PCB通孔电镀铜添加剂的分子模拟及其作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
印刷电路板(Printed-Circuit-Board, PCB)是电子产品的必要组成部分,特别是多层印制电路板的出现为电子产品向小型化、便捷化、智能化发展提供了基础。通孔电镀铜是实现多层PCB层与层之间导通的主要途径之一,也是当今PCB制造工艺中非常重要的一项技术。但是在直流电镀过程中,由于通孔内的电流密度分布不均匀,为了在孔内获得均匀镀层,使用有机添加剂是一个有效而且经济的方法,但完全通过实验筛选添加剂是一项非常费时费力的工作。在本文中,使用分子动力学(MD)模拟的方法对4种整平剂候选物进行预测,并设计了7种复合添加剂体系,对负载通孔的PCB板进行电镀,考察了添加剂体系的均镀能力,利用电化学测试、原子力显微镜(AFM)、X射线光电子能谱(XPS)和量子化学计算手段对添加剂在阴极表面的行为和作用机理进行了探究。
     通过动态极化曲线对比实验,选定了促进剂噻唑啉基二硫代丙烷磺酸钠(SH110)和抑制剂聚乙二醇(PEG, MW=10000),认为SH110是一种促进剂和抑制剂或整平剂的结合体。使用分子动力学方法预测了两种新型整平剂:N-丁基-N-甲基溴化哌啶(PP_(14)Br)和氯化硝基四氮唑蓝(NTBC),并预测出与健那绿B(JGB)有类似结构的藏红T(ST)不是一种有效的整平剂。对SH110进行的分子动力学模拟和电化学测试表明其可以作为通孔电镀封孔的单一添加剂。使用SH110和PEG分别做促进剂和抑制剂,设计了4种促进剂-抑制剂-整平剂和3种促进剂-抑制剂-走位剂体系。
     利用预测和设计的添加剂体系,使用直流电镀的方法对不同厚径比和不同孔径的PCB通孔进行了电镀实验,验证了前文的分析和添加剂体系的性能,并探索了添加剂的较佳使用浓度范围。使用通孔剖孔的方法检测了孔内镀层的均匀程度,使用扫描电子显微镜(SEM)观察了镀层的微观结构。结果表明:当SH110浓度为10mg/L时,经过短时间电镀,就出现了“蝴蝶现象”,经过18h电镀,实现了超填充电镀封孔。对厚径比为10的通孔进行电镀,通过调节添加剂的使用浓度,得到了4种均镀能力超过90%的优良添加剂体系。这4种添加剂体系和最佳使用浓度为:SH110(1mg/L)-PEG (100mg/L)-PP_(14)Br (20mg/L),SH110(1mg/L)-PEG (200mg/L)-NTBC (3mg/L), SH110(1mg/L)-PEG (200mg/L)-JGB(1mg/L),SH110(1mg/L)-PEG (100mg/L)-脂肪胺聚氧乙烯醚(AEO,10mg/L)。同时验证了ST不是一种有效整平剂的预测。对于厚径比为20的通孔电镀,使用SH110(50mg/L)-PEG (200mg/L)-PP_(14)Br (40mg/L)时,得到的均镀能力为76.1%,达到了对厚径比为20的通孔的电镀要求。
     使用旋转圆盘电极,结合动态极化曲线、恒电流E~t曲线对添加剂的电化学行为进行了测试,使用AFM、XPS对添加剂的吸附行为进行了表征,使用量子化学计算的方法获得并对比了一些添加剂的电子结构信息,系统研究了添加剂在通孔电镀过程中的作用机理。结果表明:SH110是一种促进剂和抑制剂或整平剂的结合体,它可以在铜表面形成一层吸附膜,体现出抑制剂的作用方式,这种抑制作用更容易出现在阴极的强对流区;其促进作用主要出现在阴极的弱对流区,这是在通孔电镀中出现“蝴蝶现象”和实现超填充完美封孔的原因。整平剂PP_(14)Br和NTBC的加入不仅增大了镀液的阴极极化,而且增大了不同强度对流下的阴极电势差值,这使得Cu~(2+)在孔口等强对流区受到的抑制作用更强,有助于提升孔内镀层的均匀性。NTBC会在阴极铜表面形成一个吸附层,此吸附层导致了对Cu~(2+)沉积过程的强烈抑制作用。JGB可以影响阴极电势和阴极极化,而ST对于阴极极化和阴极电势几乎没有影响。JGB分子的最高占据轨道(HOMO)值大于ST的HOMO值,表明JGB具有更强的电子供给能力,这使得JGB能够通过向铜原子的空d轨道贡献电子成键而形成吸附,这种吸附作用最终使得其可做为整平剂使用,而ST不具有这种作用。JGB在铜表面的化学吸附过程中,对氨基偶氮苯和N=N区域的作用比季铵化的N原子的作用强得多,而ST不具有这种结构,这很好地解释了ST不是有效整平剂的原因。
Printed circuit board (PCB) is the necessary component of electronic products,and the emergence of multi-layer PCB helps to develope small, convenient,intelligent electronic products. Through-hole (TH) copper electroplating is one ofthe main methodes to realize the conduction among PCB layers, which is also veryimportant technology of PCB manufacturing process. It is very difficult to obtaincoatings with uniform thickness using traditional plating bacause of the unevendistribution of current density in the TH during DC plating process. For obtaining anuniform plating in the TH, using organic additives is an effective and economicalway. However, choosing and exploration of additives by experiments are verytime-consuming and laborious. In this paper,4levelers and7additive systems werepredicted using molecular dynamics (MD) simulation, and the TH wereelectroplated using these additives. The uniform power (UP) of additives wereexamined, and the actions of additives on the surfaces of cathodes and mechanismswere explored by electrochemical test, atomic force microscopy (AFM), X-rayphotoelectron spectroscopy (XPS) and quantum chemical calculations.
     The accelerator thiazoline dithio-propane sulfonate poly (ethylene glycol)(SH110) which were considered as a combination of accelerator and inhibitor orleveler agent and inhibitor PEG, MW=10000were selected by electrochemicalcomparative experiments. Two new levelers of N-butyl-N-bromide in piperidine(PP_(14)Br) and nitro blue tetrazolium (NTBC) were predicted using MD, andSafranine T (ST) with the structure similar to Janus Green B (JGB) was predicted asan uneffective leveler. The results of MD simulations and electrochemical testsabout SH110indicated that SH110could be used as a single TH plating sealingadditive. Accelerator-inhibitor-leveler and accelerator-inhibitor-walk agent systemswere designed by using SH110and PEG as accelerators and inhibitors, respectively.
     THs on PCB with different aspect ratio and hole diametres were electroplatedby DC using predicted and designed additive systems. The previous analysis and theproperties of of additive systems were verified and the preferred concentration scopeof additives were explored. The uniformity of the plating in TH was examined fromthe view of cross sections of THs. SEM results indicated that butterfly technology(BF) emerged after short-time electroplating and superfilling perfect sealinggenerated after18h electroplating when the concentration of SH110was10mg/L.Four excellent additive systems with UP more than90%were obtained for THelectroplating with the aspect ratio of10by adjusting the concentration of additives. These4kinds of additive systems were SH110(1mg/L)-PEG (100mg/L)-PP_(14)Br(20mg/L), SH110(1mg/L)-PEG (200mg/L)-NTBC (3mg/L), SH110(1mg/L)-PEG(200mg/L)-JGB (1mg/L) SH110(1mg/L)-PEG (100mg/L)-fatty amines, andpolyoxyethylene ether (AEO,10mg/L), respectively. The prediction of ST whichwas not an effective leveler was also verified. The UP was76.1%in TH with aspectratio of20using SH110(50mg/L)-PEG (200mg/L)-PP_(14)Br (40mg/L), which metwith the requirement of the TH with a aspect ratio of20in TH electroplating.
     The electrochemical behavior of the additives were tested by rotating diskelectrode combination of dynamic polarization curves and constant current E~tcurve, and adsorption behaviors of the additives were characterized using AFM andXPS. Electronic structure informations about some additives were obtained andcompared by quantum chemical calculations and the mechanisms of actions of theadditives in the Th electroplating process were studied. The results showed thatSH110was a combination of an accelerator and inhibitor or a leveler, which may ledto the formation of adsorbed film on the copper surface and reflected theperformance of SH110as an inhibitor. The inhibition of SH110could take part instrong convection zone of the cathode more easily, and the acceleration mainlyappeared in weak convection zone of the cathode, which accounted for BF andsuperfilling during the TH eclectroplating. The addition of levelers of PP_(14)Br andNTBC not only increased the cathodic polarization of the bath, but also increasedcathode potential differences at different convection strength, which inhibitedcopper ions in the area of convection at the mouth of TH more strongly and helpedto inhance the uniformity of plating inside the holes. NTBC could lead to theformation of an absorption layer on the copper cathode surface, which caused stronginhibition of copper ion deposition. JGB had an impact on the cathode potential andcathode polarization, and ST had little effect on the cathode potential and cathodepolarization. The highest occupied molecular orbital (HOMO) value of JGBmolecular was larger than that of ST, which demonstrated that JGB having astronger electron-donating ability could be adsorped by contributing electrons toempty d orbital of copper atom and bonding. The adsorption made JGB as a levelereventually but ST did not have the adsorption. The actions of aminoazobenzene andN=N were much stronger than that of quaternized N atom during the chemicalsorption of JSB on copper surface, and ST did not have such a structure, whichexplained that ST was not effect leveler.
引文
[1] Guijt R M, Armstrong J P, Candish E. Microfluidic Chips for CapillaryElectrophoresis with Integrated Electrodes for Capacitively CoupledConductivity Detection Based on Printed Circuit Board Technology[J].Sensors and Actuators B: Chemical,2011,159(1):307-313.
    [2] Vanfleteren J, Gonzalez M, Bossuyt F. Printed Circuit Board TechnologyInspired Stretchable Circuits[J]. MRS bulletin,2012,37(3):254-260.
    [3] Li X, Zang J, Liu Y, et al. Simultaneous Detection of Lactate and Glucose byIntegrated Printed Circuit Board Based Array Sensing Chip[J]. AnalyticaChimica Acta,2013,771(10):102-107.
    [4] Wu B, Brown B, Warner E. High-Density Interconnect Board Design forWafer-Level Packaging[J]. Electronics letters,2011,47(20):1137-1138.
    [5] Qiu H S, Zeng F L, Fan R R. Study on Delamination of HDI Multilayer PCBin Lead-free Reflow Process[J]. Electronics Process Technology,2010,31(5):261-266.
    [6]蔡积庆.电镀铜导通孔填充工艺[J].印制电路信息,2006,8:28-30.
    [7]林其水. PCB电镀铜工艺和常见问题的处理[J].孔化与电镀,2009,4:46-49.
    [8] Woodman A S,丁志廉.高厚径比贯通孔的无添加剂电镀[J].印制电路信息,2001,12:35-39.
    [9]曾磊,张卫,汪礼康.超大规模集成电路铜互连电镀工艺[J].中国集成电路,2006,11:45-48.
    [10] Yen M Y, Hung Y N, Yee K W. Electroplating Apparatus and MethodConsiderations for High Aspect-Ratio Through-Hole Copper ElectroplatingProcess[C]//Microsystems Packaging Assembly and Circuits TechnologyConference (IMPACT),20105th International. IEEE,2010:1-3.
    [11] Dow W P, Liu D H, Lu C W. Through-Hole Filling by Copper ElectroplatingUsing a Single Organic Additive[J]. Electrochemical and Solid-State Letters,2011,14(1): D13-D15.
    [12] Lanzi O, Landau U. Analysis of Mass Transport and Ohmic Limitations inThrough‐Hole Plating[J]. Journal of The Electrochemical Society,1988,135(8):1922-1930.
    [13] Lee J M, West A C. Impact of Pulse Parameters on Current Distribution inHigh Aspect Ratio vias and Through-Holes[J]. Journal of The ElectrochemicalSociety,2005,152(10): C645-C651.
    [14] Wu B H, Wan C C, Wang Y Y. Calculation of the Current Density Distributionof Submicron Copper Electroplating Based on Uneven Adsorption of Poly(ethylene glycol)[J]. Journal of applied electrochemistry,2005,35(3):305-310.
    [15]华嘉桢. IC封装基板的新一代过孔互连技术[J].印制电路信息,2010,12:42-46.
    [16] Chiu S Y, Shieh J M, Chang S C, et al. Characterization of Additive Systemsfor Damascene Cu Electroplating by the Superfilling Profile Monitor[J].Journal of Vacuum Science&Technology B: Microelectronics and NanometerStructures,2000,18(6):2835-2841.
    [17] Dow W P, Huang H S, Yen M Y. Influence of Convection-EependentAdsorption of Additives on Microvia Filling by Copper Electroplating[J].Journal of The Electrochemical Society,2005,152(6): C425-C434.
    [18] Moffat T P, Josell D. Superconformal Electrodeposition for3-DimensionalInterconnects[J]. Israel Journal of Chemistry,2010,50(3):312-320.
    [19] Georgiadou M, Veyret D, Sani R L. Simulation of Shape Evolution DuringElectrodeposition of Copper in the Ppresence of Additive[J]. Journal of TheElectrochemical Society,2001,148(1): C54-C58.
    [20] Dixit P, Miao J, Preisser R. Fabrication of High Aspect Ratio35μm PitchThrough-Wafer Copper Interconnects by Electroplating for3-D WaferStacking[J]. Electrochemical and solid-state letters,2006,9(10): G305-G308.
    [21] Chan S H, Cheh H Y. Modelling of Through-Hole Electrodeposition Part I:Effect of Electrical Migration[J]. Journal of applied electrochemistry,2001,31(6):605-616.
    [22]朱凤鹃,李宁,黎德育.印制电路板中通孔电镀铜添加剂的研究[J].2009年全国电子电镀及表面处理学术交流会论文集,2009.
    [23] Takahashi K M. Electroplating Copper onto Resistive Barrier Films[J]. Journalof The Electrochemical Society,2000,147(4):1414-1417.
    [24] Gau W C, Chang T C, Lin Y S. Copper Electroplating for Future UltralargeScale Integration Interconnection[J]. Journal of Vacuum Science&Technology A: Vacuum, Surfaces, and Films,2000,18(2):656-660.
    [25] Frank A, Bard A J. The Decomposition of the Sulfonate Additive SulfopropylSulfonate in Acid Copper Electroplating Chemistries[J]. Journal of TheElectrochemical Society,2003,150(4): C244-C250.
    [26]彭沛元.印制电镀板的回顾与发展[J].印制电路板信息,2001(7):10-11.
    [27] Tsai W C, Wan C C, Wang Y Y. Frequency Effect of Pulse Plating on theUniformity of Copper Deposition in Plated Through Holes[J]. Journal of TheElectrochemical Society,2003,150(5): C267-C272.
    [28]吴小龙.浅谈脉冲技术在高厚径比通孔电镀中的应用[J].2005年上海市电镀与表面精饰学术年会论文集,2005.
    [29] Creutz H G, Herr R W. Electrodeposition of Copper: U.S. Patent4,110,176[P].1978-8-29.
    [30] Morrissey D M, Takach P E, Zeblisky R J. Method for ElectroplatingNon-Metallic Surfaces: U.S. Patent4,683,036[P].1987-7-28.
    [31] King R D, Montgomery E R. High-Throw Acid Copper Plating Using InertElectrolyte: U.S. Patent5,174,886[P].1992-12-29.
    [32] Jonas F, Wolf G D. Process for Through-Hole Plating of Two-Layer CircuitBoards and Multilayers: U.S. Patent5,403,467[P].1995-4-4.
    [33] Wolf G D, Jonas F, Schomacker R. Process for Through-Hole Plating ofTwo-Layer Printed Circuit Boards and Multilayers: U.S. Patent5,575,898[P].1996-11-19.
    [34] Chen C H, Lu C W, Huang S M, et al. Effects of Supporting Electrolytes onCopper Electroplating for Filling Through-Hole[J]. Electrochimica Acta,2011,56(17):5954-5960.
    [35] Moffat T P, Wheeler D, Huber W H, et al. Superconformal Electrodepositionof Copper[J]. Electrochemical and Solid-State Letters,2001,4(4): C26-C29.
    [36] Kim S K, Josell D, Moffat T P. Electrodeposition of Cu in thePEI-PEG-Cl-SPS Additive System Reduction of Overfill Bump FormationDuring Superfilling[J]. Journal of The Electrochemical Society,2006,153(9):C616-C622.
    [37] Kim S K, Josell D, Moffat T P. Cationic Surfactants for the Control of OverfillBumps in Cu Superfilling[J]. Journal of The Electrochemical Society,2006,153(12): C826-C833.
    [38] Wang Z, Yaegashi O, Sakaue H. Bottom-Up Fill for Submicrometer Copper viaHoles of ULSIs by Electroless Plating[J]. Journal of the Electrochemicalsociety,2004,151(12): C781-C785.
    [39] Fu Y L, Pao T, Chen S Z. Electrodeposition of Copper on a Pt (111) Electrodein Sulfuric Acid Containing Poly (ethylene glycol) and Chloride Ions asProbed by in Situ STM[J]. Langmuir,2012,28(26):10120-10127.
    [40] Moffat T P, Wheeler D, Kim S K. Curvature Enhanced Adsorbate CoverageMechanism for Bottom-Up Superfilling and Bump Control in DamasceneProcessing[J]. Electrochimica Acta,2007,53(1):145-154.
    [41] Dow W P, Yen M Y, Liu C W. Enhancement of Filling Performance of aCopper Plating Formula at Low Chloride Concentration[J]. ElectrochimicaActa,2008,53(10):3610-3619.
    [42] Dow W P, Yen M Y, Liao S Z. Filling Mechanism in Microvia Metallization byCopper Electroplating[J]. Electrochimica Acta,2008,53(28):8228-8237.
    [43] Wang Y S, Lee W H, Chang S C, et al. An Electroplating Method for CopperPlane Twin Boundary Manufacturing[J/OL]. Thin Solid Films,2013.http://www.sciencedirect.com/science/article/pii/S0040609013005919.
    [44] Dubin V M. Copper Electroplating for On‐Chip Metallization[J]. AdvancedInterconnects for ULSI Technology,2012:173-191.
    [45]余德超,谈定生.电镀铜技术在电子材料中的应用[J].电镀与涂饰,2007,26(2):43-47.
    [46] Moffat T P, Walker M, Chen P J. Electrodeposition of Cu on Ru Barrier Layersfor Damascene Processing[J]. Journal of The Electrochemical Society,2006,153(1): C37-C50.
    [47] Dow W P, Chiu Y D, Yen M Y. Microvia Filling by Cu Electroplating Over aAu Seed Layer Modified by a Disulfide[J]. Journal of The ElectrochemicalSociety,2009,156(4): D155-D167.
    [48]张志祥. PCB电镀铜的高质量控制[J].印制电路信息,2002,5:47-50.
    [49]刘烈炜,吴曲勇,卢波兰.酸性镀铜研究进展[J].电镀与精饰,2004,26(4):13-16.
    [50] Yan J J, Chang L C, Lu C W. The Effect of Acid on Fast Through-Hole Fillingby Cu Electroplating[C]//Microsystems, Packaging, Assembly and CircuitsTechnology Conference (IMPACT),20116th International. IEEE,2011:485-487.
    [51] Bozzini B, Fanigliulo A, Serra M. Electrodeposition of Star-Shaped GoldCrystallites[J]. Journal of crystal growth,2001,231(4):589-598.
    [52] Ashiru O A, Farr J P G. Application of Frequency Response Analysis to theDetermination of Cathodic Discharge Mechanism During SilverElectroplating[J]. Journal of The Electrochemical Society,1995,142(11):3729-3734.
    [53] Kato M, Senda K, Musha Y. Electrodeposition of Amorphous Gold AlloyFilms[J]. Electrochimica Acta,2007,53(1):11-15.
    [54] Hosseini M, Ebrahimi S. The Effect of Tl (I) on the Hard Gold AlloyElectrodeposition of Au–Co From Acid Baths[J]. Journal of ElectroanalyticalChemistry,2010,645(2):109-114.
    [55]林金堵,吴梅珠. PCB电镀铜技术与发展[J].印制电路信息,2009(12):27-32.
    [56]辜敏,付遍红,杨明莉.硫酸盐镀铜的研究进展[J].材料保护,2006,39(1):44-47.
    [57]安茂忠.电镀理论与技术[M].哈尔滨:哈尔滨工业大学出版社.2010:105-122.
    [58]易升成.氰化物镀铜的基本原理浅释[J].电镀与涂饰,1989,3:42-43.
    [59] Costello S, Strusevich N, Flynn D. Electrodeposition of Copper into HighAspect Ratio PCB Micro-Via Using Megasonic Agitation[C]//Design, Test,Integration and Packaging of MEMS/MOEMS (DTIP),2012Symposium on.IEEE,2012:98-102.
    [60] Xiao N, Li N, Cui G. Triblock Copolymers as Suppressors for Microvia Fillingvia Copper Electroplating[J]. Journal of The Electrochemical Society,2013,160(4): D188-D195.
    [61] Nikoli N D, Popov K I, Pavlovi L J. Morphologies of Copper DepositsObtained by the Electrodeposition at High Overpotentials[J]. Surface andCoatings Technology,2006,201(3):560-566.
    [62]储荣邦,关春丽,储春娟.焦磷酸盐镀铜生产工艺(Ⅰ)[J].材料保护,2006,39(10):58-66.
    [63] Chan S H, Cheh H Y. The Current Distribution in Through-holeElectrodeposition II: Tertiary Current Distribution[J]. Chemical EngineeringCommunications,2004,191(7):881-908.
    [64] Beyne E, Labie R. Method for Producing Electrical Through HoleInterconnects and Devices Made Thereof: U.S. Patent6,908,856[P].2005-6-21.
    [65] Bernards R F, Fisher G, Sonnenberg W, et al. Additive for Acid-copperElectroplating Baths to Increase Throwing Power: U.S. Patent5,051,154[P].1991-9-24.
    [66] Zeng-lin W S W. Effect of Different Additives on the Uniform Deposition ofThrough-Hole by Pulse Electroplating in Acidic Copper Plating Bath[J].Plating&Finishing,2008,30(12):24-28.
    [67]陈于春,安茂忠,王成勇.高厚径比PCB深镀能力影响因素的研究[J].电镀与环保,2009,29(6):15-18.
    [68]刘小兵,骆玉祥.脉冲电镀在微盲孔填孔上的应用[J].印制电路信息,2004,7:42-45.
    [69] Hazlebeck D A, Talbot J B. Modeling of Additive Effects on the Electroplatingof a Through‐hole[J]. AIChE Journal,1990,36(8):1145-1155.
    [70] Hazlebeck D A, Talbot J B. Modeling of the Electroplating of a Through-HoleConsidering Additive Effects and Convection[J]. Journal of TheElectrochemical Society,1991,138(7):1985-1997.
    [71] Chern J W E, Cheh H Y. Modeling of Plated Through-Hole Processes I.Current Distribution[J]. Journal of The Electrochemical Society,1996,143(10):3139-3144.
    [72] Chern J W E, Cheh H Y. Modeling of Plated Through-Hole Processes II.Effect of Leveling Agents on Current Distribution[J]. Journal of theElectrochemical Society,1996,143(10):3144-3148.
    [73] Kim S K, Cho S K, Kim J J. Superconformal Cu Electrodeposition on VariousSubstrates[J]. Electrochemical and solid-state letters,2005,8(1): C19-C21.
    [74] Hebert K R. Analysis of Current-Potential Hysteresis During Electrodepositionof Copper with Additives[J]. Journal of The Electrochemical Society,2001,148(11): C726-C732.
    [75] Hayase M, Taketani M, Aizawa K. Copper Bottom-Up Deposition byBreakdown of PEG-Cl Inhibition[J]. Electrochemical and solid-state letters,2002,5(10): C98-C101.
    [76] Tan M, Harb J N. Additive Behavior During Copper Electrodeposition inSolutions Containing Cl, PEG, and SPS[J]. Journal of The ElectrochemicalSociety,2003,150(6): C420-C425.
    [77] Moffat T P, Wheeler D, Josell D. Electrodeposition of Copper in theSPS-PEG-Cl Additive System I. Kinetic Measurements: Influence of SPS[J].Journal of The Electrochemical Society,2004,151(4): C262-C271.
    [78] Kondo K, Matsumoto T, Watanabe K. Role of Additives for CopperDamascene Electrodeposition Experimental Study on Inhibition andAcceleration Effects[J]. Journal of The Electrochemical Society,2004,151(4):C250-C255.
    [79] Dixit P, Miao J. Aspect-Ratio-Dependent Copper Electrodeposition Techniquefor Very High Aspect-Ratio Through-Hole Plating[J]. Journal of theElectrochemical society,2006,153(6): G552-G559.
    [80] Kondo K, Suzuki Y, Saito T. High Speed Through Silicon Via Filling byCopper Electrodeposition[J]. Electrochemical and Solid-State Letters,2010,13(5): D26-D28.
    [81]陈志明.新型酸性镀铜光亮剂SH110的合成及应用[J].材料保护,1977:7-10.
    [82]陈文录,丁万春,李宝环.脉冲电镀添加剂和氯离子对铜电极过程作用的电化学研究[J].印制电路信息,2003,4:30-48.
    [83]王为,李亚兵.封孔镀铜溶液中添加剂的作用及失效机理,2009年全国电子电镀及表面处理学术交流会论文集,2009:199-200.
    [84]李亚冰,王为,李永磊.封孔镀铜过程中JGB作用机理研究[J].无机化学学报,2008,24:534-540.
    [85]李亚冰,王为,李永磊.封孔镀铜过程中JGB失效机理研究,第七届全国表面工程学术会议,2008:272-275.
    [86]李永磊,王为.封孔镀铜过程中PEG失效机理研究,七届全国表面工程学术会议,2008:276-280.
    [87] Dow W P, Chen H H. A Novel Copper Electroplating Formula forLaser-Drilled Micro Via and Through Hole Filling[J]. Circuit World,2004,30(3):33-36.
    [88] Dow W P, Yen M Y, Chou C W. Practical Monitoring of Filling Performance ina Copper Plating Bath[J]. Electrochemical and solid-state letters,2006,9(8):C134-C137.
    [89] Dow W P, Chen H H, Yen M Y. Through-Hole Filling by CopperElectroplating[J]. Journal of The Electrochemical Society,2008,155(12):D750-D757.
    [90] Jian Z Y, Chang T Y, Yang Y C.3-Mercapto-1-Propanesulfonic Acid and Bis(3-sulfopropyl) Disulfide Adsorbed on Au (111): in Situ Scanning TunnelingMicroscopy and Electrochemical Studies[J]. Langmuir,2008,25(1):179-184.
    [91] Dow W P, Li C C, Lin M W. Copper Fill of Microvia Using a Thiol-ModifiedCu Seed Layer and Various Levelers[J]. Journal of The ElectrochemicalSociety,2009,156(8): D314-D320.
    [92] Liu Y F, Lee Y L, Yang Y C. Effect of Chloride Ions on the Adsorption of3-Mercapto-1-Propanesulfonic Acid and Bis (3-Sulfopropyl)-Disulfide on aAu (111) Surface[J]. Langmuir,2010,26(16):13263-13271.
    [93] Dow W P, Liu C W. Evaluating the Filling Performance of a Copper PlatingFormula Using a Simple Galvanostat Method[J]. Journal of TheElectrochemical Society,2006,153(3): C190-C194.
    [94] Dow W P, Yen M Y, Lin W B. Influence of Molecular Weight of PolyethyleneGlycol on Microvia Filling by Copper Electroplating[J]. Journal of TheElectrochemical Society,2005,152(11): C769-C775.
    [95] Dow W P, Li C C, Su Y C. Microvia Filling by Copper Electroplating UsingDiazine Black as a Leveler[J]. Electrochimica Acta,2009,54(24):5894-5901.
    [96] Dow W P, Huang H S, Lin Z. Interactions Between Brightener and ChlorideIons on Copper Electroplating for Laser-Drilled Via-Hole Filling[J].Electrochemical and Solid-State Letters,2003,6(9): C134-C136.
    [97] Vereecken P M, Binstead R A, Deligianni H. The Chemistry of Additives inDamascene Copper Plating[J]. IBM Journal of Research and Development,2005,49(1):3-18.
    [98]李亚冰,王双元,王为.印制线路板微孔镀铜研究现状[J].电镀与精饰,2007,29(1):32-35.
    [99] Landolt D. Current-Voltage Characteristics and Impedance Analysis of theTwentieth Century[J]. J. Electrochem. Soc,2002,149(3): S9-S20.
    [100] Li Y B, Wang W, Li Y L. Adsorption Behavior and Related Mechanism ofJanus Green B During Copper Via-Filling Process[J]. Journal of TheElectrochemical Society,2009,156(4): D119-D124.
    [101] Müller E. Einfache Atombindung[M]//neuere Anschauungen Der OrganischenChemie. Springer Berlin Heidelberg,1957:1-144.
    [102] Xantheas S S. Computational Chemistry: Dances With Hydrogen Cations[J].Nature,2009,457(7230):673-674.
    [103] Panigrahi S, Pal R, Bhattacharyya D. Structure and Energy of Non-CanonicalBasepairs: Comparison of Various Computational Chemistry Methods withCrystallographic Ensembles[J]. Journal of Biomolecular Structure andDynamics,2011,29(3):541-556.
    [104] Tindle J, Gray M, Warrender R L. Application Framework for ComputationalChemistry (AFCC) Applied to New Drug Discovery[J]. International Journalof Grid and High Performance Computing (IJGHPC),2012,4(2):46-62.
    [105] Rucker R. Employing Methods of Computational Chemistry for the Study ofBiochemical Questions[D]. uniwien,2011.
    [106] Aragones J L, Valeriani C, Vega C. Note: Free Energy Calculations for AtomicSolids Through the Einstein Crystal/molecule Methodology UsingGROMACS and LAMMPS[J]. The Journal of chemical physics,2012,137(14):146101.
    [107] Jiang W, Hardy D J, Phillips J C. High-Performance Scalable MolecularDynamics Simulations of a Polarizable Force Field Based on Classical DrudeOscillators in NAMD[J]. The journal of physical chemistry letters,2010,2(2):87-92.
    [108] Amin M A, Khaled K F, Mohsen Q. A Study of the Inhibition of IronCorrosion in HCl Solutions by Some Amino Acids[J]. Corrosion Science,2010,52(5):1684-1695.
    [109] Franchini C, Ková ik R, Marsman M. Maximally Localized WannierFunctions in LaMnO3within PBE+U, Hybrid Functionals and PartiallySelf-Consistent GW: An Efficient Route to Construct Ab Initio Tight-BindingParameters for eg Perovskites[J]. Journal of Physics: Condensed Matter,2012,24(23):1-17.
    [110] Grimme S, Antony J, Ehrlich S. A Consistent and Accurate Ab InitioParametrization of Density Functional Dispersion Correction (DFT-D) for the94Elements H-Pu[J]. The Journal of chemical physics,2010,132(15):154104.
    [111] Epelbaum E, Krebs H, Lee D. Ab Initio Calculation of the Hoyle state[J].Physical Review Letters,2011,106(19):192501.
    [112]龙威.理论研究中的量子化学计算方法[J].宁夏师范学院学报,2010,31(003):43-47.
    [113]伍林,张正富,孙力军.量子化学方法及其在化学计算中的应用[J].广西轻工业,2009,25(4):42-43.
    [114]赵亮,高金森,徐春明.分子计算理论方法及在化工计算中的应用[J].计算机与应用化学,2004,21(5):764-772.
    [115] Xia S, Qiu M, Yu L. Molecular Dynamics and Density Functional TheoryStudy on Relationship Between Structure of Imidazoline Derivatives andInhibition Performance[J]. Corrosion Science,2008,50(7):2021-2029.
    [116] Musa A Y, Jalgham R T T, Mohamad A B. Molecular Dynamic and QuantumChemical Calculations for Phthalazine Derivatives as Corrosion Inhibitors ofMild Steel in1M HCl[J]. Corrosion Science,2012,56:176-183.
    [117] Rodríguez-Valdez L M, Martínez-Villafa e A, Glossman-Mitnik D.Computational Simulation of the Molecular Structure and Properties ofHeterocyclic Organic Compounds with Possible Corrosion InhibitionProperties[J]. Journal of Molecular Structure: THEOCHEM,2005,713(1):65-70.
    [118] Siegbahn P E M. The Performance of Hybrid DFT for Mechanisms InvolvingTransition Metal Complexes in Enzymes[J]. JBIC Journal of BiologicalInorganic Chemistry,2006,11(6):695-701.
    [119] Noodleman L, Lovell T, Han W G. Quantum Chemical Studies ofIntermediates and Reaction Pathways in Selected Enzymes and CatalyticSynthetic Systems[J]. Chemical Reviews,2004,104(2):459-508.
    [120] Lovell T, Himo F, Han W G. Density Functional Methods Applied toMetalloenzymes[J]. Coordination Chemistry Reviews,2003,238:211-232.
    [121] Shaik S, Kumar D, de Visser S P. Theoretical Perspective on the Structure andMechanism of Cytochrome P450Enzymes[J]. Chemical Reviews,2005,105(6):2279-2328.
    [122] Cramer C J, Truhlar D G. Density Functional Theory for Transition Metals andTransition Metal Chemistry[J]. Physical Chemistry Chemical Physics,2009,11(46):10757-10816.
    [123] Schr der D, Shaik S, Schwarz H. Two-State Reactivity as a New Concept inOrganometallic Chemistry§[J]. Accounts of Chemical Research,2000,33(3):139-145.
    [124] White C E, Provis J L, Proffen T. Combining Density Functional Theory (DFT)and Pair Distribution Function (PDF) Analysis to Solve the Structure ofMetastable Materials: the Case of Metakaolin[J]. Physical ChemistryChemical Physics,2010,12(13):3239-3245.
    [125] Ahmadi A, Beheshtian J, Hadipour N L. Chemisorption of NH3at the OpenEnds of Boron Nitride Nanotubes: a DFT Study[J]. Structural Chemistry,2011,22(1):183-188.
    [126] Mark P, Zhang Q, Czjzek M. Molecular Dynamics Simulations of a BranchedTetradecasaccharide Substrate in the Active Site of a XyloglucanEndo-Transglycosylase[J]. Molecular Simulation,2011,37(12):1001-1013.
    [127] Klepeis J L, Lindorff-Larsen K, Dror R O. Long-Timescale MolecularDynamics Simulations of Protein Structure and Function[J]. Current Opinionin Structural Biology,2009,19(2):120-127.
    [128] Peng T, Nguyen A V, Peng H. Quantitative Analysis of Aqueous NanofilmRupture by Molecular Dynamic Simulation[J]. The Journal of PhysicalChemistry B,2012,116(3):1035-1042.
    [129] Lee J, Varshney V, Brown J S. Single Mode Phonon Scattering at CarbonNanotube-Graphene Junction in Pillared Graphene Structure[J]. AppliedPhysics Letters,2012,100(18):183111-1-183111-4.
    [130] Fan H B, Yuen M M F. Material Properties of the Cross-Linked Epoxy ResinCompound Predicted by Molecular Dynamics Simulation[J]. Polymer,2007,48(7):2174-2178.
    [131] Sun H, Mumby S J, Maple J R. An Ab Initio CFF93All-Atom Force Field forPolycarbonates[J]. Journal of the American Chemical Society,1994,116(7):2978-2987.
    [132] Deshmukh S A, Sankaranarayanan S K R S, Mancini D C. Atomic ScaleCharacterization of the Conformational Dynamics of a Thermo-Sensitive and aNon-Thermo-Sensitive Oligomer Using Vibrational Spectra Obtained fromMolecular Dynamics[J]. Polymer,2012,53(6):1306-1320.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700