单胺类受体PET显像在恐怖情绪中的临床应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恐怖音乐可以快速引起听者类似真实的威胁生命经历的情绪变化,程度严重的可产生类似创伤后应激障碍的症状,然而通过音乐研究相关情绪变化发生机制的报道非常有限,目前的研究证据主要局限于脑区结构或单一神经物质的作用,这些神经化学物质之间及其在各相关脑区的相互作用机制尚未完全清楚,发生发展的最后神经通路尚未明确,其主要原因之一是由于无法在活体状态下直接观察相关关键神经传递信息在脑内的时空动态变化过程。本研究选择与单胺类受体有稳固结合力的显像剂11C-甲基哌啶螺环酮(11C-N-methylspiperone,11C-NMSP)在活体内无创地进行正电子发射断层扫描技术(Positron Emission Tomography, PET)显像,观察志愿者在恐怖状态下的大脑内多巴胺D2受体和5-羟色胺2A受体的变化情况,进一步从受体水平研究恐怖状态导致的脑功能改变的的机制。
     第一部分:单胺类神经受体PET显像剂及模板建立
     为了客观统计分析神经受体PET显像的结果,我们采用国际上通用的脑功能影像分析软件统计参数图(Statistical Parametric Mapping, SPM)来进行图像处理。由于SPM软件分析PET图像数据时需要相应显像剂的特定模板,现有的是脑血流灌注和葡萄糖代谢的模板,所以我们首先选择20名性别和年龄匹配的志愿者进行1小时的脑动态PET扫描,用ROI技术对特异性脑区和非特异性脑区放射性计数的比值,根据比值结果选取最佳显像时间。根据我们的比值曲线结果,图像在30分钟到40分钟采集的比值最理想。用此时间的20个11C-NMSP图像在SPM软件进行平均化得到单胺类受体的分析模板。
     第二部分:恐惧音乐引起脑内单胺类受体变化:PET临床研究结果
     通过11C-NMSP单胺类受体显像剂PET脑图像观察脑内单胺类受体在恐怖音乐刺激下的改变情况,用SPM软件进行统计分析其特异性受体活性增高和降低的脑区。10名年龄匹配的正常男性志愿者纳入此项研究,分别在听恐怖音乐前后进行11C-NMSP单胺类受体PET显像,同时我们记录下来听音乐同时志愿者的心理生理改变情况。研究结果发现志愿者在听音乐和基础状态相比,11C-NMSP在双侧尾状核、右侧边缘和旁边缘脑区,尤其在右侧前扣带回皮质明显减低;同时11C-NMSP在右侧额叶、枕叶、左侧颞叶明显增加。
     我们的研究结果表明恐怖音乐引起的短暂的恐怖情绪可以引发脑内单胺类受体的迅速改变。这个研究结果从多巴胺和5-羟色胺受体分子水平帮助我们明确大脑恐怖的机制。
Frightening music can rapidly arouse emotions in listeners that mimic those from real life-threatening experiences. However, the study on the underlying mechanism for perceiving danger created by music is very limited. Present studies are mainly limited to the structures of brain regions or the simple neurochemical material. The mechanism of related brain regions and the relation of these neurochemical materials are still unknown, and one of the principal reasons is we cannot directly observe the changes of neurochemical messages in the living body. So we select the strong bond monoamine receptor imaging agent (11C-NMSP) to perform Positron Emission Tomography (PET) imaging. Then we can understand the pathological mechanism of PTSD (post trauma stress disorder) from the receptor molecular level through observing the changes of brain receptor of dopamine D2and5-HT2A in the volunteers under fear condition.
     Part1:Monoamine Receptor PET Imaging Agent and Construction of its Template
     We selected SPM (Statistical Parametric Mapping) software to analyze the monoamine receptor changes in volunteers. The present templates are only brain blood flow and glucose metabolism, so we have to construct the receptor imaging agent first.20age-matched male volunteers accepted the dynamic PET imaging of one hour. We chose the best imaging time of30min to40min after intravenous injection of agent after compare the ratio of specific region and nonspecific region. Then we acquire the11C-NMSP imaging template from realigning the20images at best time.
     Part2:Frightening Music Triggers Rapid Changes in Brain Monoamine Receptors:A Pilot PET Study
     We investigated monoamine receptor changes induced by frightening music using the11C-NMSP positron emission tomography (PET) study. Ten male, healthy volunteers were included, and their psychophysiological changes were evaluated. The radioactive accumulations of11C-NMSP were significantly decreased in the bilateral caudate, right limbic and paralimbic regions, especially in the right anterior cingulated cortex, but were increased in the cerebral cortex involving right frontal, occipital lobe and left temporal lobe when subjects had listened to frightening music, compared to a baseline condition.
     Conclusion:Our results indicate that transient fear emotion in response to frightening music can trigger rapid change monoamine receptors. These findings help to understand the mechanism of brain response to fear emotion.
引文
[1]Kessler RC, Sonnega A, Bromet E, Hughes M, Nelson CB. Posttraumatic stress disorder in the National Comorbidity Survey. Archives of General Psychiatry.1995;52:1048-1060.
    [2]Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime prevalence and age-of-onset distributions of DSM-Ⅳ disorders in the National Comorbidity Survey Replication. Archives of General Psychiatry. 2005;62:593-602.
    [3]American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 3rd edn, American Psychiatric Association.1980.
    [4]American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders 4th edn, American Psychiatric Press.2000.
    [5]Etkin A, Wager TD. Functional neuroimaging of anxiety:a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am. J. Psychiatry.2007;164:1476-1488.
    [6]Gold AL, Shin LM, Orr SP, Carson MA, Rauch SL, Macklin ML, Lasko NB, Metzger LJ, Dougherty DD, Alpert NM, Fischman AJ, Pitman RK. Decreased regional cerebral blood flow in medial prefrontal cortex during trauma-unrelated stressful imagery in Vietnam veterans with post-traumatic stress disorder. Psychol. Med.2011; 41:2563-2572.
    [7]Felmingham K, Williams LM, Kemp AH, Liddell B, Falconer E, Peduto A, Bryant R. Neural responses to masked fear faces:sex differences and trauma exposure in posttraumatic stress disorder. J. Abnorm. Psychol. 2010;119:241-247.
    [8]Felmingham K, Kemp A, Williams L, Das P, Hughes G, Peduto A, Bryant R.Changes in anterior cingulate and amygdala after cognitive behavior therapy of posttraumatic stress disorder. Psychol. Sci.2007; 18:127-129.
    [9]Milad MR, Pitman RK, Ellis CB, Gold AL, Shin LM, Lasko NB, Zeidan MA, Handwerger K, Orr SP, Rauch SL. Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol. Psychiatry.2009; 66:1075-1082.
    [10]Bremner JD, Vythilingam M, Vermetten E, Southwick SM, McGlashan T, Nazeer A, Khan S, Vaccarino LV, Soufer R, Garg PK, Ng CK, Staib LH, Duncan JS, Charney DS. MRI and PET study of deficits in hippocampal structure and function in women with childhood sexual abuse and posttraumatic stress disorder. Am. J. Psychiatry.2003;160:924-932.
    [11]Aupperle RL, Allard CB, Grimes EM, Simmons AN, Flagan T, Behrooznia M, Cissell SH, Twamley EW, Thorp SR, Norman SB, Paulus MP, Stein MB. Dorsolateral prefrontal cortex activation during emotional anticipation and neuropsychological performance in posttraumatic stress disorder. Arch. Gen. Psychiatry.2012;69:360-371.
    [12]Hayes JP, Hayes SM, Mikedis AM. Quantitative meta-analysis of neural activity in posttraumatic stress disorder. Biol. Mood Anxiety Disord.2012;2:9.
    [13]Servatius RJ, Ottenweller JE, Bergen MT, Soldan S, Natelson BH. Persistent stress-induced sensitization of adrenocortical and startle responses. Physiol Behav. 1994;56:945-954.
    [14]Kozlovsky N, Matar MA, Kaplan Z, Zohar J, Cohen H. A distinct pattern of intracellular glucocorticoid-related responses is associated with extreme behavioral response to stress in an animal model of post-traumatic stress disorder. Eur. Neuropsychopharmacol.2009;19:759-771.
    [15]Zhe D, Fang H, Yuxiu S.Expressions of hippocampal mineralocorticoid receptor (MR) and glucocorticoid receptor (GR) in the single-prolonged stress-rats. Acta Histochem. Cytochem.2008;41:89-95.
    [16]Adamec R, Muir C, Grimes M, Pearcey K. Involvement of noradrenergic and corticoid receptors in the consolidation of the lasting anxiogenic effects of predator stress. Behav. Brain Res.2007 179,192-207.
    [17]Adamec R, Fougere D, Risbrough V. CRF receptor blockade prevents initiation and consolidation of stress effects on affect in the predator stress model of PTSD. Int. J. Neuropsychopharmacol.2010;13:747-757.
    [18]Segman RH, Shefi N, Goltser-Dubner T, Friedman N, Kaminski N, Shalev AY. Peripheral blood mononuclear cell gene expression profiles identify emergent post-traumatic stress disorder among trauma survivors. Mol. Psychiatry. 2005;10:500-513.
    [19]Zieker J, Zieker D, Jatzko A, Dietzsch J, Nieselt K, Schmitt A, Bertsch T, Fassbender K, Spanagel R, Northoff H, Gebicke-Haerter PJ. Differential gene expression in peripheral blood of patients suffering from post-traumatic stress disorder. Mol. Psychiatry.2007;12:116-118.
    [20]Nikolaus S, Antke C, Beu M, Muller HW. Cortical GABA, striatal dopamine and midbrain serotonin as the key players in compulsive and anxiety disorders--results from in vivo imaging studies. Rev Neurosci.2010;21(2):119-39.
    [21]Pitman RK, Rasmusson AM, Koenen KC, Shin LM, Orr SP, Gilbertson MW, Milad MR, Liberzon Ⅰ. Biological studies of post-traumatic stress disorder. Nat Rev Neurosci.2012;3(11):769-87.
    [22]Kas A, Payoux P, Habert MO, Malek Z, Cointepas Y, El Fakhri G, Chaumet-Riffaud P, Itti E, Remy P. Validation of a Standardized Normalization Template for Statistical Parametric Mapping Analysis of 123I-FP-CIT Images. J Nucl Med.2007;48(9):1459-67.
    [23]Fowler JS, Arnett CD, Wolf AP, Shiue CY, MacGregor RR, Halldin C, Langstrom B, Wagner HN Jr. A direct comparison of the brain uptake and plasma clearance of N-[11C]methylspiroperidol and [18F]N-methylspiroperidol in baboon using PET. Int J Rad Appl Instrum B.1986;13(3):281-4.
    [24]Mikhno A, Devanand D, Pelton G, Cuasay K, Gunn R, Upton N, Lai RY, Libri V, Mann JJ, Parsey RV. Voxel-based analysis of 11C-PIB scans for diagnosing Alzheimer's disease. J Nucl Med.2008 Aug;49(8):1262-9.
    [1]Blood AJ, Zatorre RJ, Bermudez P, Evans AC. Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat Neurosci.1999;2:382-387.
    [2]Bigand E, Filipic S, Lalitte P. The time course of emotional responses to music. Ann N Y Acad Sci.2005;1060:429-437.
    [3]Koelsch S, Fritz T, DY VC, Muller K, Friederici AD. Investigating emotion with music:an fMRI study. Hum Brain Mapp.2006;27:239-250.
    [4]de la Mora MP, Gallegos-Cari A, Arizmendi-Garcia Y, Marcellino D, Fuxe K. Role of dopamine receptor mechanisms in the amygdaloid modulation of fear and anxiety:Structural and functional analysis. Prog Neurobiol.2010;90:198-216.
    [5]Schneier FR, Liebowitz MR, Abi-Dargham A, Zea-Ponce Y, Lin SH, Laruelle M. Low dopamine D(2) receptor binding potential in social phobia. Am J Psychiatry. 2000; 157:457-459.
    [6]Zanoveli JM, Carvalho MC, Cunha JM, Brandao ML. Extracellular serotonin level in the basolateral nucleus of the amygdala and dorsal periaqueductal gray under unconditioned and conditioned fear states:an in vivo microdialysis study. Brain Res.2009;1294:106-115.
    [7]Salimpoor VN, Benovoy M, Larcher K, Dagher A, Zatorre RJ. Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat Neurosci.2011;14:257-262.
    [8]Wagner HN Jr, Burns HD, Dannals RF, Wong DF, Langstrom B, Duelfer T, Frost JJ, Ravert HT, Links JM, Rosenbloom SB, Lukas SE, Kramer AV, Kuhar MJ. Imaging dopamine receptors in the human brain by positron tomography. Science.1983;221:1264-1266.
    [9]Morris ED, Yoder KK. Positron emission tomography displacement sensitivity: predicting binding potential change for positron emission tomography tracers based on their kinetic characteristics. J Cereb Blood Flow Metab.2007; 27:606-617.
    [10]Ishibashi K, Ishii K, Oda K, Mizusawa H, Ishiwata K. Competition between 11C-raclopride and endogenous dopamine in Parkinson's disease. Nucl Med Commun.2010;31:159-166.
    [11]Paterson LM, Tyacke RJ, Nutt DJ, Knudsen GM. Measuring endogenous 5-HT release by emission tomography:promises and pitfalls. J Cereb Blood Flow Metab.2010;30:1682-1706.
    [12]Nyberg S, Eriksson B, Oxenstierna G, Halldin C, Farde L. Suggested minimal effective dose of risperidone based on PET-measured D2 and 5-HT2A receptor occupancy in schizophrenic patients. Am J Psychiatry.1999;156:869-875.
    [13]Gefvert O, Lundberg T, Wieselgren IM, Bergstrom M, Langstrom B, Wiesel F, Lindstrom L. D(2) and 5HT(2A) receptor occupancy of different doses of quetiapine in schizophrenia:a PET study. Eur Neuropsychopharmacol. 2001;11:105-110.
    [14]http://www.cduniverse.com/productinfo.asp?pid=6812961&style=movie.
    [15]Fukui H, Toyoshima K. Music facilitate the neurogenesis, regeneration and repair of neurons. Med Hypotheses.2008;71:765-769.
    [16]Karabanov A, Cervenka S, de Manzano O, Forssberg H, Farde L, Ullen F. Dopamine D2 receptor density in the limbic striatum is related to implicit but not explicit movement sequence learning. Proc NatlAcad Sci U S A. 2010;107:7574-7579.
    [17]Ishizu T, Zeki S. Toward a brain-based theory of beauty. PLoS One. 2011;6:e21852.
    [18]Bressan RA, Crippa JA. The role of dopamine in reward and pleasure behaviour--review of data from preclinical research. Acta Psychiatr Scand Suppl. 2005:14-21.
    [19]Etkin A, Wager TD. Functional neuroimaging of anxiety:a meta-analysis of emotionalprocessing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry.2007;164:1476-1488.
    [20]Gosselin N, Peretz I, Noulhiane M, Hasboun D, Beckett C, Baulac M, Samson S. Impaired recognition of scary music following unilateral temporal lobe excision. Brain.2005;128:628-640.
    [21]Flores-Gutierrez EO, Diaz JL, Barrios FA, Favila-Humara R, Guevara MA, del Rio-Portilla Y, Corsi-Cabrera M. Metabolic and electric brain patterns during pleasant and unpleasant emotions induced by music masterpieces. Int J Psychophysiol.2007;65:69-84.
    [22]Goggi JL, Sardini A, Egerton A, Strange PG, Grasby PM. Agonist-dependent internalization of D2 receptors:Imaging quantification by confocal microscopy. Synapse.2007;61:231-241.
    [23]Gosselin N, Peretz I, Johnsen E, Adolphs R. Amygdala damage impairs emotion recognition from music.Neuropsychologia.2007;45(2):236-244.
    [24]Hurlemann R, Schlaepfer TE, Matusch A, Reich H, Shah NJ, Zilles K, Maier W, Bauer A. Reduced 5-HT(2A) receptor signaling following selective bilateral amygdala damage. Soc Cogn Affect Neurosci.2009;4(1):79-84.
    [25]Fisher PM, Meltzer CC, Price JC, Coleman RL, Ziolko SK, Becker C, Moses-Kolko EL, Berga SL, Hariri AR. Medial prefrontal cortex 5-HT(2A) density is correlated with amygdala reactivity, response habituation, and functional coupling. Cereb Cortex.2009;19(11):2499-2507.
    [26]Dellacherie D, Hasboun D, Baulac M, Belin P, Samson S. Impaired recognition of fear in voices and reduced anxiety after unilateral temporal lobe resection. Neuropsychologia.2011;49(4):618-629.
    [1]Mazziotta JC, Phelps ME, Carson RE, Kuhl DE. Tomographic mapping of human cerebral metabolism:auditory stimulation. Neurology.1982; 32(9): 921-37.
    [2]Ruytjens L, Willemsen AT, Van Dijk P, Wit HP, Albers FW. Functional imaging of the central auditory system using PET. Acta Otolaryngol.2006; 126(12): 1236-44.
    [3]Koelsch S. Towards a neural basis of music-evoked emotions. Trends Cogn Sci. 2010; 14(3):131-7.
    [4]Juslin PN, Sloboda JA. Music and Emotion:Theory and Research. Patrik N. Juslin JAS, editor. Oxford:Oxford University Press;2001.
    [5]Juslin PN, Vastfjall D. Emotional responses to music:the need to consider underlying mechanisms. Behav Brain Sci.2008; 31(5):559-75; discussion 75-621.
    [6]Blood AJ, Zatorre RJ, Bermudez P, Evans AC. Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat Neurosci.1999; 2(4):382-7.
    [7]Blood AJ, Zatorre RJ. Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc Natl Acad Sci U S A.2001; 98(20):11818-23.
    [8]Peretz I. Brain specialization for music. New evidence from congenital amusia. Ann N Y Acad Sci.2001; 930:153-65.
    [9]Platel H. Neuropsychology of musical perception:new perspectives.Brain.2002; 125(Pt 2):223-4.
    [10]Platel H, Price C, Baron JC, Wise R, Lambert J, Frackowiak RS, et al. The structural components of music perception. A functional anatomical study. Brain. 1997; 120 (Pt 2):229-43.
    [11]Lauter JL, Herscovitch P, Formby C, Raichle ME. Tonotopic organization in human auditory cortex revealed by positron emission tomography. Hear Res. 1985; 20(3):199-205.
    [12]Zatorre RJ, Evans AC, Meyer E, Gjedde A. Lateralization of phonetic and pitch discrimination in speech processing. Science.1992; 256(5058):846-9.
    [13]Satoh M, Takeda K, Nagata K, Hatazawa J, Kuzuhara S. Activated brain regions in musicians during an ensemble:a PET study. Brain Res Cogn Brain Res.2001; 12(1):101-8.
    [14]Satoh M, Takeda K, Nagata K, Hatazawa J, Kuzuhara S. The anterior portion of the bilateral temporal lobes participates in music perception:a positron emission tomography study. AJNR Am J Neuroradiol.2003; 24(9):1843-8.
    [15]Bocher M, Chisin R, Parag Y, Freedman N, Meir Weil Y, Lester H, et al. Cerebral activation associated with sexual arousal in response to a pornographic clip:A 15O-H2O PET study in heterosexual men. Neuroimage.2001; 14(1 Pt 1): 105-17.
    [16]Kemna LJ, Posse S, Tellmann L, Schmitz T, Herzog H. Interdependence of regional and global cerebral blood flow during visual stimulation:an O-15-butanol positron emission tomography study. J Cereb Blood Flow Metab. 2001; 21(6):664-70.
    [17]Zatorre RJ, Evans AC, Meyer E. Neural mechanisms underlying melodic perception and memory for pitch. J Neurosci.1994; 14(4):1908-19.
    [18]Halpern AR, Zatorre RJ. When that tune runs through your head:a PET investigation of auditory imagery for familiar melodies. Cereb Cortex.1999; 9(7): 697-704.
    [19]Yoo SS, Lee CU, Choi BG. Human brain mapping of auditory imagery: event-related functional MRI study. Neuroreport.2001;12(14):3045-9.
    [20]Schurmann M, Raij T, Fujiki N, Hari R. Mind's ear in a musician:where and when in the brain. Neuroimage.2002; 16(2):434-40.
    [21]Satoh M, Takeda K, Nagata K, Shimosegawa E, Kuzuhara S. Positron-emission tomography of brain regions activated by recognition of familiar music. AJNR Am J Neuroradiol.2006; 27(5):1101-6.
    [22]Brown S, Martinez MJ, Parsons LM. Passive music listening spontaneously engages limbic and paralimbic systems.Neuroreport.2004; 15(13):2033-7.
    [23]Baumgartner T, Lutz K, Schmidt CF, Jancke L. The emotional power of music: how music enhances the feeling of affective pictures. Brain Res.2006; 1075(1): 151-64.
    [24]Koelsch S, Fritz T, DY VC, Muller K, Friederici AD. Investigating emotion with music:an fMRI study. Hum Brain Mapp.2006;27(3):239-50.
    [25]Ball T, Rahm B, Eickhoff SB, Schulze-Bonhage A, Speck O, Mutschler I. Response properties of human amygdala subregions:evidence based on functional MRI combined with probabilistic anatomical maps. PLoS One.2007; 2(3):e307.
    [26]Eldar E, Ganor O, Admon R, Bleich A, Hendler T. Feeling the real world:limbic response to music depends on related content. Cereb Cortex.2007; 17(12): 2828-40.
    [27]Koelsch S, Fritz T, Schlaug G. Amygdala activity can be modulated by unexpected chord functions during music listening. Neuroreport.2008; 19(18): 1815-9.
    [28]Lerner Y, Papo D, Zhdanov A, Belozersky L, Hendler T. Eyes wide shut: amygdala mediates eyes-closed effect on emotional experience with music. PLoS One.2009; 4(7):e6230.
    [29]Price JL. Free will versus survival:brain systems that underlie intrinsic constraints on behavior. J Comp Neurol.2005; 493(1):132-9.
    [30]Murray EA. The amygdala, reward and emotion. Trends Cogn Sci.2007; 11(11): 489-97.
    [31]LeDoux J. The amygdala. Curr Biol.2007; 17(20):R868-74.
    [32]Menon V, Levitin DJ. The rewards of music listening:response and physiological connectivity of the mesolimbic system. Neuroimage.2005; 28(1):175-84.
    [33]Koelsch S, Remppis A, Sammler D, Jentschke S, Mietchen D, Fritz T, et al. A cardiac signature of emotionality. Eur J Neurosci.2007;26(11):3328-38.
    [34]Salimpoor VN, Benovoy M, Longo G, Larcher K, Cooperstock J, Dagher A, et al. The Rewarding Aspects of Music Listening Involve the Dopaminergic Striatal Reward Systems of the Brain:An Investigation with [C11]Raclopride PET and fMRI NeuroImage.2009; 47(Suppl.1):S160.
    [35]Nakamura S, Sadato N, Oohashi T, Nishina E, Fuwamoto Y,Yonekura Y. Analysis of music-brain interaction with simultaneous measurement of regional cerebral blood flow and electroencephalogram beta rhythm in human subjects. Neurosci Lett.1999; 275(3):222-6.
    [36]Parsons LM. Exploring the functional neuroanatomy of music performance, perception, and comprehension. Ann N Y Acad Sci.2001; 930:211-31.
    [37]Platel H, Baron JC, Desgranges B, Bernard F, Eustache F. Semantic and episodic memory of music are subserved by distinct neural networks. Neuroimage.2003; 20(1):244-56.
    [38]Brown S, Martinez MJ, Parsons LM. Music and language side by side in the brain:a PET study of the generation of melodies and sentences. Eur J Neurosci. 2006; 23(10):2791-803.
    [39]Groussard M, Viader F, Landeau B, Desgranges B, Eustache F, Platel H. Neural correlates underlying musical semantic memory. Ann N Y Acad Sci.2009; 1169: 278-81.
    [40]Giovacchini G, Ferdinando S, Esmaeilzadeh M, Amalia M, Luigi M, Ciarmiello A. Pet translates neurophysiology in images:A review to stimulate a network between neuroimaging and basic research. J Cell Physiol.2011; 226(4):948-961.
    [41]Zhang Y, Chen Q, Du F, Hu Y, Chao F, Tian M, et al. Frightening Music Triggers Rapid Changes in Brain Monoamine Receptors:A Pilot PET Study. J Nucl Med.2012; 53(10):1573-1578.
    [42]Janata P, Grafton ST. Swinging in the brain:shared neural substrates for behaviors related to sequencing and music. Nat Neurosci.2003; 6(7):682-7.
    [43]Limb CJ. Structural and functional neural correlates of music perception. Anat Rec A Discov Mol Cell Evol Biol.2006; 288(4):435-46.
    [44]Yang P, Allen MS, Aubry MC, Wampfler JA, Marks RS, Edell ES, et al. Clinical features of 5,628 primary lung cancer patients:experience at Mayo Clinic from 1997 to 2003. Chest.2005; 128(1):452-62.
    [45]Kut V, Spies W, Spies S, Gooding W, Argiris A. Staging and monitoring of small cell lung cancer using [18F]fluoro-2-deoxy-Dglucose-positron emission tomography (FDG-PET). Am J Clin Oncol.2007; 30(1):45-50.
    [46]Aflalo-Hazan V, Gutman F, Raileanu I, Fretault J, Kerrou K, Grahek D, et al. [18F-FDG PET and bone scintigraphy to search for bone metastasis of lung cancer]. Rev Pneumol Clin.2006; 62(3):164-9.
    [47]Ghanem N, Uhl M, Brink I, Schafer O, Kelly T, Moser E, et al. Diagnostic value of MRI in comparison to scintigraphy, PET, MSCT and PET/CT for the detection of metastases of bone. Eur J Radiol.2005; 55(1):41-55.
    [48]Gayed I, Vu T, Johnson M, Macapinlac H, Podoloff D. Comparison of bone and 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography in the evaluation of bony metastases in lung cancer. Mol Imaging Biol.2003; 5(1): 26-31.
    [49]Bury T, Barreto A, Daenen F, Barthelemy N, Ghaye B, Rigo P. Fluorine-18 deoxyglucose positron emission tomography for the detection of bone metastases in patients with non-small cell lung cancer. Eur J Nucl Med.1998; 25(9):1244-7.
    [50]Algra PR, Heimans JJ, Valk J, Nauta JJ, Lachniet M, Van Kooten B. Do metastases in vertebrae begin in the body or the pedicles? Imaging study in 45 patients. AJR Am J Roentgenol.1992; 158(6):1275-9.
    [51]Udo de Haes JI, Maguire RP, Jager PL, Paans AM, den Boer JA. Methylphenidate-induced activation of the anterior cingulate but not the striatum: a [15O]H2O PET study in healthy volunteers.Hum Brain Mapp.2007; 28(7): 625-35.
    [52]Marie RM, Lozza C, Chavoix C, Defer GL, Baron JC. Functional imaging of working memory in Parkinson's disease:compensations and deficits. J Neuroimaging.2007; 17(4):277-85.
    [53]Borghammer P, Jonsdottir KY, Cumming P, Ostergaard K, Vang K, Ashkanian M, et al. Normalization in PET group comparison studies--the importance of a valid reference region. Neuroimage.2008; 40(2):529-40.
    [54]Hummel T, Oehme L, van den Hoff J, Gerber J, Heinke M, Boyle JA, et al. PET-based investigation of cerebral activation following intranasal trigeminal stimulation. Hum Brain Mapp.2009; 30(4):1100-4.
    [55]Wong CY, Thie J, Gaskill M, Ponto R, Hill J, Tian HY, et al. A statistical investigation of normal regional intra-subject heterogeneity of brain metabolism and perfusion by F-18 FDG and O-15 H2O PET imaging. BMC Nucl Med.2006; 6:4.
    [56]Zubieta JK, Heitzeg MM, Xu Y, Koeppe RA, Ni L, Guthrie S, et al. Regional cerebral blood flow responses to smoking in tobacco smokers after overnight abstinence. Am J Psychiatry.2005; 162(3):567-77.
    [57]Desco M, Penedo M, Gispert JD, Vaquero JJ, Reig S, Garcia-Barreno P. ROC evaluation of statistical wavelet-based analysis of brain activation in [15O]-H2O PET scans. Neuroimage.2005;24(3):763-70.
    [58]Maschke M, Erichsen M, Drepper J, Jentzen W, Muller SP, Kolb FP, et al. Cerebellar representation of the eyeblink response as revealed by PET. Neuroreport.2003; 14(10):1371-4.
    [59]Park HJ, Kim JJ, Youn T, Lee DS, Lee MC, Kwon JS. Independent component model for cognitive functions of multiple subjects using [15O]H2O PET images. Hum Brain Mapp.2003; 18(4):284-95.
    [60]Maschke M, Erichsen M, Drepper J, Jentzen W, Muller SP, Kolb FP, et al. Limb flexion reflex-related areas in human cerebellum. Neuroreport.2002; 13(17): 2325-30.
    [61]Rademacher J, Morosan P, Schleicher A, Freund HJ, Zilles K. Human primary auditory cortex in women and men. Neuroreport.2001; 12(8):1561-5.
    [62]Kulynych JJ, Vladar K, Jones DW, Weinberger DR. Gender differences in the normal lateralization of the supratemporal cortex:MRI surface-rendering morphometry of Heschl's gyrus and the planum temporale. Cereb Cortex.1994; 4(2):107-18.
    [63]Kocak M, Ulmer JL, Biswal BB, Aralasmak A, Daniels DL, Mark LP. The influence of gender on auditory and language cortical activation patterns: preliminary data. AJNR Am J Neuroradiol.2005; 26(9):2248-55.
    [64]Goldstein JM, Jerram M, Poldrack R, Anagnoson R, Breiter HC, Makris N, et al. Sex differences in prefrontal cortical brain activity during fMRI of auditory verbal working memory.Neuropsychology.2005; 19(4):509-19.
    [65]Ruytjens L, Georgiadis JR, Holstege G, Wit HP, Albers FW, Willemsen AT. Functional sex differences in human primary auditory cortex. Eur J Nucl Med Mol Imaging.2007; 34(12):2073-81.
    [66]Nagy E, Potts GF, Loveland KA. Sex-related ERP differences in deviance detection. Int J Psychophysiol.2003; 48(3):285-92.
    [67]Huron D. Sweet Anticipation:Music and the Psychology of Expectation. Cambridge:MIT Press; 2006.
    [68]Grewe O, Nagel F, Kopiez R, Altenmuller E. Listening to music as a re-creative process:physiological, psychological and psychoacoustical correlates of chills and strong emotions. Music Perception.2007; 24(3):297-314.
    [69]Sutherland ME, Grewe O, Egermann H, Nagel F, Kopiez R, Altenmuller E. The influence of social situations on music listening. Ann N Y Acad Sci.2009; 1169: 363-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700