两种蕨对Cd-Pb胁迫的生理响应和富集
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以Cd、Pb为胁迫因子,以中华短肠蕨(Allantodia chinensis (Bak.) Ching)和黑足鳞毛蕨(Dryopteris fuscipes C. Chr.)为试验材料,研究了Cd-Pb复合污染在不同浓度、时间对两种蕨生理指标的影响及重金属的累积情况。研究结果表明:
     (1)在Cd-Pb胁迫下,中华短肠蕨、黑足鳞毛蕨的外部形态发生一定变化,主要表现为:随浓度增大时间延长,叶片逐渐褪绿,甚至枯死,新生卷拳叶数量减少,生长缓慢。存在典型的剂量/效应和时间/效应关系。
     (2)对中华短肠蕨和黑足鳞毛蕨在胁迫下的生理指标分析表明,Cd-Pb胁迫使两种蕨的叶绿素含量明显降低,a/b升高。SOD、POD活性、GSH和ASA含量具有低浓度下的激活效应和高浓度下的抑制效应。从生理指标变化来看,中华短肠蕨生理抗性强于黑足鳞毛蕨。
     (3) Cd-Pb胁迫初期两种蕨细胞超微结构基本完整,胁迫浓度增大到1.2+1200mg/kg时,类囊体肿胀,膨大变形,片层结构不清楚,细胞壁扭曲变形,细胞器降解,细胞核结构受到破坏,核膜不清晰,质壁分离,有黑色物质沉积。
     (4)能谱元素测定发现,中华短肠蕨和黑足鳞毛蕨对Pb均有较强的富集能力,在一定浓度范围内,两种蕨中铅元素主要集中在羽叶和叶柄,部位累积能力是羽叶〉叶柄〉根,但当浓度增大到一定程度时,向上转运铅的能力减弱。二者均有作为植物修复物种的潜力。
This paper is about the effects of Cd-Pb stress on Allantodia chinensis (Bak.) Ching and Dryopteris fuscipes C. Chr.,focusing on physiological responses of two fern species to different metal concentration and stress time of. cadmium and lead, as well as their accumulation situation. The results showed:
     (1).Under Cd -Pb stress, external form of A. chinensis and D. fuscipes changed to certain extents.The chief performance was characterized by the following aspects. With increase of concentration and prolonging of time, leaves faded green gradually, even died. The number of sproutd young leaves decreased. Plant grew slowly. Typical relation of dose/effect and time/effect occurred for the two ferns.
     (2).Analysis of physiological indices of A. chinensis and D. fuscipes under Cd-Pb metal stress indicated that ,chlorophyll contents in the two ferns decreasd significantly, and chlorophyll a/b ratio rised. Metal stress had a positive effect in lower concentration and a negative one in higher concentration in the activities of Superoxide Dismutase (SOD) and Peroxidase(POD), as well as the contents of Glutathione (GSH) and Ascorbic Acid (ASA). We concluded that A. chinensis had stronger resistance to Cd -Pb stress than D. fuscipes based on physiological indices.
     (3). In the early stages of Cd-Pb stress, cell ultrastructure of the two ferns were complete and unwounded. When the concentration increase to 1.2+1200mg/kg, chloroplast deformed obviously, chloroplast thylakoids became indistinct, and cell wall distorted. Organelles were degraded, nucleolus structures destroyed, and nuclear membrane blurred. Cells were plasmolyzed, and some black substance deposited on the cell wall.
     (4).By means of SEM-EDX, we found that A. chinensis and D. fuscipes had strong ability to enrich lead. Within certain concentrations of metals, Lead in the two ferns mainly concentrated on leaves and petiole. It is also clear that the organ with maximum ability of metal accumulating was leaves, while the organ with minimum ability of metal accumulating was roots. When the concentrtion increased to certain extents, the transporting ability of lead was weak. The two ferns were potential material for phytoremediation.
引文
[1]阿衣木姑,阿布拉,苏力坦,阿巴白克力.蕨类植物及其综合利用价值[J].生物技术通讯,2006,17(3):480-482.
    [2]安志装,王校常,施卫明,等.重金属与营养元素交互作用的植物生理效应[J].土壤与环境,2002,11(4):392~396.
    [3]陈桂珠.重金属对黄瓜籽苗发育影响的研究.植物学通报,1990,7(1):34~39.
    [4]陈国祥,施国新.Hg、Cd对蔬菜越冬芽光合膜光合膜光合作用活性及多肽组分的影响[J].环境科学学报,1999,19(5):521-525.
    [5]陈愚,任长久等.镉对沉水植物硝酸还原酶和超氧化物歧化酶活性的影响[J].环境科学学报.1998,18(3):313-317.
    [6]陈朝明,龚慧群等.Cd对桑叶品质生理生化特性的影响及机理研究[J].应用生态学报,1996,7(4):417-423.
    [7]陈同斌,韦朝阳,黄泽春,等.华南的一些砷超富集植物种类[A].国际会议中关于土壤修复的研究进展[C].杭州: 2000,194-195.
    [8]代全林重金属对植物毒害机理的研究进展[J].亚热带农业研究,2006,5(2):110-112.
    [9]戴锡玲,李新国,张莹.药用蕨类植物资源研究极其开发利用[J].资源开发与市场, 2003,19(6): 397- 399.
    [10]段昌群,王焕校.Pb2+、Cd2+、Hg2+对蚕豆乳酸脱氢酶的影响[J].生态学报,1998,18(4):413-417.
    [11]丁海东,万延慧,齐乃敏,朱为民,杨晓峰,劭耀椿.重金属(Cd2+、Zn2+)胁迫对番茄幼苗抗氧化酶系统的影响[J].上海农业学报,2004,20(4):79-82.
    [12]孔祥生,张妙霞,郭秀璞. Cd2+毒害对玉米幼苗细胞膜透性及保护酶活性的影响[J ].农业环境保护,1999,18(3):133~134.9.
    [13]韩阳,李雪梅,朱延姝.环境污染与植物功能[M].化学工业出版社,2005,5.
    [14]范月仙,张述义,李生泉.棉花苗期抗冷性与可溶性蛋白质含量增加关系研究[J].山西农业大学学报.1995,15(1):56~58.
    [15]何翠屏.环境中重金属污染及其对植物生长发育的影响[J].青海草业,2004,13(2):26-29
    [16]何翠屏,王慧忠.植物根系对镉毒害的防御及其代谢[J].重庆环境科学,2003,11.
    [17]何翠屏,王慧忠.镉对草坪植物生长特性及生物量的影响[J].草业科学,2003,05,32~34.12.
    [18]郝怀庆,施国新,杜开和.镉污染对水鳖的毒害影响[J]·西北植物学报,2001,21(6):1237-1240.
    [19]黑淑梅,慕明涛.重金属致植物矿质营养元素代谢异常的生理效应[J].江西农业学报,2007,19(9):86~87.
    [20]黄长干,邱业先.植物对环境重金属污染的修复技术研究进展[J].江西农业大学学报,2003年10月第25卷第5期:666-680.
    [21]黄玉山,邱国华.紫茅抗铜和敏感品种在发育早期对铜离子反应的理差异[J].应用与环境生物学报,1998,4(2):126-131.
    [22]胡金朝,郑爱珍.重金属胁迫对植物细胞超微结构的损伤[J].商丘师范学院学报,2005,21(5):126-128.
    [23]蒋文智.重金属镉对叶绿体超微结构的影响[J].广西科学,1995,2(2):21-23,20.
    [24]季丽英,肖昕,冯启言.铅(Pb)和镉(Cd)对油菜幼苗的影响[J].现代农业科技,2006(3):48-49.
    [25]廖自基.环境中微量元素的污染危害与迁移转化[M].北京:科学出版社,1989.
    [26]罗广华,王爱国,邵从本等.高浓度氧对种子萌发和幼苗生长的伤害.植物生理学报,1987,13(2):161~167.
    [27]罗立新等.镉胁迫下小麦叶中超氧阴离子自由基的积累[J].环境科学学报,1998,18(5):495~499.
    [28]罗建平,顾月华,王圣兵,等.抗环血酸对沙打旺原生质体分离和培养中膜损伤及相关酶活性的影响[ J].植物生理学报,1999, 25(4): 343-349.
    [29]刘厚田,张维平,于业平,等.土壤Cd污染对水稻(Oryza sativa L.)叶片光谱反射特性的影响[J].生态学报,1986,6(2):89-100.
    [30]刘明美,李建农,沈益新.Pb2+污染对多花黑麦草种子萌发及幼苗生长的影响[J].草业科学,2007, 24(1):52-54.
    [31]刘威,束文圣,蓝崇钰.宝山堇菜(Viola baoshanensis)—种新的镉超富集植物[J].科学通报, 2003, 48 (19) : 2046 - 2049.
    [32]刘鹏,杨玉爱.钼、硼对大都叶片膜质过氧化及体内保护系统的影响[J].植物学报,2000,42(5):461~466.
    [33]李柏林,梅慧生.燕麦叶片衰老与活性氧代谢的关系[J].植物生理学报,1989,15(1):6~127.
    [34]李裕红,黄小瑜.重金属污染对植物光合作用的影响[J].环境科研,2006(6):23-24.
    [35]李大辉,施国新.Cd2+或Hg2+水污染对菱体细胞的细胞核及叶绿体超微结构的影响[J].植物资源与环境,1999,8(2):43-48.
    [36]李荣春.Cd、Pb及其复合污染对烤烟叶片生理生化及细胞亚显微结构的影响[J].植物生态学报,2000,24(2):238-242.
    [37]李元,王焕校,吴玉树,等.Cd、Fe及其复合污染对烟草叶片几项生理指标的影响[J].生态学报,1992,12(2):147-153.
    [38]李柳川,陈桂珠.香蒲属植物在人工领域里对重金属吸收的研究[J].有色金属环保,1991,(2) :43 - 46.
    [39]李合生.主编现代植物生理[D]北京高等教育出版社,2002.
    [40]李兆君,马国瑞,徐建民等.植物适应重金属Cd胁迫的生理及分子生物学机理[J].土壤通报,2004,35(2):234~238.
    [41]李珍珍,韩阳.抗坏血酸对小麦种子老化及幼苗脂质过氧化的影响[J].辽宁大学学报(自然科学版), 2000, 23(5): 56-61.
    [42]林治庆,黄会一.木本植物对土壤防治功能的研究[J].中国环境科学,1988,8(3):35-40.
    [43]林匡飞.苎麻吸镉特性及镉土的改良试验[J].农业环境保护,1996,15(1):1-4.
    [44]梁利芳,张丽霞,杨肖伟,等.稀土镧及其配合物对植物铅、镉单一及复合污染的作用[J].广西师范学院学报,2002,19(1):69-73.
    [45]骆永明.金属污染土壤的植物修复[J].土壤,1999(5):261-265,280.
    [46]马成仓,洪法水.汞对小麦种子萌发和幼苗生长作用机制初探[J].植物生态学报,1998,22(4):373-378.
    [47]梅宇珠.无公害蔬菜的施肥用药和灌溉[J].上海蔬菜,1989,(9):34-35.
    [48]秦天才,吴玉树,王焕校.镉、铅及其相互作用对小白菜生理生化特性的影响[J].生态学报,1994,14(1):46~49.
    [49]桑爱云,张黎明,曹启民,夏炜林,王华.土壤重金属污染的植物修复研究现状与发展前景[J].热带农业科学2006年2月26(1):75-79.
    [50]宋松泉,简伟军,傅家瑞.Cd2+对玉米种子活力的影响及Ca2+的拮抗作用[J].应用与环境生物学报,1997,3(1):1~5
    [51]唐世荣.超积累植物在时空、科属内的分布特点及寻找方法[J].农村生态环境,2001,17(4):56~60.
    [52]陶玲,祝广华,杜忠.重金属对植物种子萌发的影响研究进展[J].农业环境科学学报2007,26(增刊):52-57.
    [53]田英翠,杨柳青.蕨类植物及其在园林中的应用[J].北方园艺,2006,(5):133~134.
    [54]汪贵斌.落羽杉抗性生理机制的研究.[博士学位论文].[D]南京林业大学,2003.
    [55]王慧忠,何翠屏.重金属离子胁迫对草坪草根系生长及其活力的影响[J ].中国草地,2002,3,55~58,63.11. [56王慧忠,何翠屏.铅对草坪植物生物量与叶绿素水平的影响[J].草业科学,2003,06,73~75.13.
    [57]吴燕玉,余国营,王新,等. Cd,Pb,Cu,Zn,As复合污染对水稻的影响[ J ].农业环境保护,1998,17(2):49~54.6.
    [58]吴兆洪,秦仁昌.中国蕨类科属志.北京:科学出版社,1991.
    [59]王泽港,骆剑峰,刘冲.单一重金属污染对水稻叶片光合特性的影响[ J ].上海环境科学.2004,23(6):237-240.
    [60]武正华,张宇峰,王晓蓉,等.土壤重金属污染植物修复及基因技术的应用[J].农业环境保护,2002,21(1):84-86.
    [61]王焕校污染生态学基础[M].昆明:云南大学出版社,1990.91~108.
    [62]王焕校.污染生态学[M].北京:高等教育出版社,1999:44-68.
    [63]王慧忠,何翠屏.铅对草坪植物生物量与叶绿素水平的影响[J].草业科学,2003,06,73~75.
    [64]王明金,刘红琴,何聃,郭平,张秀文.不同浓度Pb对向日葵幼苗生长及抗氧化系统的影响[J].中国环境管理,2007(6):30-32.
    [65]王学峰,师东阳.Cd-Pb复合污染在土壤-烟草系统中生态效应的研究[J].土壤通报,2007,38(4):738-740.
    [66]王晓峰,张宪政. ASA提高小麦抗旱性生理效应研究[J].植物学通报, 1998, 15(3): 48-50.
    [67]韦朝阳,陈同斌,黄泽春等.大叶井口边草—种新发现的富集砷的植物[J].生态学报. 2002, 22 (5) : 777 - 778.
    [68]薛生国,陈英旭,林琦等.中国首次发现的锰超积累植物—商陆[J].生态学报,2003,23 (5):935 - 937.
    [69]徐勤松,施国新.重金属对植物的毒害机制[J].植物科学进展.4:233~244.
    [70]徐照丽,吴启堂,依艳丽.重金属植物螯合肽(PC)的研究进展[J].农业环境护,2001,20(6):468-470.
    [71]杨盛昌,吴琦.Cd对桐花树幼苗生长及某些生理特性的影响[J].海洋环境科学,2003,22(1):38-42.
    [72]杨树华,曲仲湘,王焕校.铅在水稻中的迁移积累及其对水稻生长发育的影响[J].生态学报,1986,6(4):312-323.
    [73]杨雪梅,齐永安,李定策.重金属对植物的影响及植物吸污能力研究[J].焦作工学院学报(自然科学版), 2004,23(3):189-192.
    [74]杨世勇,王方,谢建春.重金属对植物的毒害及植物的耐性机制[J].安徽师范大学学报(自然科学版), 2004,27(1).
    [75]杨居荣,鲍子平,张素芹.镉、铅在在植物体内的分布及其可溶性结合形态[J].中国环境科学,1993,13(4):263-268.
    [76]杨居荣,黄翌.植物对重金属的耐性机理[J].生态学杂志,1994,13(6):20~26.
    [77]杨居荣,贺建新,蒋婉如.镉污染对植物生理、生化的影响[J].农业环境保护,1995,14(5):193-197.
    [78]杨居荣,贺建群,张国祥等.不同耐性作物中几种酶活性对Cd胁迫的反应[J].中国环境科学,1996,16(2):113~117.
    [79]杨肖娥,龙新宪,倪吾钟等.东南景天—种新的锌超富集植物[J].科学通报,2002,47 (13) : 1003-1007.
    [80]余苹中,廖柏寒,宋稳成等.模拟酸雨和Cd对小白菜、四季豆生理生化特性德影响[J].农业环境科学学报,2004,23(1):43-46.
    [81]殷捷,周竹渝.超积累植物的研究进展[J].重庆环境科学,2003,25(11):200-202.
    [82]耶兴元,何晖,仝胜利.抗坏血酸与植物抗氧化性的关系[J].信阳农业高等专科学校学报,2009,19(1)
    [83]周青,黄晓华,屠昆岗,等. L a对C a伤害大豆幼苗的生态生理作用[J].中国环境科学,1998,18(5):442~445.8.
    [84]周红卫,施国新,徐勤松.Cd2+污染水质对水花生根系抗氧化酶活性和超微结构的影响[J].植物生理学通讯,2003,39(3):211—214.
    [85]周建华,王永锐.硅营养缓解水稻幼苗Cd、Cr毒害的生理研究[J].应用生态学报,1999,5(1):11-15.
    [86]周希琴,莫灿坤.植物重金属胁迫及其抗氧化系统[J].新疆教育学院学报,2003,19(2).
    [87]赵海泉,洪法水.汞毒害下小麦幼苗生长过程中保护酶活性变化规律的研究[J ].农业环境保护,1998,17(1):20~21.
    [88]赵可夫,王韶唐.作物抗性生理[M].北京:中国农业出版社,1990:153-155.
    [89]张玉秀,柴团耀植物耐重金属机理研究进展[J].植物学报,1999,41(5):453~457.
    [90]郑春荣,陈怀满.pb的植物效应.见:陈怀满著土壤-植物系统中的重金属污染.北京:科学出版社,1996.238~247.
    [91]张太平.潘伟斌.根际环境与土壤污染的植物修复研究进展[J] .生态环境,2003, 12(1) :76-79.
    [92]张兰,郑永华,苏新国,等.抗坏血酸处理对蚕豆保鲜的效果[J].南京农业大学学报, 2006, 35(3):
    [93]赵素达,付成秋,朱松龄.镉对石莼光合作用及叶绿素含量的影响[J].青岛海洋大学学报,2000,30(3):519-523.
    [94]Blamey FPC,Joyce DC,EdwardsDG,Asher CJ,Role of trichomes in sunflower tolerance to manganese toxicity [J].Plant Soil,1986,91:171-180.
    [95]Barry HalliWell and John M.C.Gutterldge. Free Radicals in Biology and Medicine[M]. Oxford:Clarendon Press,1989,22~85.
    [96]Baker AJM. Metal tolerance [J].NewPhytol. 1987,106(suppl):93~111.
    [97]Baker AJM Accumulators and excluders—strategies in the response of plants to heavy metals.Journal ofPlant Nutrition, 1981,3,643-654.
    [98]Brooks RR ,Lee J ,Reeves RD ,e tal. Detection of nickelfieorus rocks by anaylssi of herbaruim specmiens of indicaotr plant.s J Geochem Explor ,1977,7:49~57.
    [99]BertV,Macnair MR.Zinc tolerance and accumulation metallicolous andnon_metallicolous populations of Arabid halleri(Brassicaceae).New Phytologist, 2000,146,225-233.
    [100]Bringezu, K., O. Lichtenberger&I. Leopold. 1999. Heavy metal tolerance of Silene vulgaris. Journal of Plant Physiology,154:536~546
    [101]Chaney R L. Plant uptake of inorganic waste constituents .In: Parr James F, Marsh Paul Bruce, Kla Joanne M. Land treatment of hazardous wastes. USA,New Jersey, Park Ridge: Noyes Data Corporation, 1983,261~287.
    [102]Cedeno Maldonado A.The copper ion as an inhibitor of photosynthetic electron transport in isolated chlorplasts.Plant Physiol.1972,50:698-701.
    [103]Cox RM, HutchinsonTC. Multiple and co-tolerance to metals in the grass Despitosa (L) Beauv. from the sudbury smelting area. J Plant Nutrution. 1981,3:731~741.
    [104]Dai LF(戴玲芬),GaoH(高宏),Xia JR(夏建荣).Tolerance to heavy metal Cd and detoxification of Synechococcus cedrorum.Chin J Appl Environ Biol(应用与环境生物学报).1998,4(3):192-195.
    [105]FaYIGAAO,MaLQ, CaoXD, et al. Effects of heavy metals on growth and arsenic accumulation inthe arsenic hyperaccumulator Peris vittata L.[J] Eneironmental Pllution, 2004,132(2):289-296.
    [106]Gupta M. Ferns and environmental pollution: a review. Indian Fern J, 1991, 8: 41~51.
    [107]Gupta M, Devi S. Uptake and toxicity of cadmium in aquatic ferns . J Environ Biology, 1995, 16(2): 131~136.
    [108]Hart JJ,WelchRM, Norvell WA,SullivanLA, KochianLV. Characterization of cadmium binding, uptake,and translocation in intact seedlings of bread and durum wheat cultivars.Plant Physiol,1998,116:1413-1420.
    [109]Ho Y B, Tai KM. Potential use of a roadside fern (Pteris vittata) to biomonitor Pb and other aerial metal deposition. B Environ ContamToxicol,1985,35:430~438.
    [110]Hu ZY(胡正义),ShenH(沈宏),Cao ZH(曹志洪). Distribution of Cu in soil-crop system polluted by Cu. Environ Sci(环境科学). 2000,21(2):62~65.
    [111]Johnson G N, Rumsey F J, Headley A D,et al. Adaptations to extreme low light in the fern Trichomanes speciosum. New Phytol, 2000,148(3):423~431.
    [112]Jain SK, Vasudevan P, Jha NK. Azolla pinnata R.Br. and Lemna minor L. for removal of lead and zinc frompollutedwater. Water Res, 1990,24:177~183.
    [113]KoeppeDE.The uptake, distribution,and effect of cadmium and lead in plants. Sci Tot Environ,1977,7:197-2062.
    [114]KRUPA Z. Cadmium-induced changes in the composition and structure of the light-harvesting complex in radish cotyledons[J].Plant physiol,1988,73:518-524.
    [115]Kavi,Kishor P B,Hong Z L,Miao G H,etal.,Overexpression of 7-pyrroline-5-carboxylate syntheses increases praline production and cofers tolerance in transgenic plants[J]. PlantPhysiol,1995,108:1387-1394.
    [116]Kumar, P.B.A.N. 1995. Phytoextraction:the use of plants to remove the heavy metals from soil. Environmental Science andTechnology, 29:1232~1238.
    [117]Kong XS.Effect of Cd toxicity on cell membrane permeability and protective enzyme activity of maize seedling [J].Agro-Protection,1999,18(3):133-134.
    [118]LvCH(吕朝晖),WangHX(王焕校),Effects of Cd and Pb on ADH gene expression.Acta Sci Circumstantiae(环境科学学报).1998,18(5):500~503.
    [119]Li DL(李道林),HeF(何方),MaCZ(马成泽),TianC(田超),Effects of arsenic on biological activity of soils its toxicity to selected-vegetables.Agro-Environ Protection(农业环境保护).2000,19(3):148~151.
    [120]Liu, D.Y. (刘登义),J.C.Xie(谢建春),S.Y.Yang(杨世勇)&H.Shen(沈浩). 2001. Effects of copper mine tailings ongrowth and development and physiological function ofwheat. Chinese Journal of Applied Ecology (应用生态学报),12:126~128. (in Chinese)
    [121]Larason EH, Bordman JF. Influence of UV-B radiation and Cd2+ on chlorophy fluorescence, growth and nutrient content in Brassica oapus [J]. J Expri Bot, 1998 ,49: 1031-1039.
    [122]Mathys W.Vergleichende Untersuchugen der Zinkaufnahme Von die Sistenten und Sensitiven Population Von agrostis tenuis Sibth.Flora.1973,162:492-499.
    [123]Mehar AA.Integrated tolerance mechanisms: constitutive and adaptive plant responses to elevated metal concentration in the environment.Plant Cell Environ,1994,17:989-993.
    [124]Meharg A A.The role of the plasmalemma in metal tolerance in angiosperms.Physiol Planta.1993,88:191-198.
    [125]Macnair MR,Cumbes QJ,Meharg,Holcul LanatusL.Heredity,1992,69:325-335.
    [126]Meharg A A. Integrated tolerance mechanisms: constitutive and adaptive plant responses to elevated metal concentration in the environment.Plant Cell Environ,1994,17:989~993.
    [127]Ma J F, Hiradate S, Matsumoto H. High aluminum resistance in buckwheatⅡ. Oxalic acid detoxifies aluminum internally.Plant Physiol,1998,117:753~759.
    [128]Matos, A.T., M.P.F. Fontes & C.P. Jordao. 1994. Mobility and retention of Cd, Zn, Cu and Pb in a Brazilian Oxisol pro-files. In: Macfadyen, D.K. & G.A. Jroenendael eds. XVworld congress of soil science a capulco. New York: Transac-tions, 36:193~194.
    [129]Oliver M J, Tuba Z, Mishler B D. The evolution of vegetative desiccation tolerance in land plants. Plant Ecology, 2000, 151 (1): 85~100.
    [130]Page C N. Ecological strategies in fern evolution: a neopteridological overview. Review of Palaeobotany and Palynology, 2002, 119: 1~33.
    [131]PengM(彭鸣),WangHX(王焕校), Wu YS(吴玉树).Ultrastructural changes induced by cadmium and lead in corn seedling cell.Chin Environ Sci(中国环境科学). 1991,11(6):426~431.
    [132]PrASAd MN V. Heavy Metal Stress in Plants [M]. Biomolecules to Ecosystems. 2004, 2: 178-218.
    [133]Sugiyama M. Roll of cellular antioxidants in metal induced damage. Cell BiolToxicol.1994,10:1~22.
    [134]SunTH (孙铁珩), Zhou QX (周启星), Li PJ (李培军).Pollution Ecology(污染生态学). Science Press,Bei-jing. (in Chinese),2001.
    [135]Salt DE, Prince RC, PickeringIJ, RaskinI. Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physoil,1995,109,1427-1433.
    [136]ShiNN(施农农),ChenZW(陈志伟),,JiaXY(贾秀英).Effects of Cd stress on the sprouting of rice and its hydrolase activities.Agro-Environ Protection(农业环境保护).1999,18(5):213~216.
    [137]Sela M, Garty J, Telor E. The accumulation and the effect of heavymetals on the water fern Azolla filiculoides. New Phytol, 1989,112(1):7~12.
    [138]Sen AK, Mondal N G. Salvinia Natans—as the scavenger of Hg(Ⅱ) . Water Air Soil Pollution, 1987,34:439~446.
    [139]Sen AK, Mondal N G. Removal and uptake of copper (Ⅱ) by Salvinia natans from waste water. Water air soil pollution, 1990,49:1~6.
    [140]Srivastav R K, Gupta S K,NigamKD P,et al. Treatment of chromium and nickel in waste water by using aquatic plants. Water Res, 1994,26:1631~1638.
    [141]Stobart AK,GrifithsWT,Ameen-Bukhari 1.etalThe effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley[J]. Plant Physiol.1985,63:293-298.
    [142]T.F.Slater.Free Radical Mechanisms in Tissue Injurv[M].Set on IBM 72 Composer by PiOn Limited,London:1972,34~42.
    [143]Vallee B. I. et a.l Biochemical effects of mercury, cadmium, and lead[J].Annu.Rev. Biochem, 1972,41:9l-128.
    [144]Verkelij, J.A.C.&H. Schat..Mechanism of metal tolerancein high plants: evolutionary aspects. Bcca Raton, Florida:CRCPress Inc.1990,179~193.
    [145]]Wu Y-Y(吴燕玉),Wang X(王新),Liang R-L(梁仁禄).Ecological effect of compound pollution of heavy metals in soilplant systemⅡ:Effect on element uptake by crops,,alfalfa and tree. J Appl Ecol, 1997,8:545~552.
    [146]YangSH(杨树华),QuZX(曲仲湘),Wang HX(王焕校).The migration and accumulation of lead in rice and its influence on the growth. Acta Ecol Sin(生态学报).1986,6(4):312~322.
    [147]ZhangYX(张义贤).Toxicity of heavy metals to Hordeum vulgare. Acta Sci Circumstantiae (环境科学学报). 1997,17(2):199~201.
    [148]Zhou QX (周启星).Ecology of Combined Pollution(复合污染生态学). China Environmental Science Press,Beijing. (inChinese), 1995
    [149]Zhou QX (周启星), Song YF (宋玉芳) .Remediation of Contaminated Soils: Principles and Methods(污染土壤修复原理与方法). 2004, Science Press,Beijing. (in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700