GaAs HBT超高速折叠内插ADC芯片设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模数转换器(ADC)通过将采集的模拟信号转换成数字输出码连接了模拟量和数字处理系统,广泛应用于各类电子领域中。根据不同的应用领域对ADC系统指标的设计要求,已经出现了许多类型的ADC,其中,高速ADC越来越受到业界的关注。
     由于GaAs HBT器件具有混合微波单片集成电路所要求的高电阻衬底和高击穿电压的器件特性,因此本文采用GaAs HBT工艺实现模数转换器的设计。与CMOS相比,GaAs HBT具有潜在的更高的截止频率fT,并且由于GaAs HBT比InP HBT和SiGeBiCMOS的制作工艺更简单,因而GaAs HBT的流片成本也较适中。
     本文对GaAs HBT超高速折叠内插ADC芯片设计方法开展了研究。在对各类ADC结构进行分析的基础上确定了本文所采用的超高速ADC结构;提出了一种适用于GaAsHBT的考虑辐照效应的器件模型;并基于本文所建立的模型对ADC的电路级进行了设计。本文取得的主要研究成果如下:
     (1)研究了一款超高速ADC的设计与实现。该ADC的分辨率为6bits,采样率为3Gsps,基于WIN公司截止频率fT=60GHz的1μm砷化镓异质结双极型晶体管工艺设计。该ADC的设计采用折叠内插结构,以满足其Gsps级别的采样率,宽带宽和中等分辨率的要求,相比较于全并行结构,折叠内插结构降低了电路所消耗的功耗以及占用的芯片面积。
     (2)建立了ADC电路级设计所需要的GaAs HBT器件模型。为了预测GaAs HBT伽马辐照效应,建立了一种新颖的考虑了伽马辐照效应的GaAs HBT模型。首先,在对VBIC模型研究的基础上,根据GaAs HBT的特性,建立了一种简化VBIC模型;其次,从GaAs HBT辐照特性出发,对该简化的VBIC模型进行了进一步修正;最后,验证了模型的有效性。
     (3)本文所设计的超高速ADC包含有一个采样保持放大器,一个参考电阻串,四个折叠放大器,一个内插电阻串,一个比较器阵列,一个包含有异或门阵列、或非门阵列和15-to-4ROM的数字编码器,一个嵌有高低位同步电路的粗量化器,并且为了满足测试要求,片上还集成了对ADC输出数据流进行降速处理的1:4解复用器电路。
     (4)采用1μm InGaP/GaAs HBT工艺实现了6bits,3Gsps ADC的设计、流片和测试。ADC的芯片尺寸为4.32mm×3.66mm。采用高线性度的跟踪保持放大器提高了有效分辨率ENOB,并且在折叠放大器中采用额外的一次折叠系数消除折叠电路的边界效应改善了静态性能。测试结果表明,该ADC在3Gsps采样率的情况下,ENOB达到5.53bit,有效分辨率带宽为1.1GHz,微分非线性误差和积分非线性误差的最大值分别为0.36LSB和0.48LSB,在单电源6V电压供电下,所消耗的功耗为5.43W。与文献报道的高速ADC相比,本文所设计的ADC取得了较优良的有效带宽品质因子,在同类ADC设计中性能较好,处于国内先进水平。
Analog-to-digital converters (ADCs) convert the analog signals (voltages, currents andetc.) into digital signals (normally binary), connecting the analog quantity to digital system,being widely used in various electronic field. There are many different types of ADCs usedfor quite distinct purposes. ADCs are designed according to their specifications. Among allkinds of ADCs, high-speed ADCs are becoming more and more important and widely appliednowadays.
     The gallium–arsenide (GaAs) heterojunction bipolar transistor (HBT) technology isadopted to implement the ADC system since many of its features are attractive, which areimportant in mixed-signal MMIC design, such as high resistivity substrate and highbreakdown voltage. In addition, GaAs HBT has potentially higher fTthan CMOS, and it isless costly than InP HBT and SiGe BiCMOS because of its simpler process.
     In this dissertation, the design approach of GaAs HBT ultra-high-speedfolding-interpolating ADC has been studied. Based on the analysis of various types of ADCstructures, ultra-high-speed ADC architecture used in this study was determined. A noveldevice model considering radiation effects for GaAs HBT was proposed. Based on the modelestablished in the dissertation, the ADC circuit was designed. The main studies andcontributions are as follows.
     (1) The design and experiment study of a high speed ADC, which is an essentialcomponent in communication systems, have been performed. The ADC features a6-bitresolution, a3-Gsps sampling rate and was implemented in WIN1μm GaAs HBT technologywith cutoff frequency fTof60GHz. Afolding-interpolating architecture was used in converterto provide the sampling rate of giga hertz, wide bandwidth and medium resolution as well asreduce the power dissipation and chip area of the circuit.
     (2) To complete ADC ciucuit-level design, a novel model for GaAs HBT was presentedin the dissertation. In order to predict the effects of gamma irradiation on GaAs HBT, a novelmodel was presented considering the irradiation effects. Firstly, according to thecharacteristics of GaAs HBT, a simplified VBIC model was proposed. Secondly, Based on theanalysis of irradiation-induced degradation in GaAs HBT, the simplified VBIC model wasfurther amended. Its validity was demonstrated by analysis of the experimental results ofGaAs HBT before and after gamma irradiation.
     (3) The ultra-high-speed ADC consists of a track-and-hold amplifier, a reference resistorladder, four folding amplifier, an interpolating resistor string, a comparator array, a digital encoder including an XOR array, a NOR array and a15-to-4ROM, and a coarse quantizerincluding a bit synchronization circuit. To meet the test requirements, a1:4DEMUX was alsodesigned on the chip.
     (4) The design and test results of a6-bit and3-Gsps analog-to-digital converter (ADC)using1μm GaAs HBT technology are presented in this work. The monolithicfolding-interpolating ADC makes use of a track-and-hold amplifier (THA) with a highlylinear input buffer to maintain high effective number of bits (ENOB) and1out-of-rangefolding factor of folding amplifier to improve the static performance. The ADC occupies anarea of4.32mm×3.66mm and achieves5.53bit ENOB with an effective resolutionbandwidth of1.1GHz at a sampling rate of3Gsps. The maximum DNL and INL are0.36LSB and0.48LSB, respectively. The ADC consumes5.43W from a single6V power supply.The presentedADC acheives5.08×1010the effective resolution bandwidth figure of merit.
引文
[1.1] Tang H. High speed ADC design methodology. USA: University of California.2010.2.
    [1.2] Chen H K, Wang T, Lu S S. A millimeter-wave CMOS triple-band phase-locked loopwith A multimode LC-based ILFD. IEEE Transactions on Microwave Theory andTechniques.2011,59(5).1327-1338.
    [1.3] Ebrahimi E, Naseh S. A colpitts CMOS quadrature VCO using direct connection ofsubstrates for coupling. IEEE Transactions on Very Large Scale Integration (VLSI)Systems.2013,21(3).571-574.
    [1.4] Syu J S, Lu H L, Meng C. A0.6-V30GHz CMOS quadrature VCO using microwave1:1:1trifilar transformer. IEEE Microwave and Wireless Components Letters.2012,22(2).88-90.
    [1.5] Chiang P Y, Momeni O, Heydari P. A200-GHz inductively tuned VCO with-7dBmoutput power in130-nm SiGe BiCMOS. IEEE Transactions on Microwave Theory andTechniques.2013,61(10).3666-3673.
    [1.6] Liu G, Trasser A, Schumacher H.33–43GHz and66–86GHz VCO with high outputpower in an80GHz fTSiGe HBT Technology. IEEE Microwave and WirelessComponents Letters.2010,20(10).557-559.
    [1.7] Seo M, Urteaga M, Young A, et al. A305–330+GHz2:1dynamic frequency dividerusing InP HBTs. IEEE Microwave and Wireless Components Letters.2010,20(8).468-470.
    [1.8] Payne R, Sestok C, Bright W, et al. A12b1GS/s SiGe BiCMOS two-waytimeInterleaved pipeline ADC. IEEE International Solid-State Circuits Conference.2011.182-184.
    [1.9] Chu M, Jacob P, Kim J W, et al. A40Gs/s time interleaved ADC using SiGe BiCMOStechnology. IEEE Journal of Solid-State Circuits.2010,45(2).380-390.
    [1.10] Wu Danyu, Zhou Lei, Guo Jiannan, et al. A4GS/S4bit ADC with3.8analogbandwidth in GaAs HBT technology. Chinese Journal of Semiconductors,2011,32(6).065007.
    [1.11] Kobayashi H, Tobari T, Matsuura H, et al. System architecture and key components ofa multi-giga-hertz A/D convert with HBT. IEEE Instrumentation and MeasurementTechnology Conference.1996.1160-1166.
    [1.12] Nosaka H, Nakamura M, Ida M, et al. A24-Gsps3-bit nyquist ADC using InP HBTsfor electronic dispersion compensation. IEEE MTT-S Int Microwave Symp Dig,2004,101-104.
    [1.13] Kraus S, Kallfass I, Makon R E, et al. A10-GS/s multibit delta-sigma analog-to-digitalconverter in an InP HBT technology. IEEE International Conference on Microwaves,Communications, Antennas and Electronics Systems (COMCAS).2011.1-4.
    [1.14] Chan B, Oyama B, Monier C, et al. An ultra-wideband7-bit5-Gsps ADCimplemented in submicron InP HBT technology. IEEE Journal of Solid-State Circuits.2008,43(10).2187-2193.
    [1.15] Guo Z, D'Amore M, Gutierrez A. A2-bit20Gsps InP HBT A/D converter for opticalcommunications. IEEE Compound Semiconductor Integrated Circuit Symposium.2004.93-96.
    [1.16] Zhang Jincan, Zhang Yuming, Lu Hongliang, et al. The model parameter extractionand simulation for the effects of gamma irradiation on the DC characteristics ofInGaP/GaAs single heterojunction bipolar transistors. Microelectronics Reliability.2012,52.2941-2947.
    [1.17]李晓娟.折叠内插模数转换器的高精度设计研究与实现.西安:西安电子科技大学,2012.
    [1.18] Mehr I, Dalton D. A500-MSample/s,6-bit nyquist-rate ADC for disk-driveread-channel applications. IEEE Journal of Solid-State Circuits.1999,34(7).912-920.
    [1.19] Lun-Fung Q K. Design of a high speed folding and interpolation analog to digitalconverter implemented in0.18μm SiGe BiCMOS process. Canada: University ofToronto.2008.
    [1.20] Wakimoto T, Akazawa Y, Konaka S. Si bipolar2-GHz6-bit flash A/D conversionLSI. IEEE Journal of Solid-State Circuits.1988,23(6).1345-1350.
    [1.21] Walden R H. Analog-to-digital converter survey and analysis. IEEE Journal onSelected Areas in Communications.1999,17(4).539-550.
    [1.22] Lee J, Chen Y K. A50-GS/s5-b ADC in0.18-μm SiGe BiCMOS. IEEE MTT-SInternational Microwave Symposium Digest (MTT).2010.900-903.
    [1.23] Chen C Y, Wu J F, Hung J J, et al. A12-bit3GS/s pipeline ADC with0.4mm2and500mW in40nm digital CMOS. IEEE Journal of Solid-State Circuits.2012,47(4).1013-1021.
    [1.24] Greshishchev Y M, Aguirre J, Besson M, et al. A40GS/s6b ADC in65nm CMOS.IEEE International Solid-State Circuits Conference. Canada,2010.390-391.
    [1.25] Kertis R A, Humble J S, Daun-Lindberg M A, et al. A20GS/s5-bit SiGe BiCMOSdual-nyquist flash ADC with sampling capability up to35GS/s featuring offsetcorrected exclusive-or comparators. IEEE Journal of Solid-State Circuits.2009,44(9).2295-2231.
    [1.26] Lee J, Weiner J, Chen Y K. A20-GS/s5-b SiGe ADC for40-Gb/s coherent opticallinks. IEEE Transactions on Circuits and Systems—I: Regular Papers.2010,57(10).2665-2674.
    [1.27] Varzaghani A, Kasapi A, Loizos D N, et al. A10.3-GS/s,6-bit flash ADC for10Gethernet applications. IEEE Journal of Solid-State Circuits.2013,48(12).1-11.
    [1.28] Kim J I, Sung B R S, Kim W, et al. A6-b4.1-GS/s flash ADC with time-domain latchinterpolation in90-nm CMOS. IEEE Journal of Solid-State Circuits.2013,48(6).1429-1441.
    [1.29] TI公司网站: http://www.ti.com/.
    [1.30] Maxim公司网站: http://www.maxim-ic.com/.
    [1.31] E2V公司网站: http://www.e2v.com/.
    [1.32] Fujitsu公司网站: http://www.fujitsu.com/global/.
    [1.33]刘海涛.超高速ADC芯片设计及测试方法研究.南京:东南大学,2010.
    [1.34] Zhang Zhengping, Wang Yonglu, Huang Xinfa. A2Gsps8-bit ADC with digitalforeground calibration technology. IEEE International Conference onAnti-Counterfeiting, Security and Identification (ASID).2011.143-145.
    [1.35]北京微电子技术研究所网站: http://www.bmti.com.cn/n3/index.html.
    [1.36] Lin Yingzu, Lin Chengwu, Chang S J. A5-bit3.2-GS/s flash ADC with a digital offsetcalibration scheme. IEEE Transactions on Very Large Scale Integration (VLSI)Systems.2010,18(3).509-513.
    [1.37] Wang Mingshuo, Lin Li, Xia Jiefeng, et al. A1.0GS/s7bitpipelined-folding-interpolating ADC with6.0ENOB at nyquist frequency. IEEEInternational Symposium on Radio-FrequencyIntegration Technology. Beijing,2011.177-180.
    [2.1] Cheng W, Ali W, Choi M J, et al. A3b40GS/s ADC-DAC in0.12μm SiGe. IEEEInternational Solid-State Circuits Conference.2004.0-7803-8267-6/04.
    [2.2] Lee J, Weiner J, Roux P, et al. A24GS/s5-b ADC with closed-loop THA in0.18μmSiGe BiCMOS. IEEE Custom Intergrated Circuits Conference (CICC).2008.313-316.
    [2.3] Shahramian S, Voinigescu S P, Carusone A C. A35-GS/s,4-bit flash ADC with activedata and clock distribution trees. IEEE Journal of Solid-State Circuits.2009,44(6).1709-1720.
    [2.4] Matsuno J, Hosoya M, Furuta M, et al. A3-GS/s5-bit flash ADC with wideband inputbuffer amplifier. International Symposium on VLSI Design, Automation, and Test(VLSI-DAT).2013.1-4.
    [2.5] Chu M H.60Gs/s analog-to-digital conversion in SiGe HBT Technology. New York:Rensselaer Polytechnic Institute.2009.15-16.
    [2.6] Wong S S, Chio U F, Zhu Y, et al. A2.3mW10-bit170MS/s two-step binary-searchassisted time-interleaved SAR ADC. IEEE Journal of Solid-State Circuits.2013,48(8).1783-1794.
    [2.7] Payne R, Corsi M, Smith D, et al. A16-bit100to160MS/s SiGe BiCMOS pipelinedADC with100dBFS SFDR. IEEE Journal of Solid-State Circuits.2010,45(12).2613-2622.
    [2.8] Mesgarani A, Fu H P, Yan M, et al. A5-bit1.25GS/s4.7mW delay-based pipelinedADC in65nm CMOS. IEEE International Symposium on Circuits and Systems(ISCAS).2013.2018-2021.
    [2.9] Lee H, Miyahara M, Matsuzawa A. A12-bit interpolated pipeline ADC using bodyvoltage controlled amplifier. IEEE11th International New Circuits and SystemsConference (NEWCAS).2013.1-4.
    [2.10] Yuan J, Fung S W, Chan K Y, et al. An interpolation-based calibration architecture forpipeline ADC with nonlinear error. IEEE Transactions on Instrumentation andMeasurement.2012,61(1).17-25.
    [2.11] Harpe P J A, Büsze B, Philips K, et al. A0.47–1.6mW5-bit0.5–1GS/stime-interleaved SAR ADC for low-power UWB radios. IEEE Journal of Solid-StateCircuits.2012,47(7).1594-1602.
    [2.12] Ku I N, Xu Z W, Kuan Y C, et al. A40-mW7-bit2.2-GS/s time-interleavedsubranging CMOS ADC for low-power gigabit wireless communications. IEEEJournal of Solid-State Circuits.2012,47(8).1854-1865.
    [2.13] Kim H J, An T J, Myung S M, et al. Time-interleaved and circuit-shared dual-channel10b200MS/s0.18μm CMOS analog-to-digital convertor. IEEE Transactions onVery Large Scale Integration (VLSI) Systems.2013,21(12).2206-2213.
    [2.14] Razavi, B. Design considerations for interleaved ADCs. IEEE Journal of Solid-StateCircuits.2013,48(8).1806-1817.
    [2.15] Stepanovi D, Nikoli B. A2.8GS/s44.6mW time-interleaved ADC achieving50.9dB SNDR and3dB effective resolution bandwidth of1.5GHz in65nm CMOS. IEEEJournal of Solid-State Circuits.2013,48(4):971-982.
    [2.16] Ghetmiri S. An8-bit,12.5GS/s folding-interpolating analog-to-digital converter.Canada: University of Toronto.2009.
    [2.17] Razzaghi A. A single-channel10b l GS/s ADC with2-cycle latency using pipelinedcascaded folding architecture. USA: University of California.2008.
    [2.18] D’Amico S, Cocciolo G, Spagnolo A, et al. A7.65-mW5-bit90-nm1-Gs/s foldedinterpolated ADC without calibration. IEEE Transactions on Instrumentation andMeasurement.2014,63(2).295-303.
    [3.1] Vessal F. An8-bit2-Gsample/s folding-interpolating analog-to-digital converter forLMDS applications. Canada: University of Toronto.2004.
    [3.2] Patel M J. Design of a low voltage folding and interpolating analog-to-digital converteron a standard CMOS process. USA:Arizona State University.1999.
    [3.3]陈诚.千兆以太网中低电压高速模数转换器设计研究.上海:复旦大学.2005.
    [3.4] Flynn M P, Sheahan B. A400-Msample/s,6-b CMOS folding and interpolating ADC.IEEE Journal of Solid-State Circuits.1998,33(12).1932-1938.
    [3.5] Kimura H, Maysuzama A, Nakamura T, et al. A10b300MHz interpolated-paralleledA/D converter. IEEE Journal of Solid-State Circuits.1993,28(4).438-446.
    [3.6] Tsukamoto S, Schofield W G, Endo T. A CMOS6-b,400-Msample/s ADC with errorcorrection. IEEE Journal of Solid-State Circuits.1998,33(12).1939-1947.
    [3.7] Zojer B, Petschacher R, Luschnig W A. A6-bit/200-MHz full nyquist A/D converter.IEEE Journal of Solid-State Circuits.1985,20(3).780-786.
    [3.8] Bult K, Buchwald A. An embedded240-mW10-b50-Ms/s CMOS ADC in1mm2.IEEE Journal of Solid-State Circuits.1997,32(12).1887-1895.
    [3.9] Plassche R J, Baltus P. An8-bit100MHz full-nyquist analog-to-digital converter. IEEEJournal of Solid-State Circuits.1988,23(6).1334-1344.
    [3.10] Flynn M P, Allstot D J. CMOS folding A/D converters with current-mode interpolation.IEEE Journal of Solid-State Circuits.1996,31(9).1248-1257.
    [3.11] Venes A G W, Plassche R J. An80-MHz,80-mW,8-b CMOS folding A/D converterwith distributed track-and-hold preprocessing. IEEE Journal of Solid-State Circuits.1996,31(12).1846-1853.
    [4.1]吕红亮,张玉明,张义门.化合物半导体器件.北京:电子工业出版社.2009.47-55.
    [4.2] WIN公司网站: http://www.winfoundry.com/en_US/index.aspx.
    [4.3] McAndrew C C, Seitchik J A, Bowers D F, et al. VBIC95, The vertical bipolarinter-company model. IEEE Journal of Solid-State Circuits.1996,31(10).1476-1483.
    [4.4] Cao X, McMacken J, Stiles K, et al. Comparison of the new VBIC and conventionalgummel-poon bipolar transistor models. IEEE Transactions on Electron Devices.2000,42(2).427-433.
    [4.5] Cherepko S V, Hwang J C M. VBIC model applicability and extraction procedure forInGaP/GaAs HBT. Proc. Asia–Pacific Microwave Conf.2001.716-720.
    [4.6]葛霁,金智,苏永波,等.一种InP双异质结双极晶体管小信号物理模型及其提取方法.物理学报.2009,58(12).484-490.
    [4.7] Lee S. Effects of pad and interconnection parasitics on forward transit time in HBT’s.IEEE Transactions on Electron Devices.1999,46(2).275-280.
    [4.8] Olvera-Cervantes J L, Cressler J D, Medina-Monroy J L, et al. Anew analytical methodfor robust extraction of the small-signal equivalent circuit for SiGe HBTs operating atcryogenic temperatures. IEEE Transactions on Microwave Theory and Techniques.2008,56(3).568-574.
    [4.9] W. Liu. Handbook of III–V heterojunction bipolar transistors. New York: Wiley.1998.1088-1090.
    [4.10] Zhang H. On the design techniques to improve self-heating, linearity, efficiency andmismatch protection in broadband HBT power amplifiers. USA: University ofCalifornia.2006.33-37.
    [4.11] Lee K, Choi K, Kook S H, et al. Direct parameter extraction of SiGe HBTs for theVBIC bipolar compact model. IEEE Transactions on Electron Devices.2005,52(3).375-384.
    [4.12] Samelis A, Pavlidis D. DC to high-frequency HBT-model parameter evaluation usingimpedance block conditioned optimization. IEEE Transactions on Microwave Theoryand Techniques.1997,45(6).886-897.
    [4.13] Zhang S, Niu G, Cressler J D, et al. A comparison of the effects of gamma irradiationon SiGe HBT and GaAs HBT technologies. IEEE Transactions on Nuclear Science.2000,47(6).2521-2527.
    [4.14] Vuppala S, Li C S, Zwicknagl P, et al. Neutron, proton, and electron irradiationeffects in InGaP/GaAs single heterojunction bipolar transistors. IEEE Transactions onNuclear Science.2003,50(6):1846-1851.
    [4.15] Karthaus U, Sukumaran D, Tontisirin S, et al. Fully integrated39dBm,3-stagedoherty PA MMIC in a low-voltage GaAs HBT technology. IEEE Microwave andWireless Components Letters.2012,22(2).94-96.
    [4.16] Constantin N G, Zampardi P J, El-Gamal M N. Automatic hardware reconfigurationfor current reduction at low power in RFIC PAs. IEEE Transactions on MicrowaveTheory and Techniques.2011,59(6).1560-1570.
    [4.17] Yamamoto K, Kurusu H, Suzuki S, et al. High-directivity enhancement with passiveand active bypass circuit techniques for GaAs MMIC microstrip directional couplers.IEEE Transactions on Microwave Theory and Techniques.2011,59(12).3095-3107.
    [4.18] Díez S, Lozano M, Pellegrini G, et al. Proton radiation damage on SiGe:C HBTs andadditivity of ionization and displacement effects. IEEE Transactions on NuclearScience.2009,56(4).1931-1936.
    [4.19] Diestelhorst R M, Phillips S D, Appaswamy A, et al. Junction isolation single eventradiation hardening of a200GHz SiGe:C HBT technology without deep trenchisolation. IEEE Transactions on Nuclear Science.2009,56(6).3402-3407.
    [4.20] Uffelen M V, Geboers S, Leroux P, et al. Spice modelling of a discrete COTS SiGeHBT for digital applications up to MGy dose levels. IEEE Transactions on NuclearScience.2006,53(4).1945-1949.
    [4.21] Montagner X, Fouillat P, Briand R, et al. Implementation of total dose effects in thebipolar junction transistor gummel-poon model. IEEE Transactions on NuclearScience.1997,44(6).1922-1929.
    [4.22] Montagner X, Briand R, Fouillat P, et al. Dose-rate and irradiation temperaturedependence of BJT spice model rad-parameters. IEEE Transactions on NuclearScience.1998,45(3).1431-1437.
    [4.23] Sarkar A, Subramanian S, Goodnick S M. Electron irradiation effects in AlGaAs/GaAssingle heterojunction bipolar transistors. IEEE Transactions on Electron Devices.2000,47(11).2024-2030.
    [4.24] Bandyopadhyay A, Subramanian S, Chandrasekhar S. et al. Degradation ofInGaAs/InP double heterojunction bipolar transistors under electron irradiation. IEEETransactions on Electron Devices.1999,46(5).850-858.
    [4.25] Yang Shi, Lu Hongliang, Zhang Yuming, et al. The effects of gamma irradiation onGaAs HBT. IEEE International Conference on Electron Devices and Solid-StateCircuits (EDSSC). Tianjin,2011.1-2.
    [5.1] Nayebi M, Wooley B A. A10-bit video BiCMOS track-and-hold amplifier. IEEEJournal of Solid-State Circuits.1989,24(6).1507-1516.
    [5.2] Li X, Kuo W M L, Cressler J D. A40GS/s SiGe track-and-hold amplifier. IEEEBipolar/BiCMOS Circuits and Technology Meeting (BCTM).2008.1-4.
    [5.3] Bouvier Y, Ouslimani A, Konczykowska A, et al. A1-Gsample/s,15-GHz inputbandwidth master-slave track-and-hold amplifier in InP DHBT technology. IEEETransactions on Microwave Theory and Techniques.2009,57(12).3181-3187.
    [5.4] Shahramian S, Carusone AC, Voinigescu S P. Design methodology for a40-Gsamples/strack and hold amplifier in0.18-μm SiGe BiCMOS technology. IEEE Journal ofSolid-State Circuits.2006,41(10).2233-2240.
    [5.5] Bouvier Y, Ouslimani A, Konczykowska A, et al. A40GSamples/s InP-DHBTtrack-and-hold amplifier with high dynamic range and large bandwidth. IEEE, IETInternational Symposium on Communication Systems, Networks and Digital SignalProcessing.2012.1-4.
    [5.6] Vorenkamp P, Verdaasdonk J P M. Fully bipolar,120-Msample/s10-b track-and-holdcircuit. IEEE Journal of Solid-State Circuits.1992,27(7).988-992.
    [5.7] Fung Q, Fomani A A, Feng F, et al. Design of a2-GS ample/s Track-and-HoldAmplifier implemented in a60-GHz SiGe BiCMOS Process. IEEE InternationalConference on Electron Devices and Solid-State Circuits (EDSSC).2007.937-940.
    [5.8] Karanicolas A N. A2.7-V300-MS/s track-and-hold amplifier. IEEE Journal ofSolid-State Circuits.1997,32(12).1961-1967.
    [5.9] Razavi B. Principles of data conversion system design. IEEE press.1995.
    [5.10] Lee J, Roux P, Koc U V, et al. A5-b10-Gsample/s A/D converter for10-Gb/s opticalreceivers. IEEE Journal of Solid-State Circuits.2004,39(10).1671-1679.
    [5.11] Lee J, Leven A, Weiner J S, et al. A6-b12-Gsamples/s track-and-hold amplifier in InPDHBT technology. IEEE Journal of Solid-State Circuits.2003,38(9).1533-1539.
    [5.12] Boni A, Parenti M, Vecchi D. Low-power GS/s track-and-hold with10-b resolution atnyquist in SiGe BiCMOS. IEEE Transactions on Circuits and Systems-II: ExpressBriefs.2006,53(6).429-433.
    [5.13] Yamanaka S, Sano K, Murata K. A20-Gs/s track-and-hold amplifier in InP HBTtechnology. IEEE Transactions on Microwave Theory and Techniques.2010,58(9).2334-2339.
    [5.14] Ghetmiri S, Salama C A T. Track-and-hold and comparator for a12.5GS/s,8bit ADC.IEEE International Midwest Symposium on Circuits and Systems (MWSCAS).2009.353-356.
    [5.15] Razzaghi A, Chang M C F. A10-b,1-GSample/s track-and-hold amplifier using SiGeBiCMOS technology. IEEE Custom Integrated Circuits Conference.2003.433-436.
    [5.16] An W, Salama A T. An8-bit,1-Gsample/s folding-interpolating analog-to-digitalconverter. Proceedings of the26rd Solid-State Circuits Conference.2000.228-231.
    [5.17] Digel J, Gr zing M, Berroth M, et al. High-speed comparators for SAR ADCs in130nm BiCMOS. Conference on Ph.D. Research in Microelectronics and Electronics(PRIME).2010.1-4.
    [5.18] Henderson T S, Taddiken A H, Kao Y C. An InAlAs/InGaAs heterojunction bipolartransistor clocked latch on InP. IEEE Transactions on Electron Devices.1990,37(6).1537-1539.
    [5.19] Kraus S, Kallfass I, Makon R E, et al. A20-GHz bipolar latched comparator withimproved sensitivity implemented in InP HBT technology. IEEE Transactions onMicrowave Theory and Techniques.2011,59(3).707-715.
    [5.20] Yin K, Meng Q, Tang K, et al. A20GS/s low-power BiCMOS comparator using anactive inductor load. International High Speed Intelligent Communication Forum(HSIC).2012.1-4.
    [5.21] Jensen J C, Larson L E. A16-GHz ultra-high-speed Si-SiGe HBT comparator. IEEEJournal of Solid-State Circuits.2003,38(9).1584-1589.
    [5.22] Li X, Kuo W M L, Lu Y, et al. A7-bit,18GHz SiGe HBT comparator for mediumresolution A/D conversion. IEEE Bipolar/BiCMOS Circuits and Technology Meeting(BCTM).2005.144-147.
    [5.23] Kuo W M L, Li X, Krithivasan R, et al. A32GSample/sec SiGe HBT comparator forultra-high-speed analog-to-digital conversion. Asia Pacific MicrowaveConference Proceedings (APMC).2005.1-4.
    [5.24] Kishine K, Ishii K, Ichino H. Loop-parameter optimization of a PLL for a low-jitter2.5-Gb/s one-chip optical receiver IC with1:8DEMUX. IEEE Journal of Solid-StateCircuits.2002,37(1).38-50.
    [5.25] Reinhold M, Dorschky C, Rose E, et al. A fully integrated40-Gb/s clock and datarecovery IC with1:4DEMUX in SiGe technology. IEEE Journal of Solid-StateCircuits.2001,36(12).1937-1945.
    [5.26] Chalvatzis T, Gagnon E, Repeta M, et al. A low-noise40-GS/s continuous-timebandpass△Σ ADC centered at2GHz for direct sampling receivers. IEEE Journal ofSolid-State Circuits.2007,42(5).1065-1075.
    [6.1] Bae B, Cho J, Kim J. On-chip design techniques for reducing power supply noiseeffects on ADC with chip-PCB hierarchical structure. IEEE International Symposiumon Electromagnetic Compatibility (EMC).2012.549-553.
    [6.2] Harpe P, Cantatore E, Roermund A V. A10b/12b40kS/s SAR ADC with data-drivennoise reduction achieving up to10.1b ENOB at2.2fJ/conversion-step. IEEE Journal ofSolid-State Circuits.2013,48(12).3011-3018.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700