不同蔬菜吸收积累镉的差异研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤重金属污染是土壤环境科学研究的重点领域,随着工业化、城镇化、农业和养殖业的发展,土壤重金属污染状况日益严重,我国受镉等重金属污染的耕地面积近2.0 107公顷。蔬菜是日常食用量较大的一类农作物,土壤镉污染以及由此引起的蔬菜污染,越来越受到人们关注。由于中国人口众多,耕地面积逐渐减少,食物生产的压力很大,污染土壤休耕进行修复再投入生产利用并不现实,有针对性的修复工作只能在局部展开。因此,有必要探寻有效途径,尽快降低因土壤重金属含量过高而引起农产品污染的风险,实现污染土地的安全与高效的农业利用。
     本试验采用温室盆栽土培试验技术,以常见的28种蔬菜为试验对象,研究了土壤不同程度Cd胁迫下,常见蔬菜对土壤外源Cd的吸收差异性,对吸收积累较低的架豆、豇豆、西葫芦、苦瓜和黄瓜5个种类的共23个品种和变种进行试验,研究蔬菜品种之间Cd吸收的差异性。为无公害蔬菜生产和污染土壤改良以及无公害蔬菜基地的发展规划提供科学依据,也为污染农田的安全生产模式和可持续发展提供理论支持。主要结果如下:
     (1)在研究土壤Cd污染对蔬菜生物性状的影响试验中,发现蔬菜在1 mg kg~(-1)、2 mg kg~(-1)轻微Cd污染土壤,室内盆栽条件下,同一种蔬菜地上部的干物质的累积、株高、茎粗、叶片数、叶片的大小变化不显著,没有出现明显的受害症状。(2)在筛选无公害蔬菜研究中,28种常见蔬菜除1 mg kg~(-1)镉胁迫下的甜豌豆、苦瓜和2 mg kg~(-1)镉胁迫下的甜豌豆之外,所有蔬菜均超出我国无公害食品标准。23个蔬菜品种,两个浓度Cd胁迫下,华比架豆王的Cd浓度均低于国家食品卫生标准(蔬菜中Cd的最高限量标准:0.05 mg kg~(-1));1 mg kg~(-1)浓度胁迫下,超级四季豆、大白苦瓜、常绿苦瓜、特育长白苦瓜、种都4号也低于蔬菜中Cd的最高限量标准,其他蔬菜均超标。
     (3)通过对不同蔬菜种类对Cd的吸收能力的试验,发现叶菜类和茄果类的富集能力最强,其次为根茎类、葱蒜类、瓜类、豆类。不同种类的蔬菜对镉的吸收均随土壤Cd浓度的升高而增大,但是不呈现正比列关系。多数蔬菜随土壤Cd浓度的升高吸收放缓。架豆中镉的浓度范围是0.0266~0.0782 mg kg~(-1),苦瓜0.0271~0.0513 mg kg~(-1),豇豆0.0500~0.0882 mg kg~(-1),西葫芦0.0958~0.158 mg kg~(-1),黄瓜0.101~0.173 mg/kg;2 mg kg~(-1)胁迫下,架豆中镉的浓度范围是0.0488~0.0990 mg kg~(-1),苦瓜0.0847~0.146 mg kg~(-1),豇豆0.108~0.143 mg kg~(-1),西葫芦0.163~0.253 mg kg~(-1),黄瓜0.118~0.205 mg kg~(-1)。
     (4)通过对不同品种蔬菜对Cd的吸收能力的试验,发现试验选取的5个蔬菜的23个品种中,架豆和苦瓜是Cd富集能力相对较小的蔬菜品种,黄瓜和西葫芦的富集能力较强。两个土壤Cd浓度胁迫下架豆品种,吸收最高和最低的品种Cd含量相差2~3倍,苦瓜品种吸收最高和最低相差2倍,豇豆品种相差一倍,黄瓜相差1.7倍,西葫芦相差1.6倍。同一个蔬菜的不同品种,其富集系数变化趋势也较大差异,但随土壤Cd浓度增大,蔬菜富集系数均减小。
Heavy metal contaminant is the key research field in soil and environment science. With the development of industrialization, urbanization, agriculture and aquaculture, heavy metal contamination in the soil becomes increasingly serious. About 2.0 107 ha of plowland was contaminated by heavy metal in China. The pollution of soil caused by Cd attracts more and more attention of scientists. But According to the reality of huge stress of food caused by large population and decreasing farmland, it is not feasible to stop to remediate contaminated soil and reuse. Targeted remediation can be put in practice merely in some areas. Thus, it’s necessary to seek effective approach to control pollution of agricultural products which contaminated by heavy metals in soil, and insure safe and efficient performance of contaminated soil.
     In this experiment, the glasshouse pot experiment was used to study the influence of two degrees Cd to 28 usual vegetables’growth, and differences of absorption and accumulation of cadmium. Meanwhile, different accumulation abilities of 5 vegetable varieties of Cd were researched. The purpose of the research was to screen out low accumulators, provide theoretical support to model of safety production and sustainable development. This experimental goal was providing scientific basis for the non-environmental pollution vegetables production and the pollution soil improvement as well as the non-environmental pollution vegetables base development plan. The potted experiment results show that:
     (1) During research of the influence of Cd to vegetables’growth, we found there is no significant difference between the same vegetable through potted experiment when grown in contaminated soil by 1 mg kg~(-1)and 2 mg kg~(-1) Cd. No obvious injured symptom was observed.
     (2) Through the experiment of screening uncontaminated food standard, we could concluded that except sweet pea under 2 concentrations exposures and bitter melon under 1 mg kg~(-1) exposure, the concentrations of Cd in vegetables’body all went beyond the limit of uncontaminated food standard. Huabijiadouwang under 2 concentrations exposures, chaojisijidou, dabaikugua, changlvkugua, teyuchangbaikukua, zhongdusihao under 1 mg kg~(-1) exposure all conformed to the uncontaminated food standard.
     (3) According to the experiment of differences of absorption abilities of Cd by vegetables, it could be concluded that different vegetables had different accumulation abilities for Cd. Leafy vegetables and solanaceous vegetables had the strongest ability of uptake Cd from soil. The abilities of uptake Cd were weakening followed the order: root vegetables, scallions, gourds, legumes. With the increase of Cd concentrations in soil, the concentration in vegetables showed an increasing trend as a whole, but not proportionable. Absorption abilities of most vegetables slowed down with the increase of Cd concentrations in soil. Under 1 mg kg~(-1) Cd exposure, concentrations of Cd in legume was in a range of 0.0266~0.0782 mg kg~(-1), bitter melon 0.0271~0.0513 mg kg~(-1), vigna unguiculata 0.0500~0.0882 mg kg~(-1), summer squash 0.0958~0.158 mg kg~(-1), cucumber 0.101~0.173 mg/kg. Under 2 mg kg~(-1) Cd exposure, concentrations of Cd in legume was in a range of 0.0488~0.0990 mg kg~(-1), bitter melon 0.0847~0.146 mg kg~(-1), vigna unguiculata 0.108~0.143 mg kg~(-1), summer squash 0.163~0.253 mg kg~(-1), cucumber 0.118~0.205 mg kg~(-1).
     (4) According to the experiment of differences of absorption abilities of Cd by vegetable varieties, between 23 vegetables varieties, legume and bitter melon were lower accumulators, while accumulation abilities of cucumber and summer squash were much higher. Under 2 degrees of Cd exposure, the concentrations among legume varieties had 2~3 times difference, bitter melon 2 times, vigna unguiculata 1 time, cucumber 1.7 times, summer squash 1.6. The enriching factors among different vegetable varieties had obvious difference. With the increase of Cd concentration in soil, the enriching factors reduced.
引文
[1] Zhou WB, Qiu BS. Effects of cadmium hyperaccumulation on physiological characteristics of Sedum alfredii Hance (Crassulaceae), Plant Science, 2005, 169:737-745.
    [2]祖艳群,李元.土壤重金属污染的植物修复技术[J].云南环境科学,2003,22(增刊):58-61
    [3]顺继光,周启星,王新.土壤重金属污染的治理途径及其研究进展[J].应用基础与工程科学学报,2003,11(2):143-151
    [4]韦朝阳,陈同斌.重金属超富集植物及植物修复技术研究进展[J].生态学报,2001,21(7):1197-1 203
    [5]孙波.基于空间变异分析的土壤重金属复合污染研究[J].农业环境科学报,2003,22(2):248- 251
    [6]高翔云,汤志云,李建和,王力.国内土壤环境污染现状与防治措施[J].环境保护,2006,2: 50-53
    [7] Simon L. Cadmium accumulation and distribution in sunflower plant. Journal of Plant Nutrition, 1998, 21(2):341-352.
    [8] Moreno-Caselles J, Moral R, Perez-Espinosa A, Perez-Mureia MD. Cadmium accumulation and distribution in cucumber plant. Journal of Plant Nutrition, 2000, 23(2):243-250
    [9] Wei SH, Zhou QX, Kovl PV. Flowering stage characteristics of Cadmium hyperaccumulator Solanum nigrum L and their significance to phytoremediation. Science of the Total Environment, 2006, 369:441-446
    [10]杜应琼,何江华,陈俊坚,魏秀国,杨秀琴,王少毅,何文彪.铅、镉和铬在叶类蔬菜中的积累及对其生长的影响[J].园艺学报,2003,30(l):51-55
    [11]吴燕玉,周启星,田均良.制定我国土壤环境标准(汞镉铅和砷)的探讨[J].应用生态学报,1991,2(4):334-349
    [12]陈怀满.土壤-植物系统中的重金属污染[M].北京:科学出版社,1996,115-125
    [13]周卫,汪洪,李春花,林葆.添加碳酸钙对土壤中镉形态转化与玉米叶片镉组分的影响[J].土壤学报,2001,38(2):219-225
    [14]张亚丽,沈其荣,姜洋.有机肥料对Cd污染土壤的改良效应[J].土壤学报,2001,38(2):212-218
    [15]刘发欣,高怀友,伍钧.镉的食物链迁移及其污染防治对策研究[J].农业环境科学学报,2006,25(增刊):805-809
    [16]陈怀满.土壤圈物质循环系列专著:土壤-植物系统中的重金属污染[M].北京:科学出版社,1996,71-125.
    [17] McGrath SP, Lombi E, Gray CW, Caille N, Dubham SJ, Zhao FJ. Field evaluation of Cd and Zn phytoextracton potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environmental Pollution, 2006, 141:115-125.
    [18]王俊,张义生.化学污染物与生态效应[M].北京:中国环境科学出版社.1993.51-58
    [19]赵中秋,朱永官,蔡运龙.镉在土壤-植物系统中的迁移转化及其影响因素[J].生态环境.2005,l4(2):282-286
    [20]孟凡乔,史雅娟,吴文良.我国无污染农产品重(类)金属元素土壤环境质量标准的制定与研究进展[J].农业环境保护,2000,19(6):356-359
    [21]吴燕玉,李彤,谭方,等.辽河平原土壤背景值区域特征及分布规律[J].环境科学学报,1986,6(4):420-433
    [22]陈同斌,郑袁明,陈煌等.北京市土壤重金属含量背景值的系统研究[J].环境科学,2004,25(l):ll7-122
    [23] Fergusson JE. The heavy elements:Chemistry, environmental impact and health effects[M]. .Pergamon Press.1990.210-231, 340-350
    [24]何振立,周启星,谢正苗.污染及有益元素的土壤化学平衡[M].北京:中国环境科学出版社.1998
    [25] Ivonin, VM. Shumakova, GE. Effect of industrial pollution on the condition of roadside shelterbelts [J]. Izvestiya Vysshikh Uchebnykh Zavedenii Lesnoi Zhurnal.1991, (6):12-17
    [26] Arthur B, Crews H, Morgan C. Optimizing plant genetic strategies for minimizing environmental contamination in the food chain. International Journal of Phytoremediation 2000, 2(1) :1-21
    [27]许嘉琳,杨居荣(编著).陆地生态系统中的重金属[M].北京.中国环境科学出版社.1995
    [28]喻保能,丁中元,陈厚民.用土砖研究土壤重金属背景值及其污染历史[J].环境科学,1983,4(l):46-49
    [29]刘英俊等编.元素地球化学[M].北京:科学出版社,1984
    [30]李森照,罗金发.中国污水灌溉与环境质量控制[M].北京:气象出版社.1995
    [31]陈涛,吴燕玉,张学询,孔庆新.张士灌区镉土改良和水稻镉污染防治研究[J].环境科学,1980,(5):7-11
    [32]吴燕玉,陈涛,孔庆新,谭方,张素纯.张士灌区镉污染及其改良途径[J].环境科学学报,1984,4(3):275-283
    [33]吴燕玉,孔庆新,代同顺.沈阳污水灌区中Cd及其它重金属的污染[J].土壤通报,1980,(l):4-7
    [34]吴双桃.镉污染土壤治理的研究进展[J].广东化工,2005,4:40-42
    [35]鲁如坤等.我国磷矿磷肥中镉含量及其生态环境影响评价[J].土壤学报. 1992,23(2):150-157
    [36] Roberts AHC, Longhurst RD, Brown MW. Cadmium status of soils, Plant and grazing animals in New Zealand. NZJ Agric Res, 1994,37:119-129
    [37] Williams CH, David DJ. The accumulation in soil of cadmium residues from phosphate fertilizers and their effect on the cadmium content of plants. Soil Sci. 1976, 121:86-93
    [38] Alloway BJ. Heavy Metal in Soils. Blackie, Glasgow and London.1990.
    [39]刘杰.镉的毒性和毒理学研究进展[J],中华劳动卫生职业病杂志.1998,16(l):2-4
    [40]唐宜,李雄信.镉队男性生殖系统的影响[J].重庆医科大学学报,1989,14(4):343-347
    [41]黄会一,蒋德明等.木本植物对土壤中镉的吸取、积累和耐性[J].中国环境科学,1989,9(5):323-330
    [42]任继凯,陈清郎,陈灵芝,土壤中镉、铅、锌及其相互作用对作物的影响[J].植物生态学与地植物学丛刊,1982,6(4):320-329
    [43] Haghiri F.1973,Cadmium uptake by plants. J Environ.Qual.2: 93-96
    [44] Khan DH, Ducket JG, Frankland B, Kirkham JB. 1984. An x-ray microanalytical study of the distribution of cadmium in roots of Zea mays L.J. Plant Physiol.115:19-28
    [45]夏增禄.中国土壤环境容量[M],北京:地震出版社. 1992
    [46]王凯荣,龚惠群.两种基因型水稻对环境镉吸收与再分配差异性比较研究[J].农业环境科学保护. 1996,15(4):145-149,176
    [47]李元.镉、铁及其复合污染对烟草叶片几项生理指标的影响[J].生态学报,1992,12(2):147-153
    [48] Greger M, Lindberg S. Effect of Cd2+ and EDTA on young anger beets(beta vulgaris)I. Cd2+ uptake and suger accumulation[J]. Physiol Plant, 1986, 66:69-74
    [49]方学智,朱祝军,孙光闻.不同浓度Cd对小白菜生长及抗氧化系统的影响[J].农业环境科学学报,2004,23(5):877-880
    [50]李元,王焕校,吴玉树等.Cd、Fe及复合污染对烟草叶片几项生理指标的影响[J].生态学报. 1992,12(2):147-153
    [51]余国莹,吴玉树等.不同化合形态镉、锌及其复合污染对小麦生理的影响[J].生态学报. 1992,12(1):93-96
    [52] Alcantara E, Romera FG, Canete M, De La Guardia MD. Effects of heavy metals on both induction and function of root Fe (Ⅲ) reductase in Fe-deficient cucumber(Cucumis sativus L)plants. J. Exp .Bot. 1994,45 :1893-1898
    [53] Larsson EH, Bornman JF, Asp H. Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus. J Exp.Bot. 1998,49 :1031-1039
    [54]彭鸣,王焕校等.镉和铅诱导的玉米(Zea mays L)幼苗细胞超微结构的变化[J].中国环境科学1991,11(6):426-431
    [55]李坤权,刘建国,陆小龙等.水稻不同品种对镉吸收及分配的差异[J].农业环境科学学报. 2003,22(5),529-532
    [56] Baszynski T. The influence of lead and cadmium on the absorption and distribution of potassium, calcium, magnesium and ion in cucumber seedlings. Acta. Physioloyiae plantarum. 1987,9(4):229-238
    [57]杨丹慧,许春晖等.镉离子对菠菜叶绿体光系统Ⅱ的影响[J].植物学报. 1989,31(9):702-707
    [58] Chria R, Marc V H, Dirk I, Superoxide dismutase and stress tolerance[J]. Annu Rev Plant physiol Plant Mol Biol, 1992, 43:83
    [59]郭秀璞,孔祥生,张妙霞等.锌对小麦镉毒害的缓解效应[J].河南农业大学学报,1999,33(2):211-214
    [60]徐秋曼,陈宏,程景胜等.镉对油菜叶细胞膜的损伤及细胞自身保护机制初探[J].农业环境保护,2001,20(4):235-237
    [61] Huang CY, Bazzaz FA. The inhibition of soybean metabolism by cadmium and lead. Plant physiol. 1974,54 :122-124
    [62]孙赛初,王焕校等.水生维管束植受镉污染后的生理变化及受害机制初探[J].植物生理学报. 1985,11(2):113-121
    [63]洪仁远,蒲长辉.镉对小麦幼苗的生长和生理生化反应的影响[J].华北农学报. 1991,6(3): 70-7
    [64]段吕群,王焕校等.重金属对蚕豆(Vicia faba)根尖的核酸含量及核酸酶活性影响的研究[J].环境科学. 1992,13(5):31-35
    [65] Burzynski M. Activity of some enzymes involved in NO3- assimilation in cucumber seedlings treated with lead or cadmium. Acta. Physioloyiae plantarum.1990,12 (2):105-116
    [66]陈朝明,龚惠群等. Cd对桑叶品质生理生化特性的影响及其机理研究[J].应用生态学报. 1996,7(4):417-423
    [67]罗立新,孙铁珩等.镉胁迫对小麦叶片细胞膜脂过氧化的影响[J].中国环境科学. 1998,18(1):72-75
    [68]杨居荣,贺建群等. Cd污染对植物生理生化的影响.农业环境保护. 1995,14(5):193-197
    [69]许嘉琳,杨居荣.陆地生态系统中的重金属[M].北京:中国环境科学出版社. 1995.431-432
    [70]王焕校.污染生态学基础[M].云南:云南大学出版社. 1990.71-148
    [71]秦天才,吴玉树等.镉、铅及其相互作用对小白菜生理生化特性的影响[J].生态学报. 1994,14( 1):46-50
    [72] Burzynski M. Activity of some enzymes involved in NO3- assimilation in cucumber seedlings treated with lead or cadmium. Acta.Physioloyiae plantarum.12(2):105-116
    [73]杨明杰,林咸永,杨肖娥. Cd对不同种类植物生长和养分积累的影响[J].应用生态学报. 1998,9 (1):89-94
    [74]杨居荣,久保井彻.镉、铜对植物细胞的毒性及元素吸收特性的影响[J].环境科学学报,1991,11(3) :381-386.
    [75]洪仁远,蒲长辉.镉对小麦幼苗的生长和生理生化反应的影响[J].华北农学报. 1991,6(3):70 -75
    [76]李元,王焕校,吴玉树等.Cd、Fe及复合污染对烟草叶片几项生理指标的影响[J].生态学报. 1992,12(2):147-153
    [77] Reddy G, Prasad MNV. Cadmium induced protein phisphorilation changes in rice(Oryzasativa L.)seedlings.J. plant physiol. 1995, 145:67-70
    [78]王焕校.污染生态学基础.云南:云南大学出版社. 1990.71-148
    [79]杨居荣,贺建群等. Cd污染对植物生理生化的影响[J].农业环境保护. 1995,14 (5):193-197
    [80] Verkleij JAC, Koevoets P.1990. Poly(γ-glutamylcysteinyl)glucines or phytochelatins and their role in cadmium tolerance of Silene vulgaris. Plant cell enviornment.13:913-921.
    [81] Baker AJM. Metaltolerance. New Physiol. , 1987,106(suppl):93-11
    [82]何勇强,陶勤南,广濑和久,小火田仁.镉胁迫下大豆中镉与几种微量元素的分布状况[J].浙江大学学报(农业与生命科学版),2000,26(2):155-156
    [83] Salt DE, Prince RC, Pickring IJ, et al.Mechanism of cadmium mobility and accumulation in Indian mustard. Plant Physiol. , 1995, 109:1427-1433
    [84]张玉秀,蔡国耀.植物耐重金属机理研究进展[J].植物学报,1999,41(5):453-457
    [85]娄来清,沈振国.金属硫蛋白和植物螯合肽在植物重金属耐性中的作用[J].生物学杂志,2001,18(3):1-4
    [86]杨志敏,郑绍建,胡霭堂.不同磷水平和介质pH对玉米和小麦Cd积累的影响[J].南京农业大学学报,1999,22(l):46-50
    [87] Casterlin JL, Bamett NM. Isolation and characterization of cadmium-binding components in soybean plant. Plant Physiol. , 1977, 59(suppl):124
    [88] Grill E, Winnacker RL, Zenk MH. Phytochelatins: the principal heavy metal complexing peptides of higher plants.Science. 1985,230:674-676
    [89] Huang B, Hatch E, Goldsbrough PB. Selection and characterization of cadmium tolerance cells in tomato. Plants Science. 1987,52:211-221
    [90] Strasdeit H, Duhme AK, Kneer R, Zenk MH, Hermes C, Nolting HF. Evidence for discrete Cd(Scys)4 units in cadmium phytochelatin complexes from EXAFS spectroscopy. Journal of chemistry society and chemistry communication. 1991,16:1129-1130.
    [91] Gekeler W, Grill E, et al. Survey of plant kingdom for the ability to bind heavy metals through phytochelatins[J].Z. Zanurforsch. 1989,44c.361-369
    [92] Grill E, Winnacker EL, Zenk MH. Phytochelatins, a class of heavy metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc. Natl acad. Sci USA. 1987,84:439-443
    [93] Strasdeit H, Duhme AK, Kneer R, Zenk MH, Hermes C, Notting HF. Evidence for discrete Cd(Scys)4 units in cadmium phytochelatin complexes from EXAFS spectroscopy. Journal of chemistry society and chemistry communication. 1991,16:11 29-1130.
    [94] Klapheck S, Fliegner W, Zimmer I. Hydroxylmethyl-phytochelatins[γ-(Glu-Cys)n-Ser] are metal induced peptides of the Poacea. Plant physiology.1994,104:1325-1332
    [95] Gupta M, Tripathi RC, Rai UN, Chandra P. Role of glutathione and phytochelatin in Hydrilla verticillata(1.f.) Royle and Vallisneria spiralis L. Under mercury stress. Chemosphere. 1998,37(4):785-800.
    [96]李文学,陈同斌.超富积植物吸收富集重金属的生理和分子生物学机制[J].应用生态学报,2003,14(4):627-631
    [97]张敬锁,李花粉,张福锁,姚广伟.不同形态氮素对水稻体内镉形态的影响[J].中国农业大学学报,1998,3(5):90-94
    [98]顾继光,周启星,王新.土壤重金属污染的治理途径及其研究进展[J].应用基础与工程科学学报,2003,11(2):143-151
    [99]李惠英.镉污染土壤的植物修复技术[J].污染防治技术.1999,12(2):82-83
    [100]华珞,陈承慈,刘全义.土壤污染的治理方法研究[J].农业工程学报.1992,8:90-99
    [101]姚会敏,杜婷婷,苏德纯.不同品种芸薹属蔬菜吸收累积镉的差异[J].中国农学通报,2006(1):301-304
    [102]何炎森,李瑞美.甘蔗耐镉性初探[J].甘蔗,2003,10(l):12-15
    [103]王焕校.污染生态学[M].高教出版社,2000,18-19.
    [104]李贞霞,任秀娟,孙涌栋,南瓜对镉的吸收积累特性研究[J].生态科学,2006,5:41-43.
    [105]何勇强,陶勤南,广濑和久等.镉胁迫下大豆中镉与几种微量元素的分布状况[J].浙江大学学报(农业与生命科学版),2000,26(2):155-156.
    [106]吴启堂,陈卢,王文寿.水稻不同品种对Cd吸收累积的差异和机理研究[J].生态学报,1999,19(1):104-107
    [107]张金彪,黄维南,柯玉琴.草莓对镉的吸收积累特性及调控研究[J].园艺学报,2003,30(5):514-518
    [108]李贞霞,任秀娟,孙涌栋,南瓜对镉的吸收积累特性研究[J].生态科学,2006,5:41-43.
    [109]肖美秀,林文雄,陈祥旭.镉在水稻体内的分配规律与水稻镉耐性的关系[J].中国农学通报,2006,2:389-391.
    [110]何炎森,李瑞美.甘蔗耐镉性初探[J].甘蔗,2003,10(l):12-15.
    [111] Bezel V. The structure of dandelion cenopopulation and specific features of heavy metal accumulation[J].Russian Journal of Ecology,1998,29(5):331-337.
    [112]周青,黄晓华,施国新等.镉对5种常绿树木若干生理生化特性的影响[J].环境科学研究,2001,14(3):9-11.
    [113]郑爱珍,刘传平,沈振国.镉对白菜、青菜生长的影响[J].北方园艺,2005(2):42-43.
    [114]李汉卿等.环境污染与生物[M].第一版.哈尔滨,黑龙江科技出版社,1985.301-305.
    [115]计时华.镉污染区蔬菜维生素C含量的测定[J].上海环境科学,1991,10(12):26-27
    [116]王春春,沈振国.镉在植物内的积累及其对绿豆幼苗生长的影响[J].南京农业大学学报,2001,24(4):9-13
    [117]朱芳,方炜,杨中艺.番茄吸收和积累Cd能力的品种间差异[J].生态学报,2006(12):157-167.
    [118]王凯荣,龚惠群.不同生育期镉胁迫对两种水稻的生长、镉吸收及糙米镉含量的影响[J].生态学报,2006,06:71-77
    [119]李德明,朱祝军.镉在不同品种小白菜中的亚细胞分布[J].科技通报,2004,20(4):278-282
    [120]吴启堂,王广寿,谭秀芳等.不同水稻、菜心基因型和化肥形态对作物吸收累积镉的影响[J].华南农业大学学报,1994,15(4):1-6.
    [121]杨居荣,贺建群,黄翌等.农作物Cd耐性的种内和种间差异Ⅱ.种内差[J].应用生态学报,1995,6(增):132-136
    [122]杨居荣,贺建群,张国祥等.农作物对Cd毒害的耐性机理探讨[J].应用生态学报,1995,6(1):87-91
    [123]刘敏超,李花粉,夏立江等.不同基因型水稻吸镉差异及其与根表铁氧化物胶膜的关系[J].环境科学学报,2000,20(5):593-596
    [124]文秋红,于丽华.玉米自交系富集镉能力和最佳收获时期[J].生态学报,2006(12):152-156.
    [125]王志坤,廖柏寒,黄运湘等.镉处理对大豆生物量及镉分布状况的影响[J].湖南农业大学学报(自然科学版),2006(6):88-91
    [126]周建利,陈同斌.我国城郊菜地土壤和蔬菜重金属污染研究现状与展望[J].湖北农学院学报,2002,22(5):476-480
    [127] Ciecko. Effect of organic matter and liming on the reduction of cadmium uptake from soil by triticale and spring oilseed pakchoi[J]. The Science of the Total Environment. 2001, 281(1-3):37-45
    [128]夏增禄.中国土壤环境容量[M].北京:地震出版社,1982:13-38
    [129] Satarug S. A global perspective on cadmium pollution and toxicity in non-occupationally exposed population[J]. Toxicology Letters. 2003, 137(1-2):65-83.
    [130]陈怀满.土壤-植物系统中的重金属污染[M].北京:科学出版社,1996:71-125
    [131]薛艳,沈振国,周东美.蔬菜对土壤重金属吸收的差异和机理[J].土壤,2005,37(1):32-36
    [132] Zarcinas BA, Cartwright B, Spouncer LR. Nitric acid digestion and multi-element analysis of plant material by inductively coupled plasma spectrometry. Commun. Soil Sci. Plant Anal. 1983, 18 (1):131-146
    [133]鲍士旦.土壤农化分析[M].3版.北京:中国农业出版社,2000:380-382
    [134] Pettersson O. Differences in cadmium uptake between plant species and cultivars. Swedish Journal of Agricultural Research , 1977,7:21-24
    [135] Dowdy RH, Larson WE. The availability of sludge-borne metals to various vegetables crops[J]. Environ. Qual.1975, 4:278-282

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700