干旱区土壤盐渍化遥感监测模型构建研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤盐渍化是干旱半干旱区土地退化的主要形式之一。其发生发展是一个气候、水文、母质、植被等诸多因素耦合的复杂动力学过程。通常在气候干旱、土壤蒸发强度大、地下水位高且含有较多可溶性盐类的地区,容易导致土壤盐渍化的发生。土壤盐渍化直接和间接地影响人类生存、社会稳定、农业生产、资源与环境可持续发展。正确评价或预防土壤盐渍化对促进农业生产和区域可持续发展具有重要的现实意义。
     遥感具有客观反映土壤盐渍化时空变化的监测能力,遥感监测盐渍化土壤研究取得了很大进步。然而随着定量遥感应用研究的发展,对盐渍化土壤信息的定量化提取要求的提高,像元尺度的信息提取已不能满足需求。同时,国内外盐渍化土壤遥感监测研究也表明,在复杂的地表环境下,单纯采用土壤光谱特征是无法全面、准确反映土壤盐渍化信息,其方法在土壤盐渍化监测中暴露出诸多问题,如盐分信息提取的不确定性、土壤盐分监测的滞后效应等,不能适应全面、动态的盐渍化土壤监测与盐分信息提取的迫切需求。因此有必要对图像识别算法加以修改或发展新的方法,以适应定量提取区域尺度盐渍化土壤信息的新要求。利用定量遥感方法,实现准确的盐渍化土壤信息提取一直是遥感应用领域亟待解决的重要科学问题之一。
     研究基于波谱分解技术基础,有效利用作为盐渍化土壤遥感监测的两个关键指标——土壤光谱特征和盐渍区盐生植被生物物理特征,同时解决以往传统遥感监测土壤盐渍化的弊端——混合像元问题;在此基础上构建适于盐渍化评价的盐生植被指数(NHVI),充分利用盐生植被的生物物理特征实时监测土壤盐分含量的变化特征,弥补裸土光谱监测盐渍化程度得不足,增强盐渍化遥感监测的敏感度、实时性;同时通过光谱变换与运算,构建能够综合反映盐渍化程度的裸土及植被光谱特征的二维特征空间,并基于二维特征空间发展区域尺度盐渍化土壤的遥感定量提取指数——SDI模型。并用实地观测的土壤含盐量数据对提出的盐生植被指数(NHVI)和SDI模型进行检验和比较分析,结果表明:1)文中提出的盐生植被指数和研究区实地观测的土壤含盐量高度相关,能反映土壤盐渍化程度;(2)SDI充分利用可见光、近红外、植被生物物理特性,在准确获取地表生态物理参数的前提下,盐渍化遥感监测信息提取精度得以提高;其具有简单和反演速度快的优势,能够很好反映土壤盐渍化程度;(3)SDI考虑了地表植被覆盖的影响,因此,在干旱区,不同植被覆盖下地表的盐渍化遥感监测都可选用SDI模型;
     本研究的开展,以求抛砖引玉,引起学术界同仁和主管部门对此领域研究的关注。为区域尺度盐渍化土壤信息监测提供更丰富、更定量化的土壤盐渍化信息,为土壤盐渍化的遥感监测与评价提供有效的遥感监测模型。
Soil salinization is an important worldwide environmental problem, especially in arid and semi-arid regions.Quantitative remote sensing provides accurate and up-to-date information of spatio-temporal dynamics of salinity. Studies at both home and overseas showed that it is hard to acquire reliable information of salinity by using a single wavelength in visible, near infrared (NIR), thermal or microwave domain, specifically in a sophisticated surface conditions such as agricultural fields, while the reported methods inherited many limitations in practical applications including time-lag effect, being too complex to calculate, being excessively dependent on meteorological observations and field measurements etc. Therefore, developing of simple, effective and operational methods for the satellite estimation of surface salnity, especially vegetation cover is of great interest for both researchers in remote sensing community and policy makers for the sustainable development of eco-environments.
     Bare salt-affected Soil reflect spectral and halophytic plants spectral are the most direct and important indicator of salinity events and, therefore, using an integrated algorithm of the spectral response of bare soil and vegetation is critical to the soil salinization estimation. In this paper, an improved soil salt-affected monitoring method, the combined fraction spectral response index (SDI), is developed introducing soil and vegetation fraction, which takes into account both salty-affected soil spectral and halophytic plant growth. To validate the salinity indices proposed by this paper, Enhanced Thematic Mapper Plus and ALOS imagese from different times with various salinization conditions are used to calculate the SDI and to correlate ground measuring salt content (SAL))with SDI. SAL was determined in surface soil samples(0-10cm). Multiple endmember spectral mixture analysis (MESMA) uses linear mixture models to provide bare soil and halophytic vegetation fraction abundances respectively. SDI based on SMA increase in the level of salt-affected soil spectral response by eliminating non-halophytic vegetation affected and combining halophytic vegetation indictor of salinity. Correlation coefficients between SDI and soil salinity were obtained and a model was adjusted to predict soil salinity. It is evident from the results that SDI is highly accordant with in-situ soil SAL values with the highly correlation of 0.9149. Variance accounted for by exponential models for SAL was of 83.7%. The SDI demonstrates a much better performance in measuring salinity soil since it takes into account both soil surface and halophytic vegetation growth in the modeling process. The SDI has the potential to provide a simple and low-cost salt-affected areas monitoring method in the remote estimation of salinization phenomena.
引文
[1]朱庭芸.灌区土壤盐渍化防治[M].北京:农业出版社, 1992. 32~38.
    [2]董新光,周金龙,陈跃滨.干旱内陆区水盐监测与模型研究及其应用[M].北京:科学出版社, 2007. 1~27.
    [3]刘兴土.松嫩平原退化土地整治与农业发展[M].北京:科学出版社,2001.
    [4] Szabolcs I. Salination of soil and water and its relation to desertification [J]. Desertification Control Bulletin, 1992, 21:32~37.
    [5]杨劲松.中国盐渍土研究的发展历程与展望[J].土壤学报. 2008, 45(5): 837~845.
    [6] G.I. Metternicht.Categorical fuzziness: a comparison between crisp and fuzzy class boundary modelling for mapping salt-affected soils usingLandsat TM data and a classification based on anion ratios[J].Ecological Modelling,2003,168(3):371~389.
    [7]R.L. Dehaan, G.R. Taylor. Field-derived spectra of salinized soils and vegetation as indicators of irrigation-induced soil-salinization[J]. Remote Sensing of Environment, 2002, 80:406~417.
    [8]J. Farifteh, A. Farshad, R.J. George. Assessing salt-affected soils using remote sensing, solute modelling, and geophysics[J]. Geoderma, 2006, 130(3-4): 191~206
    [9]王遵亲.中国盐渍土[M].北京:科学出版社. 1993:1~126.
    [10]田长彦,周宏飞,刘国庆21世纪新疆土壤盐渍化调控与农业持续发展研究建议[J].干旱区地理, 2000, 23: 178~181.
    [11]许志坤.新疆盐渍土的形成、分类、特点和利用改良[M].国际盐渍土改良学术讨论会论文集, 1985, 5: 109~112.
    [12]田长彦,宋郁东.新疆土地退化及其防治对策议[J].干旱区研究, 1997, 14: 63~67.
    [13]E. Amezketa. An integrated methodology for assessing soil salinization, a pre-condition for land desertification [J]. Journal of Arid Environments, 2006, 67(4): 594~606
    [14]J. Farifteh, F. Van der Meer, C. Atzberger, et al. Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN)[J]. Remote Sensing of Environment, 2007, 110(1): 59~78
    [15]Hongqing Wang, Y. Ping Hsieh, Mark A. Harwell ,et al. Modeling soil salinity distribution along topographic gradients in tidal salt marshes in Atlantic and Gulf coastal regions[J]. Ecological Modelling, 2007, 201(3-4): 429~439.
    [16]A.A. Masoud, K. Koike. Arid land salinization detected by remotely-sensed land covers changes: A case study in the Siwa region [J]. NW Egypt Journal of Arid Environments, 2006, 66(1):151~167.
    [17]关元秀,王劲峰,刘高焕黄河三角洲土地盐碱化遥感监测、预测和治理研究[M].中国科学院地理科学与资源研究所博士学位论文2001:178~181.
    [18]霍东民,张景雄,张家柄.利用CBERS-1卫星数据进行盐碱地专题信息提取研究[J].国土资源遥感,2001(2): 48~52.
    [19]Sharma R C, Byhargava G P. Landsat Imagery for Mapping Saline Soils and Wetlands in Northwest India[J]. Interna2tional Journal of Remote Sensing, 1988, 9 (1) : 39~44.
    [20]Sommerfeldt T G, Thompson M D, Pront N A.Delineation and Mapping of Soil Salinity in Southern Alberta from Landsat Data [J]. Canadian Journal of Remote Sensing, 1985, 10:104~118.
    [21]Singh A N, Dwivedi R S. Delineation of salt affected soils through digital analysis of Landsat MSS data[J]. Interna2tional Journal of Remote Sensing, 1989, 10 (1) : 83~92.
    [22]I.C. Mullen, K.E. Wilkinson, R.G. Cresswell,Three-dimensional mapping of salt stores in the Murray-Darling Basin, Australia: 2. Calculating landscape salt loads from airborne electromagnetic and laboratory data[J]. International Journal of Applied Earth Observation and Geoinformation, 2007, 9(2): 103~115
    [23]Madhurama Sethi; G. S. Dasog; Arno Van Lieshout; S. B. Salinity appraisal using IRS images in Shorapur Taluka, Upper Krishna Irrigation Project, Phase I, Gulbarga District, Karnataka, India[J]. International Journal of Remote Sensing, 2006, 27 (14): 2917– 2926
    [24]Carmen Casta?eda, Juan Herrero. Assessing the degradation of saline wetlands in an arid agricultural region in Spain [J]. ATENA, 2008, 72 (2): 205~213
    [25]Singh AN , Kristof S J , BaumgardnerM R. Delineating salt affected Soils in the Gangetic Plain India by Digital Analysisof Landsat Data[R]. Purdue University Laboratory for Aplications of Remote Sensing. Technical report. 2006, 111~477.
    [26]Bao B R C , Sankar T R, Dwivedi R S, et al. Spectral Behavior of salt-affected soils[J]. International Journal of Remote Sensing, 1995, 16(12):2125~2136.
    [27]Metternichit G, Zinck J A. Spatial discrimination of salt-and sodium-affected soil surfaces[J]. International Journal of RemoteSensing, 1997, 18(12): 2571~2586
    [28]Khan N M, Sato Y. Monitoring hydro-salinity status and its impact in irrigated semi-arid areas using IRS-1B LISS-II data. Asian J [J]. Geoinform, 2001,1 (3):63~73
    [29]Khan N M, Analysis on Environmental Land Degradation caused by hydrosalinity in semi-arid irrigated regions. Ph.D. Thesis, The University of Tokyo, Japan. 2002
    [30]Abd EI Kadar Douaoui, Herve Nibolas, Christian Walter. Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data. Geoderma, 2006, 134:217~230
    [31]J. Farifteh, F. van der Meer , M. van der Meijde , et al. Spectral characteristics of salt-affected soils: A laboratory experiment[J]. Geoderma, 2008, 145, 196~206
    [32]A.P. Leone, M. Menenti, A. Buondonno, et al. A field experiment on spectrometry of crop response to soil salinity[J]. Agricultural Water Management, 2007, 89(1-2): 39~48
    [33]C.G. Ladenburger, A.L. Hil d, D.J. Kazmer, et al. Soil salinity patterns in Tamarix invasions in the Bighorn Basin, Wyoming, USA[J]. Journal of Arid Environments, 2006, 65(1): 111~128
    [34]Dwivedi R S, Rao B R M. The selection of the best possible Landsat TM band combination for delineating salt-affected soils[J]. Int. Journal of Remote Sensing, 1992, 13(11):2051~2058.
    [35]G.I. Metternicht, J A.Zinck. Evaluating the information content of JERS-1 SAR and Landsat TM data for discrimination of soil erosion features [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1998, 53(3):143~153.
    [36]Bui E N, Henderson B L .Vegetation indicators of salinity in northern Queensland [J]. Austral Ecology, 2003, (28) : 539~552.
    [37]S.D Kirkby. Integrating a GIS with an expert system to identify and manage dryland salinization[J].Applied Geograph,1996,4(16):289~303.
    [38]N. Fernández-Buces, C. Siebe, S. Cram and J.L. Palacio Mapping soil salinity using a combined spectral response index for bare soil and vegetation: A case study in the former lake Texcoco, Mexico[J]. Journal of Arid Environments, 2006, 65 (4):644~667
    [39] Taylor G R, Mah A H, et al. Characterization of saline soils using Airborne Radar Imagery [J].Remote Sensing of Environment, 1996, 57(3):127~142.
    [40] D. Bel l,C. Menses,W. Ahmad,et al. The application of dielectric retrieval algorithms for mapping soil salinity in a tropical coastal environment using airborne polar metric SAR[J]. Remote Sensing of Environment, 2001,75:375~384.
    [41]Fouad Al-Khaier Soil Salinity Detection using satellite remote sensing[M]. Master' s thesis International institute for Geo-information science and earth observation, enschede, the Nether lands, 2003.3.
    [42]R.L. Dehaan, G.R. Taylor. Image-derived spectral endmembers as indicators of Salinisation[J]. International Journal of Remote Sensing, 2003, 24(4):80:775~794.
    [43]Richard G. Cresswella, Ian C. Mullenb, Rob Kinghamb, et al. Airborne electromagnetic supporting salinity and natural resource management decisions at the field scale in Australia[J]. International Journal of Applied Earth Observation and Geoinformation, 2007, 9(2): 91~102
    [44]G.I. Metternicht. Remote sensing of soil salinity-potentials and constraints[J]. Remote Sensing of Environment, 2003,85:1~20.
    [45]彭望录,李天杰.TM数据的Kauth-Thomas变换在盐渍土分析中的作用-以阳高盆地为例.环境遥感,1989, 4(3): 183~190.
    [46]骆玉霞,陈焕伟.GIS支持下的TM图像土壤盐渍化分级[J].遥感信息理论研究, 2001.(4):12~15.
    [47]关元秀,刘高焕,刘庆生,等.黄河三角洲盐碱地遥感调查研究[J].遥感学报,2001,1(5):46~53.
    [48]亢庆,于嵘,张增祥,等.土壤盐碱化遥感应用研究进展[J].遥感技术与应用, 2005, 20(4): 447~454.
    [49]牛宝茹.塔里木河上游表土积盐量遥感信息提取研究.土壤学报, 2005, 42(4): 674~677.
    [50]徐金鸿,徐瑞松,夏斌,等.土壤遥感监测研究进展.水土保持研究, 2006, 13(2): 17~20.
    [51]冯君,王宇,赵兰坡,等应用遥感技术对大安市草原土壤盐渍化现状的调查与对策研究[J].吉林农业大学学报, 2007:29(2)181~185,190
    [52]塔西甫拉提.特依拜,张飞,丁建丽,等.干旱区典型绿洲盐渍化土壤空间信息研究[J].干旱区地理.2007,30(4):544~551
    [53]李海涛, P.Brunner ,李文鹏,等. ASTER遥感影像数据在土壤盐渍化评价中的应用[J].水文地质工程地质,2006(5):75~79.
    [54]霍东民,孙家炳,刘高焕,等。3S技术在黄河三角洲土壤盐分分析样点采集中的应用[J].遥感信息,2001,(2):35~37.
    [55]张恒云,尚淑招.NOAA.AVNRR资料在监测土壤盐渍化程度中的应用[J].遥感信息,1992(1)24~26.
    [56]刘庆生,刘高焕,励惠国.辽河三角洲土壤盐分与上覆植被野外光谱关系初探.农业环境科学,2004,20(4):274~278.
    [57]刘庆生,骆剑承,刘高焕.资源一号卫星数据在黄河三角洲地区的应用潜力初探[J].地球信息科学,2000,2(2):56~57.
    [58]史晓霞,李京,陈云浩,等.基于CA模型的土壤盐渍化时空演变模拟与预测[J].农业工程学报.2007,23(1):
    [59]史晓霞.基于CA模型的长岭县土壤盐渍化时空演变可视化模拟[D].硕士毕业论文,2005.5.
    [60]李宏,于洪伟.对新疆塔里木河流域土地盐渍化进行专题信息提取的应用研究[J].测绘与空间地理信息, 2007,30(4):65~70
    [61]吕远.含盐土壤的微波介电常数特性研究[J].遥感学报,2002, (6):416~423.
    [62]邵芸,吕远.含水含盐土壤的微波介电特性分析研究[J].遥感学报,2002, (6):416~423.
    [63]胡庆荣.含水含盐土壤介电特性试验研究及对雷达图像的相应分析[J].遥感学报,2004,(2):125~129
    [64]熊文成,邵芸.基于IEM模拟的干旱区多时相数据含水含盐量反演模型及分析[J].遥感学报,2006,10(1):111~117.
    [65]塔西甫拉提·特依拜,张飞,赵睿,等.新疆干旱区土地盐渍化信息提取及实证分析[J].土壤通报, 2007,38(4):625~630.
    [66]何祺胜,塔西甫拉提·特依拜,丁建丽.基于决策树方法的干旱区盐渍地信息提取研究—以渭干河-库车河三角洲绿洲为例[J].资源科学,2006,28(6):134~140.
    [67]江红南.基于3S技术的干旱区土壤盐渍化时空演变研究[D].新疆大学,2007.
    [68]江红南,塔西甫拉提·特依拜,徐佑成,等.于田绿洲土壤盐渍化遥感监测研究[J].干旱区研究, 2007, 24(2): 168~173.
    [69]庞治国,吕宪国,李取生.3S技术支持下的盐碱化土地现状评价与发展对策研究—以吉林省西部大安市为例[J].国土与自然资源研究,2000,(4):25~27.
    [70]牛博,倪萍,塔西甫拉提·特依拜.遥感技术在干旱区盐渍化动态变化分析中的应用以新疆于田县为例[J].地质灾害与环境保护,2004,15(4):78~82.
    [71]关元秀,刘高焕.区域土壤盐渍化遥感监测研究综述[J].遥感技术与应用,2001,1(16):40~44.
    [72]许迪,王少丽.利用NDVI指数识别作物及土壤盐碱分布的应用研究[J].灌溉排水学报,2003, 22(6):5~8.
    [73]李晓燕,张树文.吉林省大庆市近50年土地盐碱化时空动态及成因分析[J].资源科学,2005,27(3):92~97.
    [74]丁建丽,张飞,江红南,等.塔里木盆地北缘绿洲土壤含盐量和电导率空间变异性研究--以渭干河-库车河三角洲绿洲为例[J].干旱区地理, 2008, 31(4): 624~632.
    [75]张飞,塔西甫拉提·特依拜,丁建丽.渭干河—库车河三角洲绿洲盐渍化土壤特征研究[J].干旱地区农业研究,2007,25(2):146~161.
    [76]张飞,丁建丽,塔西甫拉提·特依拜,等.干旱区典型绿洲土壤盐渍化特征分析——以渭干河一库车河三角洲为例[J],草业学报,2007,16(4):34~40
    [77]何祺胜.星载雷达图像在干旱区盐渍地信息提取中的应用研究[D].新疆大学,2007年7月:17~19.
    [78]李凤全,卞建民,张殿发.半干旱地区土壤盐渍化预报研究——以吉林省西部洮儿河流域为例[J].水土保持通报,2000,2:2~4.
    [79]吴加敏,姚建华,张永庭等.银川平原土壤盐渍化与中低产田遥感应用研究[J].遥感学报,2007,11(3):414~419
    [80]Yongling Weng, Peng Gong; Zhiliang Zhu. Reflectance spectroscopy for the assessment of soil salt content in soils of the Yellow River Delta of China[J]. International Journal of Remote Sensing, 2008,29(19): 5511– 5531.
    [81]J. Farifteh; F. van der Mee; E. J. M. Carranza. Similarity measures for spectral discrimination of salt-affected soils[J]. International Journal of Remote Sensing, 2007, 28(23): 5273~5293.
    [82]李小文.定量遥感的发展与创新[J].河南大学学报(自然科学版). 2005, 35(4): 49~56.
    [83]L.Zhang, B.Wu, B.Huang. Nonlinear estimation of subpixel proportion via kernel least square regression[J]. International journal of remote sensing. 2007, 28 (18): 4157~4172.
    [84]Settle, J. On constrained energy minimisation and the partial unmixing of multispectral images[J]. IEEE Transactions on Geoscience and Remote Sensing. 2002, 40: 718~721.
    [85]李惠,陈健飞,余明.线性关谱混合模型的ASTER影像植被应用分析[J].地球信息科学. 2005, 7(1): 103~106
    [86]张洪恩,施建成,刘素红.湖泊亚像元填图算法研究[J].水科学进展. 2006, 17(3): 376~382.
    [87]李晓松,吴波,范文义,等.基于光谱混合分析的荒漠化信息提取-以毛乌素沙地为例[J].林业科学研究. 2006, 19(2): 192~198.
    [88]吴传庆,王桥,杨志峰.基于混合像元分解的水体遥感图像去云法[J].遥感学报. 2006, 10(2): 176~183.
    [89]周纪,陈云浩,张锦水,等.北京城市不透水层覆盖度遥感估算[J].国土资源遥感. 2007, 3: 13~17.
    [90]李素,李文正,周建军,等. ETM+影像亚像元级城市土地覆盖组分丰度提取-以南京市为例[J].地理与地理信息科学. 2008, 24(2): 17~22.
    [91]Palanisamy Shanmugam, Yu-Hwan Ahn, Shanmugam Sanjeevi. A comparison of the classification of wetland characteristics by linear spectral mixture modelling and traditional hard classifiers on multispectral remotely sensed imagery in southern India[J]. Ecological Modeling. 2006, 194: 379~394.
    [92]Joseph M.Piwowar. The derivation of an Arctic sea ice normal through temporal mixture analysis of satellite imager[J]. International Journal of Applied Earth Observation and Geoinformation. 2008, 10: 92~108.
    [93]Terrilll w.ray, bruce c.murray. Nonlinear Spectral Mixing in Desert Vegetation[J]. Remote Sensing of Environment. 1996, 55:59~64.
    [94]F.J. Garcia-haro, M.A. Gilabert, J.Melia. Extraction of Endmembers from Spectral Mixtures[J]. Remote Sensing of Environment. 1999, 68:237~253.
    [95]Junchang Ju. Eric D. Kolaczyk. Gaussian mixture discriminant analysis and sub-pixel land cover characterization in remote sensing[J]. Remote Sensing of Environment. 2003, 84:550~560.
    [96]Roberts, D.A., Gardner, et al. Mapping Chaparral in the Santa Monica Mountains using Multiple Endmember Spectral Mixture Models[J]. Remote Sensing of Environment. 1998, 65: 267~279.
    [97]Painter, T.H., Roberts, et al. The Effect of Grain Size on Spectral Mixture Analysis of Snow-covered Area from AVIRIS Data[J]. Remote Sensing of Environment. 1998, 65:320~332.
    [98]Painter, T.H., Dozier, et al. Retrieval of Subpixel Snow-covered Area and Grain Size from Imaging Spectrometer Data[J]. Remote Sensing of Environment. 2003, 85, 64~77.
    [99]Dennison, P.E., and Roberts, D.A., Endmember Selection for Multiple Endmember Spectral Mixture Analysis using Endmember Average RSME[J]. Remote Sensing of Environment. 2003, 87(2~3), 123~135.
    [100]Dennison, P.E., Roberts, D.A. The Effects of Vegetation Phenology on Endmember Selection and Species Mapping in Southern California Chaparral[J]. Remote Sensing of Environment. 2003b, 87(2~3), 123~135.
    [101]Okin, G.S., Roberts, D.A., Murray, B., et al. Practical limits on hyperspectral vegetation discrimination in arid and semiarid environments[J]. Remote Sensing of Environment. 2000, 77(2): 212~225.
    [102]Dennison, P.E., Charoensiri, K., Roberts, D.A., et al. Wildfire temperature and Land Cover Modeling Using Hyperspectral Data[J]. Remote Sensing of Environment. 2006, 100:212~222.
    [103]Rashed, T., Weeks, J.R., Roberts, D., et al. Measuring the Physical Composition of Urban Morphology using Multiple Endmember Spectral Mixture Models[J]. Photogramm. Eng. Remote Sens. 2003, 69(9): 1011~1020.
    [104]Powell, R., D.A. Roberts, P.E. Dennison, et al. Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil[J]. Remote Sensing of Environment. 2007, 106:253~267
    [105]Li, L., Mustard, J.F. Highland contamination in lunar mare soils: Improved mapping with multiple end-member spectral mixture analysis[J]. J. Geophys. Res. 2003, doi: 10.1029/2002JE001917.5033
    [106]Johnson, J.R., Staid, M.I., Titus, T.N., et al. Shocked plagioclase signatures in Thermal Emission Spectrometer Data of Mars[J]. Icarus. 2006, 180: 60~74.
    [107]Elmore, A.J., Mustard, J.F., Manning, S.J., et al. Quantifying vegetation change in semiarid environments: precision and accuracy of spectral mixture analysis and the normalized difference vegetation index[J]. Remote Sensing of Environment. 2000, 73, 87~102.
    [108]C.Kuenzer, M.Bachmann, A.Mueller. Partial unmixing as a tool for single surface class detection and time series analysis. International Journal of Remote Sensing[J]. 2008, 29(11): 3233~3255.
    [109]Lifan Liu, Bin Wang, Liming Zhang. Decomposition of mixed pixels based on bayesian self-organizing map and Gaussian mixture model. Pattern Recognition Letters[J]. 2008, doi:10.1016/j.patrec.2008.05.026.
    [110]B. Somers, S. Delalieux, J. Stuckens. A weighted linear spectral mixture analysis approach to address endmember variability in agricultural production systems[J]. International Journal of Remote Sensing. 2009, 30(1): 139~147.
    [111]唐世浩,朱启疆,李小文,等. 2003高光谱与多角度数据联合进行混合像元分解研究[J].遥感学报. 2003, 7(3): 182~189.
    [112]梁天刚,高新华,刘兴元.阿勒泰地区雪灾遥感监测模型与评价方法[J].应用生态学报. 2004, 15(12): 2272~2276.
    [113]马雪梅,陈亮,俞冰,等. 2006基于决策树和混合像元分解的城市扩张分类[J].测绘通报. 2006, 10: 9~11.
    [114]徐宏根,马洪超,李德仁.结合SOM神经网络和混合像元分解的高光谱影像分类方法研究[J].遥感学报. 2007, 11(6): 778~786.
    [115]张彦,邵美珍. 2002基于径向基函数神经网络的混合像元分解[J].遥感学报. 2002, 6(4): 285~288.
    [116]毛克彪,覃志豪,张万昌.针对ETM基于BP网络像元分解模型分类研究[J].遥感应用. 2004, 2: 27~30.
    [117]吴柯,张良培,李平湘.一种端元变化的神经网络混合像元分解方法[J].遥感学报. 2007, 11(1): 20~26.
    [118]Antonio Plaza, Pablo martinez, rosa perez, et al. A new approachto mixed pixel classification of hyperspectral imagery based on extended morphological profiles[J]. Pattern Recognition. 2004, 37: 1097~1116.
    [119]范闻捷,徐希孺.混合像元组分信息的盲分解方法[J].自然科学进展. 2005, 15(8): 993~999.
    [120]C.F.Caiafa, E.Salerno, A.N.Proto, et al. Blind spectral unmixing by local maximization of non-Gaussianity[J]. Signal Processing. 2008, 88: 50~68.
    [121]杨伟,陈晋,松下文经,等.基于相关系数匹配的混合像元分解算法[J].遥感学报. 2008, 12( 3) : 454~461.
    [122]刘力帆,王斌,张立明,等.基于自组织映射和模糊隶属度的混合像元分解[J].计算机辅助设计与图形学学报. 2008, 20 (10): 1307~1315.
    [123] Boardman, J.W., Kruse, F.A., Green, R.O. Mapping target signatures via partial unmixing of AVIRIS data in Summaries of the 5th JPL Airborne Earth Science Workshop, Jet Propulsion Laboratory, Pasadena. 1995, 1: 23~26.
    [124]Bateson, A., Curtiss, B. A method for manual endmember selection and spectral unmixing[J], Remote Sensing of Environment. 1996, 55: 229~243.
    [125]Bateson, C.A., Asner, G.P., Wessman, C. Endmember Bundles: A new approach to incorporating endmember variability into spectral mixture analysis[J]. IEEE Trans. Geosci. Remote Sens. 2000, 38:1083~1094.
    [126]Roberts, D.A., Adams, J.B., Smith, M.O. Discriminating Green Vegetation, Non-Photosynthetic Vegetation and Soils in AVIRIS Data[J]. Remote Sensing of Environment. 1993, 44: 255~270.
    [127]Roberts, D.A., Batista, G., Pereira, J., et al. Change Identification using Multitemporal Spectral Mixture Analysis: Applications in Eastern Amazonia, Chapter 9 in Remote Sensing Change Detection: Environmental Monitoring Applications and Methods, (Elvidge, C. and Lunetta R., Eds.). Ann Arbor Press, Ann Arbor. 1998, MI, 137~161.
    [128]Dennison, P.E., Halligan, K. Q., Roberts, D.A. A Comparison of Error Metrics and Constraints for Multiple Endmember Spectral Mixture Analysis and Spectral Angle Mapper[J]. Remote Sensing of Environment. 2004, 93: 359~367.
    [129]霍东民,刘高焕,骆剑承.基于PCM改进算法的遥感混合像元模拟分析[J].遥感学报. 2005, 9(2):131~136.
    [130]Manuel Grana, Carmen Hernandez, Josune Gallego. A single individual evolutionary strategy for endmember search in hyperspectral images[J]. Information Sciences. 2004, 161: 181~197.
    [131]Christopher Small. The Landsat ETM+ spectral mixing space[J]. Remote Sensing of Environment. 2004, 93: 1~17.
    [132]Honglei Zhu. Linear spectral unmixing assisted by probability guided and minimum residual exhaustive search for subpixel classification[J]. International Journal of Remote Sensing. 2005, 26(24): 5585~5601.
    [133]C. Gomez, H. Le borgne, P. Allemand, et al. N-FindR method versus independent component analysis for lithological identification in hyperspectral imagery[J]. International Journal of Remote Sensing. 2007, 28(23): 5315~5338.
    [134]Gerhard X. Ritter, Gonzalo Urcid, Mark S. Schmalz. Autonomous single-pass endmember approximation using lattice auto-associative memories[J]. Neurocomputing, 2008, doi:10.1016/j.neucom.2008.06.025.
    [135]Stephen J. Hurcom, Andrew R. Harrison, Malcolm Raberner. Assessment of Biophysical Vegetation Properties through Spectral Decomposition Techniques[J]. Remote Sensing of Environment. 1996, 56:203~214.
    [136]K.White, I.Livingstone, S.Gurney, et al. Post-processing of mineral mixture maps for mapping surfacial materials: the example of the Matmata loess, southern Tunisia[J]. International Journal of Remote Sensing. 2002, 23(15): 3091~3106.
    [137]D.B. Lobell, G. P. Asner, B.E. Law et al. View angle effects on canopy reflectance and spectral mixture analysis of coniferous forests using AVIRIS[J]. International Journal of Remote Sensing. 2002, 23(11): 2247~2262.
    [138]R. Dehaan, G. R. Taylor. Image-derived spectral endmembers as indictors of salinization[J]. International Journal of Remote Sensing. 2003, 24(4):775~794.
    [139]Patrick Hostert, Achim Roder, Joachim Hill. Coupling spectral unmixing and trend analysis for monitoring of long-term vegetation dynamics in Mediterranean rangelands[J]. Remote Sensing of Environment. 2003, 87: 183~197.
    [140]Jingfeng Xiao , Aatom Moody. A comparison of methods for estimating fractional green vegetation cover within a desert-to-upland transition zone in central New Mexico, USA[J]. Remote Sensing of Environment. 2005, 98: 237~250.
    [141]F. Javier García-Haro, Fernando Camacho-de Coca. et al. A Directional Spectral Mixture Analysis Method:Application to Multiangular Airborne Measurements[J]. IEEE Transactions On Geoscience And Remote Sensing. 2006, 44(2): 365~377.
    [142]O.Sonnentag, J.M. Chen, D.A. Roberts, et al. Mapping tree and shrub leaf area indices in an ombrotrophic peatland through multiple endmember spectral unmixing[J]. Remote Sensing of Environment. 2007, 109: 342~360.
    [143]Remy Dehaan, John Louis, Andrea Wilson, et al. Discrimination of blackberry using hyperspectral imagery in Kosciuszko National Park, NSW, Australia[J]. ISPRS Journal of Photogrammetry & Remote Sensing. 2007, 62: 13~24.
    [144]D. M. Mcallister, C. Valeo. A robust new method for the remote estimation of LAI in montane and boreal forests[J]. International Journal of Remote Sensing. 2007, 28(8): 1891~1905.
    [145]Izaya Numata, Dar A. Roberts, Oliver A. Chadwick, et al. Characterization of pasture biophysical properties and the impact of grazing intensity using remotely sensed data[J]. Remote Sensing of Environment. 2007, 109: 314~327.
    [146]Stefano Pignatti, Rosa Maria Cavalla, Vincenzo Cuomo, et al. Evaluating Hyperion capability for land cover mapping in a fragmented ecosystem: Pollino National Park, Italy[J]. Remote Sensing of Environment. 2008, doi:10.1016/j.rse.2008.11.006.
    [147]Thoreau Rory Tooke, Nicholas C. Coops, Nicholas R. Goodwin, et al. Extracting urban vegetation characteristics using spectral mixture analysis and decision tree classifications[J]. Remote Sensing of Environment. 2008, doi:10.1016/j.rse.2008.10.005.
    [148]Wang Lei, Satoshi Uchida. Use of Linear Spectral Mixture Model to Estimate Rice Planted Area Based on MODIS Data[J]. Rice Science. 2008, 15(2): 131~136.
    [149]Jyotsna Ravi, Sebastian Thomas Lee, Manidurai Paulraj et al. Feasibility of neural network approach in spectral mixture analysis of reflectance spectra[J]. International Journal of Remote Sensing. 2008, 29(10): 2981~2992.
    [150]满苏尔,阿布拉江,艾尼瓦尔.新疆库车县耕地人口承载能力研究[J].干旱区资源与环境,2002,16(3):28~32.
    [151]库车县志编纂委员会编.库车县志[Z].乌鲁木齐:新疆人民出版社,2005.
    [152]库车县水利志编纂委员会编.库车县水利志[M].乌鲁木齐:新疆科技卫生出版社1993,22~23.
    [153]满苏尔·沙比提,阿布拉江·苏莱曼.新疆库车县耕地资源利用结构优化对策[J].资源科学,2002,24(5):26~31.
    [154]陈署晃,冯耀祖,许咏梅.土壤养分变异及合理取样数的初步探究[J].新疆农业科学,2003,40(6):328~331.
    [155]梅安心,彭望禄,秦其明,等遥感导论[M].北京:高等教育出版社,2001:46~47.
    [156]john r. Jensen著,陈晓玲,龚威,李平湘,等译.遥感数字影像处理导论[M]. 2007:216~232.
    [157]Vermote E F,Tanre D,Deuze J L,et a1.The Second Simulation of the Satellite Signal in the Solar Spectrum(6S), User’s Guide.France:Laboratoire d’Optique Atmospherique. 1997
    [158]Liang shunlin quantitative remote sensing of land surface[M]. New Jersey: John Wiley & Sons, Inc. 2004, 25~71.
    [159] Lee T Y,Kaufman Y J.Non—Lambertian Efects on Remote Sensing of Surface Reflectance andVegetation Index.IEEE Trans Geosci Remote Sensing,1986,GE·24:699~70
    [160] Sonoyo Mukai.Atmospheric Corection of Remote Sensing Images of the Ocean Based on Multiple Scattering Calculations.IEEE Transactions on Geoscience and Remote Sensing,1990,28(4):696~702
    [161]王颖,严勇. TM影像地面二向性的分析及校正方法研究[J].测绘科学, 2007, 32(4):49~51
    [162] Roujean, J.L.; Leroy, M.; Deschamps, P.Y.; Podaire, A.; A Surface Bidirectional Reflectance Model To Be Used For The Correction Of Directional Effects In Remote Sensing Multitemporal Data Sets[J]. Geoscience and Remote Sensing Symposium, 1990. IGARSS '90. 'Remote Sensing Science for the Nineties'., 10th Annual International. IEEE. 1990, 1785– 1789
    [163]Roujean, J, L. A patametric hot spot model for optical remote sensing applications[J]. Remote Sensing Environment. 2000, 71: 197~206.
    [164]赵英时.遥感应用分析原理与方法[M].北京:科学出版社. 2003, 20~30.
    [165]Tim Danaher. An empirical brdf correction for landsat tm and etm+ imagery [J]. URL: http://www.nrm.qld.gov.au/slats/
    [166]梅安心,彭望禄,秦其明,等.遥感导论[M].北京:高等教育出版社,2001:46~47.
    [167] Metternicht G. Analysing the relationship between ground based reflectance and environmental indicators of salinity processes in the cochabamba valleys (Bolivia) [J]. International Journal of Ecology and Environmental Sciences, 1998, 24: 359~370
    [168]贾海峰,刘雪华等编著,环境遥感原理与应用[M].北京:清华大学出版社, 2006.15~28.
    [169]吴波,张良培,李平湘.高光谱端元自动提取的迭代分解方法.遥感学报, 2005, 9(3): 287~292.
    [170]李小文.地物的二向性反射和方向谱特征[J].环境遥感, 1989, 4(1): 67~72.
    [171]万华伟,王锦地,屈永华,等.植被波谱空间尺度效应及尺度转换方法初步研究[J].遥感学报. 2008, 12(4): 538~545.
    [172] Green,A.A, M.Berman, P. Switzer, et al. A transformation for ordering multispectral data in terms of image quality with implications for noise remova[J]. IEEE, 1988, 26:65~74.
    [173] Boardman,J.W., F.A. Kruse. Automatel spectral analysis: a geological example using AVIRIS data, north grapevine mountains, Nevada, proceedings, ERIM tenth thematic conference on geologic remote sensing, ann arbor, MI.1994.
    [174]János Tamás, Csaba Lénárt. Analysis of a small agricultural watershed using remote sensing techniques[J]. International Journal of remote sensing. 2006, 27(17): 3727~3738.
    [175]郗金标,张福锁,田长彦.新疆盐生植物[M].北京:科学出版社.2006, 8~14.
    [176]扶卿华,倪绍祥,李开丽.土壤盐碱化遥感监测方法[J].农机化研究. 2005,1: 110~114.
    [177]Gillies R R, Carlson TN, CuiJ, et al. A verification of the triangle method for obtaining surface soil water content and energy fluxes from remote measurements of the normalized difference vegetation index (NDVI) and surface radiant temperature [J].International Journal of Remote Sensing, 1997, 18 (5) : 3145~3166.
    [178]Sandholt L, Rasmussen K, Andersen J.A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status[J].Remote Sensing of Environment, 2002, 79:213~224.
    [179]Goward S N, Xue Y, Czajkowskl K P. Evaluating Land surface moisture conditions from the remotely sensed temperature/vegetation index measurements--An exploration with the simplified simple biosphere model[J]. Remote Sensing of Environment, 2002, 79:225~242. [180 ] Guang-xiong PENG, Jing LI, Yun-hao CHEN, et al. A Forest Fire Risk Assessment Using ASTER Images in Peninsular Malaysia[J]. Journal of China University of Mining and Technology, Volume 17,Issue 2, June 2007, Pages 232~237.
    [181]韩丽娟,王鹏新,王锦地,等.植被指数-地表温度构成的特征空间研究[J].中国科学,D辑:地球科学,2005,35(4):371~377.
    [182]王鹏新,WAN Z,龚健雅,等.基于植被指数和土地表面温度的干旱监测模型[J].地球科学进展2003,18(8):527~533.
    [183]李红军,郑力,雷玉平,等.植被指数一地表温度特征空间研究及其在旱情监测中的应用[J] ,农业工程学报, 2006, 22 (11) : 170~174.
    [184]柳钦火,辛景峰,辛晓洲,等.基于地表温度和植被指数的农业干旱遥感检测方法[J].北京大学学报(自然科学版). 2007, 25(6):12~18.
    [185]喻锋,李晓兵,王宏,等.基于NDVI-Ts特征空间的中国土地覆盖分类研究[J].植物生态学报. 2005,29(6)934~944.
    [186]詹志明,秦其明,阿布都瓦斯提·吾拉木,等.基于NIR-Red光谱特征空间的土壤水分监测新方法[J].中国科学D辑:地球科学,2006,36(11):1020~1026.
    [187] Ghulam A, Qin Q, Wang L, et a1.Development of Broadband A1bedo Based Ecological Safety Monitoring Index[J], 2004 IEEE International Geoscience and Remote Sensing Symposium(IGARSS),September 20-24,2004,Anchorage,Alaska,Egan Convention Center,USA,V1:4115~4118.
    [188]曾永年,向南平,冯兆东,等.Albedo-NDVI特征空间及沙漠化遥感监测指数研究[J].地理科学, 2006, 26(1):75~81.
    [189]周小虎,王政伟,万余庆.塔里木河上游地区土壤盐渍化信息提取研究[J].山东农业大学学报(自然科学版). 2008, 39(4) :572~576.
    [190]Verstraete M, Pinty B. Designing optimal spectral indexes for remote sensing applications. Remote Sensing of Environment, 1996, 34(5): 1254~1265.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700