engineering,2005,91(4):465-469.
    [49]Quenon V, Jansk P T, De B J. Optical detection of the internal quality of Belgian endive(Cichorium intybus L.)[J]. Journal Acta Hort (ISHS),2003,599:373-376.
    [50]Shigeto K, Bernard C, Tosho F, et a1. An algorithm and a device for counting airbornepollen automatically using laser optics [J]. Atmospheric Environment,2007,41(36):7987-7993.
    [51]吴传秀,姚永邦.激光技术在棉花质量检测中的应用[J].棉纺织技术,1995,23(11):31-32.
    [52]Schchtl J, Huber G, Maidl F X, et a1. Haschberger Laser-induced chlorophyll fluorescencemeasurements for detecting the nitrogen status of wheat (Triticum aestivum L)[J].Canopies Precision Agriculture,2005,6(2):143-145.
    [53]Henk J. Improving seed quality with laser sorting [EB/OL].(2005).http://www.forestrenewa1.ca/articles/78.
    [54]Uwe R, Roland P. Spatio-temporal variations of photosynthesis: the potential of opticalremote sensing to better understand and scale light use eficiency and stresses of plantecosystems [J]. Precision Agriculture,2008,9(6):355-366.
    [55]浦瑞良,宫鹏.森林生物化学与CASI高光谱分辨率遥感数据的相关分析[J].遥感学报,1997,1(2):115-123.
    [56]Broge N H, Mortensen J V. Deriving green crop area index and canopy chlorophyll densityof winter wheat from spectral eflectance data [J]. Remote Sensing of Environment,2002,81:45-57.
    [57]张霞,刘良云,赵春江,等.利用高光谱遥感图像估算小麦氮含量[J].遥感学报,2003,7(3):176-181.
    [58]王纪华,赵春江,郭晓维,等.用光谱反射率诊断小麦叶片水分状况的研究[J].中国农业科学,2001,34(1):1-4.
    [59]吴长山,项月琴,郑兰芬,等.利用高光谱数据对作物群体叶绿素密度估算的研究[J].遥感学报,2000,4(3):228-232.
    [60]张霞,刘良云,赵春江,等.利用高光谱遥感图像估算小麦氮含量[J].遥感学报,2003,7(3):176-181.
    [61]马本学,应义斌,饶秀勤,等.高光谱成像在水果内部品质无损检测中的研究进展[J].2009,29(6):1611-1615.
    [62]刘木华,赵杰文,江水泉.高光谱图像在农畜产品品质与安全性检测中的研究现状与展望[J].粮食与食品工业,2004,12:47-49.
    [63]王坤,朱大洲,张东彦,等.成像光谱技术在农作物信息诊断中的研究进展[J].光谱学与光谱分析,2011,31(3):589-594.
    [64]Ridgway C, Chambers J. Detection of insects inside wheat kernels by NIR imaging [J].Journal of Near Infrared Spectroscopy,1998,6(2):115-119.
    [65]Peiris K H S, Pumphrey M O, Dowell F E. NIR absorbance characteristics ofdeoxynivalenol and of sound and Fusarium-damaged wheat kernels [J]. Journal of NearInfrared Spectroscopy,2009,17:213-221.
    [66]Borhan M S, Pannigrah S I, Lorenzen J H, et al. Multi-spectral and Color ImagingTechniques for Nitrate and Chlorophyll Determination of potato Leaves in a ControlledEnvironment [J]. Transactions of the ASAE,2004,47(2):599-608.
    [67]洪添胜,乔军, Wang N,等.高光谱图像技术在水果品质无损检测中的应用[J].农业工程学报,2007,23(2):151.
    [68]朱登胜,邵咏妮,潘家志.应用多光谱数字图像识别苗期作物与杂草[J].浙江大学学报,2008,34(4):418-422.
    [69]袁挺,许晨光,任永新,等.基于近红外图像的温室环境下黄瓜果实信息获取[J].光谱学与光谱分析,2009,29(8):2054-2058.
    [70]Tian Q, Tong Q, Pu R, et al. Spectroscopic detemination of wheat water status using1650~1850nm spectral absorption features [J]. International Journal of Remote Sensing,2001,22(12):2329-2338.
    [71]Mark D F, Mitchell R R, Garrett M J. Spectral and Metameric Color Imaging [C].www.cis.rit.edu/research/mcsl/research/PDFs,2001.
    [72]钱乐祥,泮学芹,赵芊.中国高光谱成像遥感应用研究进展[J].国土资源遥感,2004,15(2):1-6.
    [73]祁亚琴,王登伟,陈冠文,等.基于高光谱数据提取作物冠层特征信息的研究进展[J].棉花学报,2005,17(6):371-375.
    [74]王建宇.高光谱遥感技术的进展与展望[C].大珩先生九十华诞文集暨中国光学学会2004年学术大会论文集,2004:99-104.
    [75]Menges R M, Nixon P R, Richardson A J. Light reflectance and remote sesing of weeds inagronomic and horticultural crops [J]. Weed Science,1985,33(4):569-581.
    [76]袁迎辉,林子瑜.高光谱遥感技术综述[J].中国水运,2007,7(8):155-156.
    [77]胥学荣,郑列华,危峻.推扫式宽视场成像光谱仪[J].红外与激光工程,2006, S2:242-243.
    [78]刘银年,薛永祺,王建宇,等.实用型模块化成像光谱仪[J].红外与毫米波学报,2002,2(21):9-13.
    [79]肖松山,范世福,李昀,等.光谱成像技术进展[J].现代仪器,2003,(5):5-8.
    [80]洪新华,姚凯.成像光谱仪的原理与应用[J].河南科技学院学报(自然科学版),2005,33(2):113-116.
    [81]Horn B K P, Woodham R J. Destriping Landsat MSS Imagery by Histogram Modification[J]. Comput Graph&Image Process,1979,10:69-83.
    [82]Kautsky J, Nichols N K, Jupp D L. Smoothed Histogram Modification for ImageProcessing [J]. Comput Vision&Image Process,1984,26:271-291.
    [83]Wegener M. Destriping Multiple Sensor Imagery by Improved Histogram Matching [J].International Journal of Remote Sensing,1999,11(5):859-875.
    [84]Gadallah F L, Csillag F. Destriping Multisensor Imagery with Moment Matching [J]International Journal of Remote Sensing,2000,21(12):2505-2511.
    [85]Srinivasan R, Cannon M, White J. et. al. Destriping using Power Filtering [J]. OpticalEngineering,1998,27:939-943.
    [86]Simpson J J, Gobat J I, Fruin R. Improved Destriping of GOES Images Using FiniteImpulse Reponse Filters [J]. Remote Sensor Environment,1995,52:15-35.
    [87]Govani C, Marco D, Thomas W. Striping Removal in MOS-B Date [J]. IEEE Transactionson Geoscience&Remote Sensing,2000,38(3):1439-1446.
    [88]杨忠懂,张文建,李俊,等.应用小波收缩方法剔除MODIs热红外波段数据条带噪声[J].遥感学报,2004,8(l):23-30.
    [89]刘正军,王长耀,王成.成像光谱仪条带噪声去除的改进矩匹配方法[J].遥感学报,2002,6(4):280-284
    [90]蒋耿明,牛铮,阮伟利,等. MODIs影像条带噪声去除方法研究[J].遥感技术与应用,2003,18(6):393-398.
    [91]阮成江,谢庆良.盐胁迫下沙棘的渗透调节效应[J].植物资源与环境学报,2001,11(2):45-47.
    [92]Boyer J S. Plant productivity and environment [J]. Science,1982,218:443-448.
    [93]Zhu J K. Plant salt tolerance [J]. Trends in Plant Science,2001,6:66-71.
    [94]余叔文,汤章城.植物生理与分子生物学(第二版)[M].北京:科学出版社,1999.
    [95]Levitt J. Response of plants to environmental stress [M]. New York: Academic Press,1980.
    [96]肖媛.不同小麦品种种子萌发期耐盐性的研究[J].安徽农业科学,2006,34(22):5786-5787.
    [97]Kumar A, Bahadur B, Sharama B K. Influence of salts on the germination and seedlinggrowth of Hordeum vulgare L [J]. Annals Arid Zone,1988,27:65-66.
    [98]Sharma S S, Yamdagni R. Salt tolerance studies in winter garden annuals I. Effects ofsalinity on seed germination and survival of the seedlings [J]. Research and DevelopmentReport,1989,6:107-111.
    [99]赵旭,王林权,周春菊,等.盐胁迫对不同基因型冬小麦发芽和出苗的影响[J].干旱地区农业研究,2005,23(4):108-112.
    [100]叶梅荣,刘玉霞. NaCl对吸胀后小麦种子发芽和幼苗生长的影响[J].安徽农业技术师范学院学报,2000,14(2):35-36.
    [101]王芳,朱军,布如力,等.盐胁迫对新疆两个小麦品种种子发芽及幼苗生长的影响[J].新疆农业大学学报,2007,30(1):1-5.
    [102]王芳,段迪,段培,等.不同耐盐性小麦胚芽鞘伸长对盐胁迫的响应[J].作物学报,2007,33(12):2053-2058.
    [103]张瑞富,王云,乔宏伟,等.盐胁迫对不同品种小麦发芽的影响[J].内蒙古民族大学学报,2007,22(3):297-301.
    [104]李树华,米海莉,惠红霞,等. NaCl胁迫对小麦发芽的影响试验研究[J].宁夏农林科技,2000,6(11):11-13.
    [105]丁顺华,邱念伟,杨洪兵,等.小麦耐盐性生理指标的选择[J].植物生理学通讯,2001,37(2):98-102.
    [106]Zhang D Y, Song X Y, Ma Z H, et al. Assessment of the developed pushbroom imagingspectrometer in single leaf scale [J]. Scientia agriculture sinica,2010,43(11):2239-2245.
    [107]张东彦,张竞成,朱大洲,等.小麦叶片胁迫状态下的高光谱图像特征分析研究[J].光谱学与光谱分析,2011,31(04):1101-1105.
    [108]张东彦,宋晓宇,马智宏,等.扫描成像光谱仪和地物光谱仪在单叶尺度上的对比研究[J].中国农业科学,2010,43(11):2239-2245.
    [109]Sofalian O, Mohammadi S A, Aharizad S, et al. Inheritance of Cold Tolerance inCommon Wheat (Triticum aestivum L.)[J]. Turkish Journal of Agriculture and Forestry,2006,3:399-405.
    [110]Skinner D Z, Mackey B. Freezing tolerance of winter wheat plants frozen in saturated soil[J]. Field Crops Research,2009,113:335-341.
    [111]Nemetha L J, Paulleyb F G, Preston K R. Effects of ingredients and processing conditionson the frozen dough bread quality of a Canada Western Red Spring wheat flour duringprolonged storage [J]. Food Research Internationa,1996,29(7):609-616.
    [112]Kolesnichenko A V, Pobezhimova T P, Grabelnych O I, et al. Difference between thetemperature of non-hardened and hardened winter wheat seedling shoots during cold stress[J]. Journal of Thermal Biology,2003,28(3):235-244.
    [113]Bjarko M E, Line R F. Heritability and number of genes controlling leaf rust resistance offour cultivar of wheat [J]. Phytopathology,1988,78:457-461.
    [114]高桂花,王瑞兵,刘艳芳,等.低温胁迫下玉米幼苗生理变化的研究[J].河北农业科学,2006,10(4):16-19.
    [115]叶亚新,金进,秦粉菊,等.低温胁迫对小麦、玉米、萝卜幼苗超氧化物歧化酶活性的影响[J].中国农学通报,2009,25(23):244-248.
    [116]李志博,魏亦农,杨敏等.低温胁迫对棉花幼苗叶绿素荧光特性的影响初探[J].棉花学报,2006,18(4):255-256.
    [117]汤志成,孙涵.用NOAA卫星资料作冬作物冻害分析[J].遥感信息,1989,4:39-39.
    [118]杨邦杰,王茂新,裴志远.冬小麦冻害遥感监测[J].农业工程学报,2002,18(2):136-140.
    [119]张晓煜,陈豫英,苏占胜,等.宁夏主要作物霜冻遥感监测研究[J].遥感技术与应用,2001,16(1):32–36.
    [120]张雪芬,陈怀亮,郑有飞,等.冬小麦冻害遥感监测应用研究[J].南京气象学院学报,2006,29(1):94-100.
    [121]薛利红,罗卫红,曹卫星,等.作物水分和氮素光谱诊断研究进展[J].遥感学报,2003,7(1):73-80.
    [122]王伟,彭彦昆,马伟,等.冬小麦叶绿素含量高光谱检测技术[J].农业机械学报,2010,41(5):172-177.
    [123]Meyer S, Cerovic Z G, Goulas Y, et al. Relationships between optically assessedpolyphenols and chlorophyll contents, and leaf mass per area ratio in woody plants: asignature of the carbon-nitrogen balance within leaves [J]. Plant, Cell and Environment,2006,29:1338-1348.
    [124]Poutarud A, Latouche G, Martins S, et al. Fast and Local Assessment of Stilbene Contentin Grapevine Leaf by in Vivo Fluorometry [J]. Journal of Agricultural and Food Chemistry,2007,55:4913-4920.
    [125]黄木易,王纪华,黄义德,等.高光谱遥感监测冬小麦条锈病的研究进展[J].安徽农业大学报,2004,31(1):119-122.
    [126]浦瑞良,宫鹏.高光谱遥感及其应用[M].北京:高等教育出版社,2000.
    [127]李章成,周清波,吕新,等.冬小麦拔节期冻害后高光谱特征[J].作物学报,2008,34(5):831-837.
    [128]李章成,周清波,江道辉,等.棉花苗期冻害高光谱特征研究[J].棉花学报,2008,20(4):306-311.
    [129]康书江,袁振东,张继新.小麦抗旱育种研究进展[J].北京农业科学,1999,4(17):17-18.
    [130]卫云宗,乔蕊清,刘新月.高产耐旱冬小麦育种技术及其评价方法研究[J].华北农学报,2001,16(3):17-22.
    [131]Blum A, Johnson J W. Wheat cultivars respond differently to a drying top soil and apossible non-hydraulic root signal [J]. Journal of Experimental Botany,1993,44:1149-1153.
    [132]Siddique K H M, Beleford R K, Tennant D. Root: shoot ratio of old and modern, tall andsemi-dwarf wheats in a mediterranean environment [J]. Plant and Soil,1990,121:89-98.
    [133]周桂莲.小麦抗旱性鉴定的形态指标及其分析评价[J].陕西农业科学,1996,41:32-34.
    [134]许州达,景瑞莲,甘强,等.用水稻基因芯片筛选小麦耐旱相关基因[J].农业生物技术学报,2007,15:1-7.
    [135]金善宝.中国小麦学[M].北京:中国农业出版社,1996.
    [136]Saadalla M M, Shanahan J F, Quick J S. Heat tolerance in winter wheat: I Hardening andgenetic effects on membrane thermostability [J].Crop Science,1990,30:1243-1247.
    [137]Arvor D, Jonathan M, Dubreuil V, et a1. Comparison of Multitemporal MODIS-EVISmoothing Algorithms and its Contribution to Crop Monitoring [EB/OL].http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=04779155,2010.
    [138]蔡天净,唐瀚. Savitzky-Golay平滑滤波器的最小二乘拟合原理综述[J].前沿技术,2011,1(17):63-82.
    [139]Shibayama M, Akiyama T A. Spectro radiometer for field use. VI. Radiometric estimationfor chlorophyll index of rice canopy [J]. Japanese Journal of Crop Science,1986,55(4):433-438.
    [140]李映雪,谢晓金,徐德福.高光谱遥感技术在作物生长监测中的应用研究进展[J].麦类作物学报,2009,29(1):174-178.
    [141]陆婉珍,袁洪福,徐广通.现代近红外光谱分析技术[M].北京:中国石化出版社,2000.
    [142]Kemeny G J. Handbook of Near InfraredAnalysis [M]. Marcel Dekker Inc,2001.
    [143]冯新泸,史永刚.近红外光谱及其在石油产品分析中的应用[M].北京:中国石化出版社,2002.
    [144]王艳斌,袁洪福,陆婉珍.近红外分析方法测定润滑油基础油粘度指数[J].润滑油,2001,16(6):53-56.
    [145]梁逸曾.白灰黑复杂多组分分析体系及其化学计量学算法[M].长沙:湖南科学技术出版社,1996.
    [146]Ramadan Z, Song X H, Hopke P K, et al. Application of PLS and Back PropagationNeural Networks for the Estimation of Soil Properties [J]. Environmental Science&Technology,2004,108:9147-9157.
    [147]Centner V, Massart D L. Elimination of uninformative variables for multivariatecalibration [J]. Analytical Chemistry,1996,68(21):3851-3858.
    [148]Leardi R, Boggia R, Terrile M J. Chemom [M]. Intell Lab Syst,1992.
    [149]Norgarrd L, Saudland A, Wagner J, et al.Interval partial least-squares regression (iPLS): acomparative chemometric study with an example from near-infrared spectroscopy [J].Applied Spectroscopy,2000,54(3):413-419.
    [150]Jiang J H, Berry R J, Siesler H W, et al. Wavelength interval selection in multicomponentspectral analysis by moving window partial least-squares regression with applications tomidinfrared and near-infrared spectroscopic data [J]. Analytical Chemistry,2002,74:3555-3565.
    [151]倪永年.化学计量学在分析化学中的应用[M].北京:科学出版社,2004.
    [152]Liu Y, Ying Y B, Fu X P. Study on predicting sugar content and valid acidity of apples bynear infrared diffuse reflectance technique [J]. Spectroscopy and Spectral Analysis,2005,25(11):1793-1796.
    [153]Zhao J, Pang Q C, Ma J, et al. Design of the continuous spectrum imaging apparatusbased on LCTFs [J]. Acta Photonica Sinica,2008,37(4):758-762.
    [154]Kawano S, Watanabe H, Iwamoto M. Determination of soluble solids and firmness ofapples by Vis/NIR transmittance [J]. Joumal of the Japanese Society for HorticulturalScience,1992,61(2):445-451.
    [155]Lu J R, Ariana D. A near-infrared sensing technique for measuring internal quality ofapple fruit [J]. Applied Engineering in Agriculture,2002,18(5):585–590.
    [156]Leardi R. Genetic Algorithms in Chemometrics and Chemistry: A Review [J]. Journal ofChemometrics,2001,15:559-569.
    [157]许禄,邵学广.化学计量学方法[M].北京:科学出版社,1997.
    [158]Zhou M, Sun S D. Genetic Algorithm and Its Applications [M]. Beijing: National DefenceIndustry Press,1999.
    [159]黄文江,王纪华,刘良云,等.冬小麦红边参数变化规律及营养诊断[J].遥感技术与应用,2003,18(4):206-211.
    [160]Derera N F. Pre-harvest field sprouting in cereal [M]. Florida: CRC Press,1989.
    [161]郭士伟,黄少白.小麦穗发芽研究进展[J].世界农业,2000.4(总252),18-19.
    [162]徐风,肖文言.姚大年.两淮麦区小麦品种穗发芽敏感性研究[J].种子,1994,4(72):1-6.
    [163]Lan X J, Liu D C, Wang Z R. Inheritance in synthetic hexaploid wheat‘RSP’of sproutingtolerance derived from Aegilops tauschii Cosson [J]. Euphytica,1997,95:321-323.
    [164]Flintham J, Adlam R, Bassoi M. Mapping genes for resistance to sprouting damage inwheat [J]. Euphytica,2002,126:39-45.
    [165]Gatford K T, Hearmden P, Ogbonnaya F. Novel resistance to pre-harvest sprouting inAustralian wheat from the wild relative Triticum tauschii [J]. Euphytica,2002,126:67-76.
    [166]兰秀锦,王志容.小麦抗穗发芽的鉴定及其灌浆过程中胚、种皮和颖壳三因素与籽粒发芽率的关系[J].四川农业大学学报,1996,14(4):533-536.
    [167]兰秀锦,郑有良,刘登才,等.节节麦抗穗发芽基因的染色体定位及其抗性机理[J].中国农业科学,2002,35(1):12-15.
    [168]兰秀锦,郑有良,任晓波,等. RSP抗穗发芽基因育种利用研究初报[J].植物遗传资源学报,2005,6(1):204-209.
    [169]Xiao S H, Zhang X Y, Yan C S. Germplasm Improvement for Pre-harvest SproutingResistance in Chinese White-grained Wheat: An Overview of the Current Strategy [J].Euphytica,2002,126:35-38.
    [170]Clarke F R, Clarke J M, Depauw R M. Strategic Approach to Mitigating Weather InducedDefects of Wheat Quality [J]. Euphytica,2005,143:285-290.
    [171]张海峰,卢荣禾.小麦穗发芽抗性机理与遗传研究[J].作物学报, l993,9(3):523-530.
    [172]Gale M D, Law C N, Chojecki A J, et a1. Genetic Control of a-amylase Production inWheat [J]. Theoretical and Applied Genetics,1983,64:309-316.
    [173]胡汉桥.春小麦穗发芽抗性鉴定及机理研究[J].麦类作物学报,2001,21(3):13-17.
    [174]Depauw R M, Mccaig T N, Townley-smith T F. Registration of a sprouting resistantwhite-seeded spring wheat germplasm line [J]. Crop Science,1985,25:577-578.
    [175]戚桂禄.小麦种子生活力三种测定方法的比较[J].种子科技,1992,03:18-19.
    [176]石亚萍,蔡静平.种子发芽率快速测定方法的研究进展[J].中国种业,2008,2:13-14.
    [177]Anderson J M, Sorrells M E, Tanksley S D. RFLP analysis of genomic regions withresistance to preharvest sprouting in wheat [J]. Crop Science,33(3):453-459.
    [178]Marchylo B A, Kruger J E, Macgregor A W. Production of multiple froms α-amylase ingerminated, incubated, whole, de-embryonated wheat kernels [J]. Cereal Chemistry,1984,61(4):305-310.
    [179]成芳,应义斌.杂交水稻种子特征特性视觉检验分析与图像信息库的建立[J].中国水稻科学,2004,18(5):461-465.
    [180]Singh C B, Jayas D S, Paliwal J, et al. Detection of Sprouted and Midge-Damaged WheatKernels Using Near-Infrared Hyperspectral Imaging [J]. ProQuest Agriculture Journals,2009,86(3):256-260.
    [181]Xing J, Symons S, Shahin M, et al. Detection of sprout damage in Canada Western RedSpring wheat with multiple wavebands using visible/near-infrared hyperspectral imaging[J]. Biosystems Engineering,2010,106(2):188-194.
    [182]王纪华,赵春江,黄文江,等.农业定量遥感基础与应用[M].北京:科学出版社,2008.
    [183]朱建平.应用多元统计分析[M].北京:科学出版社,2011.
    [184]吴琼,朱大洲,王纪华,等.农作物苗期长势无损监测技术研究进展[J].农业工程,2011,4:19-25.
    [185]吴琼,朱大洲,王纪华,等.基于多传感器信息融合的组培苗生长统计模型[J].北方园艺,2010,15:94-98.
    [186]吴琼.基于多传感器信息融合的组培苗生长建模[M].淄博:山东理工大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700