聚磷酸酯的控制合成及其在药物传递中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚磷酸酯是一类以磷酸酯键为链接结构的生物可降解高分子。由于其良好的生物相容性,以及可以通过水解和酶催化的可降解性,聚磷酸酯在生物医学领域的应用引起了广泛关注。
     本论文发展了两种聚磷酸酯的控制聚合体系,改变了聚磷酸酯合成不可控的状况,并籍此构建了性能可调控的“智能型”纳米药物载体。我们研究了两种聚磷酸酯的开环聚合体系,证明其聚合过程具有活性特征,可用于准确控制聚磷酸酯的分子量、组成及结构。我们进一步利用上述聚磷酸酯的控制合成方法,结合聚磷酸酯的独特性能,构建了多种尺度和性能可调控的纳米胶束和纳米凝胶药物载体,用于化疗药物的靶向传递、胞内响应性药物输送和克服肿瘤细胞的多药耐药性。
     本论文的工作内容和主要结论如下:
     1、研究了以三异丙醇铝和异辛酸亚锡分别为引发体系的磷酸酯环状单体的聚合及聚合反应的动力学,发现磷酸酯单体的聚合具有活性特征。通过调节单体与引发剂的比例、反应时间等可以控制单体的聚合,获得具有不同分子量和结构组成的聚合物,包括各种嵌段共聚物。研究还发现,以异辛酸亚锡为催化剂的磷酸酯单体的聚合速率与磷酸酯单体的侧基、环取代基密切相关,而且可以方便利用聚磷酸酯侧基对高分子进行功能化修饰。
     2、基于聚磷酸酯的可降解性、相对亲水性和良好的生物相容性,利用上述可控合成方法,发展了一系列具有不同分子量及组成的聚ε-己内酯及聚(乙基乙撑磷酸酯)(PCL-b-PEEP)的两亲性嵌段共聚物,研究了其在水溶液中的自组装行为,构建了以聚(乙基乙撑磷酸酯)(PEEP)为壳的纳米胶束药物载体,探索了影响纳米胶束性能和药物释放特性的影响因素。研究发现以PEEP为壳PCL为核的纳米胶束具有良好的细胞相容性,尺寸与聚合物的结构密切相关,较聚乙二醇(PEG)为壳的纳米胶束具有更低的临界胶束浓度,因而具有更好的稳定性,同时紫杉醇药物从PCL-b-PEEP纳米胶束的释放性能受聚合物结构的调控。
     以三异丙醇铝或异辛酸亚锡/醇引发体系合成的PCL-b-PEEP均具有可修饰的亲水链段羟基末端。我们将其端羟基进行功能化修饰,探索了外壳靶向性修饰的纳米药物载体的构建方法,研究了其靶向输送药物到肿瘤细胞的功能。通过将PCL-b-PEEP胶束表面氨基半乳糖化,获得了与HepG2细胞表面去唾液酸糖蛋白受体特异性结合的靶向纳米载药纳米胶束。它通过受体介导内吞携载更多的紫杉醇进入HepG2细胞,并显示靶向能力和对HepG2更强的杀伤能力。
     3、从研究PEEP及其与聚(异丙基乙撑磷酸酯)(PPEP)或聚(甲基乙撑磷酸酯)(PMEP)的温度敏感性能入手,发展了对多重环境刺激具有响应性的纳米药物载体,并研究了其胞内药物传递的性能。首先设计合成了大量由聚ε-己内酯和温度敏感性聚磷酸酯组成的嵌段共聚物,发现其纳米胶束的温度响应性可以精确通过调节聚磷酸酯的组成和分子量而在较大的范围内进行调控。进一步对胶束亲水性壳层进行微小末端修饰可以使胶束获得对温度、pH、光照等多重响应性,并可精确调控。这些具有多重响应性的载药纳米胶束显示对多重环境刺激的响应性药物控制释放行为,并受亲水性聚磷酸酯链段端基的特性调控。亲水性聚磷酸酯链段端基修饰成羧基后,纳米胶束载体具有pH及温度双重响应性药物释放特性,酸性溶酶体及内涵体的pH (pH5.5)降低其最低临界溶解温度(LCST)至37℃以下,从而触发其在体温37℃下的快速药物释放,而在pH 7.4和37℃下药物释放速度显著减慢。这种pH及温度双重响应性纳米载药胶束进入细胞后,显著增强药物对MCF-7细胞及MCF-7/ADR耐药细胞的毒性。
     4、设计合成了由聚乙二醇和温度敏感性聚磷酸酯组成的双亲水性嵌段共聚物,利用聚磷酸酯的温度响应性及其受盐浓度调控的特点,发展了无模版法制备多功能聚磷酸酯纳米凝胶的制备方法,并研究了其药物传递性能。首先研究了聚合物组成、盐离子浓度对PEG和聚磷酸酯嵌段共聚物的温度响应性的影响,发现上述双亲水性聚合物在温度高于其LCST的情况下,在水溶液中形成尺度与高分子溶液浓度和盐离子浓度密切相关的纳米颗粒,这些颗粒表现出良好的细胞和组织相容性,可以降解。接着利用盐离子调控上述温度响应性聚合物组装的特性,发展了盐诱导和光交联的无模版法合成亲水性纳米凝胶的新方法,并进一步通过在体系中掺入键和含有靶向基团(乳糖基,Lac-)和丙烯酰基(Acr-)的杂双功能化Lac-PEG3.4K-b-PEEP172-Acr,方便地制备了通过配体-受体相互作用特异性传递药物到HepG2细胞的纳米凝胶,增强了药物对细胞的杀伤作用。
     5、肿瘤细胞对药物的多药耐药性是造成化疗失败的一个重要原因。为了克服其多药耐药性,我们设计合成了用二硫键桥连的PCL和PEEP的嵌段共聚物(PCL-S-S-PEEP),构建了对细胞内还原物质(如谷胱甘肽)刺激响应性的纳米药物载体,用于逆转肿瘤细胞的多药耐药性。我们研究发现,一方面,基于PCL-S-S-PEEP的纳米胶束可以包载阿霉素药物分子,通过内吞的途径进入耐药的MCF-7/ADR乳腺癌细胞,使药物分子避开耐药细胞表面P-糖蛋白的泵出作用,从而造成药物在细胞内的大量富集;另一方面,细胞内的还原环境使聚合物二硫桥键的断裂,导致胶束在胞内被迅速破坏,从而快速释放包载的阿霉素药物。这种响应性从纳米胶束的胞内药物快速释放使药物的细胞半致死剂量降低到游离药物的15%,有效逆转了肿瘤细胞的多药耐药性。
Polyphosphoesters are a series of biodegradable polymers with repeating phosphoester bonds in the backbone. Owing to their good biocompatibility, and biodegradability through hydrolysis as well as enzyme catalytic degradation, polyphosphoester are raising great interest in biomedical applications.
     The purposes of this dissertation are to overcome the problem of uncontrollability encountered by traditional syntheses methods of polyphosphoesters, and to develop nano-drug carriers based on polyphosphoesters with controllable properties. We have studied two catalytic systems for ring-opening polymerization of cyclic phosphoester monomers, and demonstrated that the polymerization is with living characteristics and thus can be utilized to synthesize polyphosphoesters with controlled molecular weight, composition and structure. Taking the advantages of the controlled synthesis methods and the unique properties of polyphosphoester, we have constructed a few nano-carriers for drug delivery, including micellar nanoparticles and nanogels with tunable sizes and properties, which have been applied for targeted delivery of chemotherapeutic drugs, intracellular responsive drug delivery and reversal of multi-drug resistance of cancer cells.
     The main content and conclusions of this dissertation are summarized below:
     1. We have investigated the ring-opening polymerization of cyclic phosphoester monomers using aluminum isopropoxide and stannous octoate as the initiators. The polymerization kinetics studies reveal the living characteristics of polymerization. The molecular weight and molecular architecture of polymers, including block copolymers, can be well-controlled by adjusting the molar ratios of monomers and the initiator as well as the reaction time. It has also been found that, the polymerization rate of cyclic phosphoester monomer is highly depended on the structure of pendant side group and the ring substituent group when using stannous octoate as the catalyst. The polymerization method also facilitates the synthesis of functionalized polyphosphoesters with pendant functional modification (e.g. by "click" chemistry).
     2. Taking the advantages of the controlled synthesis methods above and the unique properties of polyphosphoester, including the biodegradability, water solubility and good biocompatibility, we have developed a series of triblock copolymers of poly(s-caprolactone) and poly(ethyl ethylene phosphate) (PCL-b-PEEP). We have investigated the self-assembly behavior of those block copolymers, and constructed micellar nanoparticles with hydrophilic poly(ethyl ethylene phosphate) (PEEP) as the shell material for drug delivery. It has been proved that micelles with PCL core and PEEP shell are cytocompatible, while the size of micelles can be finely tuned by adjusting the molecular weight and composition of the copolymers. Moreover, the critical micellization concentrations of the micelles are relatively lower compared with micelles bearing poly(ethylene glycol) (PEG) shell, indicating that micelles with PEEP shell can be more stable thermodynamically. The drug release of paclitaxel from those micelles is correlative to the polymer structures.
     PCL-b-PEEP copolymers obtained through ring-opening polymerization catalyzed by Al(O'Pr)3 or stannous octoate bear hydroxyl end groups. The hydroxyl groups have been further modified to achieve active targeting in drug delivery for cancer therapy. With surface conjugation of galactose to the end of PEEP chain, the micellar nanoparticles can targeted deliver paclitaxel to HepG2 cells via interaction with asialoglycoprotein receptor (ASGP-R) presented on the cell membranes, leading to higher cytotoxicity when compared with the micelles without galactose ligands.
     3. We have developed multi-responsive micelles as nano-drug carriers based on the thermoresponsibility of polyphosphoesters, and investigated the intracellular drug release behaviors. The responsibility of micelles composed of poly(ε-caprolactone) and thermoresponsive polyphosphoester can be widely tuned by adjusting the molecular weight and polymer composition. The multi-responsibilities (thermo-, pH-and light-responsibilities) have been simply achieved and finely controlled by subtle chain terminal modification of polyphosphoester chain. Such stimuli-responsive micelles lead to responsive drug release properties in response to multi-environmental stimuli, which are adjustable by the subtle chain terminal groups. The micelles with carboxyl groups on the surface exhibit thermo-sensitivity in responsive to pH variation, thus the endosomal/lysosomal pH (pH 5.5) triggers rapid drug release from the micelles at 37℃, owing to that pH lowers the lowest critical solution temperature (LCST) of micelles to a temperature lower than 37℃. On the contrast, at pH 7.4, the LCST of the micelles is higher than 37℃and the drug release is much slower. Thus, with the encapsulation of doxorubicin, the dual pH-/thermo responsive micelles significantly increase the cytotoxicity of doxorubicin against both MCF-7 and drug-resistant MCF-7/ADR cancer cells.
     4. We have designed and synthesized water soluble block copolymers composed of poly(ethylene glycol) and thermoresponsive polyphosphoesters. Based on the influence of salt on the thermoresponsibility, we have developed multi-functional nano-hydrogel with polyphosphoester core using a template-free method, and investigated the drug delivery behaviors. It is demonstrated that the composition of polymer, salt concentration and molecular weight of the polymer influence the thermoresponsibility. The polymers form self-assemblies when the environmental temperature is higher than its LCST, and the size of assemblies depends on the concentration of both polymer and salt. The self-assemblies are proven to be biocompatible and biodegradable. Photo-crosslinking of the salt-induced assemblies leads to formation of nanogels. Moreover, with the integration of lactosyl moieties onto the surface of nanogels, the nanogels can specifically bind HepG2 cells mediated by ligand-receptor interaction, thus deliver drug to cells more efficiently, resulting enhanced cytotoxicity.
     5. The multidrug resistance of cancer cells against chemotherapeutic drugs is a major factor in the failure of chemotherapy. To overcome the multidrug resistance, we have designed and synthesized a disulfide-linked biodegradable diblock copolymer of poly(ε-caprolactone) and poly(ethyl ethylene phosphate) (PCL-S-S-PEEP), which forms micellar nanoparticles but detaches the PEEP shell in response to the intracellular reduction conditions (e.g., GSH). In one aspect, the micelles can enter cancer cells through internalization pathways, which protecting the drug from the efflux by P-glycoprotein located on the cell membranes, and resulting in drug accumulation in MCF-7/ADR drug resistant cells. In another aspect, the intracellular reduction conditions break the disulfide linkages between hydrophobic PCL and hydrophilic PEEP chains, thus destroy the micelles and accelerate the intracellular rapid release of doxorubicin incorporated in the micelles. The shell-detachable drug-loaded micelles in response to intracellular reduction conditions significantly overcome the drug resistance of MCF-7/ADR cells, lowering the IC50 to 15% of the free doxorubicin drug.
引文
1. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Progress in Polymer Science 2007;32:762-798.
    2. Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Advanced Drug Delivery Reviews 2003;55(3):329-347.
    3. Serrano MC, Chung EJ, Ameer GA. Advances and Applications of Biodegradable Elastomers in Regenerative Medicine. Advanced Functional Materials;20(2):192-208.
    4. Gaucher G, Marchessault RH, Leroux.JC. Polyester-based micelles and nanoparticles for the parenteral delivery of taxanes. Journal of Controlled Release;143(1):2-12.
    5. Place ES, George JH, Williams CK, Stevens MM. Synthetic polymer scaffolds for tissue engineering. Chemical Society Reviews 2009;38(4):1139-1151.
    6. Singh S, Ray SS. Polylactide based nanostructured Biomaterials and their applications. Journal of Nanoscience and Nanotechnology 2007;7(8):2596-2615.
    7. Sokolsky-Papkov M, Agashi K, Olaye A, Shakesheff K, Domb AJ. Polymer carriers for drug delivery in tissue engineering. Advanced Drug Delivery Reviews 2007;59(4-5):187-206.
    8. Platel RH, Hodgson LM, Williams CK. Biocompatible initiators for lactide polymerization. Polymer Reviews 2008;48(1):11-63.
    9. Jerome C, Lecomte P. Recent advances in the synthesis of aliphatic polyesters by ring-opening polymerization. Advanced Drug Delivery Reviews 2008;60(9):1056-1076.
    10. Artham T, Doble M. Biodegradation of aliphatic and aromatic polycarbonates. Macromolecular Bioscience 2008;8(1):14-24.
    11. Shah AA, Hasan F, Hameed A, Ahmed S. Biological degradation of plastics:A comprehensive review. Biotechnology Advances 2008;26(3):246-265.
    12. Williams CK. Synthesis of functionalized biodegradable polyesters. Chemical Society Reviews 2007;36:1573-1580.
    13. Rasal RM, Janorkar AV, Hirt DE. Poly(lactic acid) modifications. Progress in Polymer Science;35(3):338-356.
    14. Wang YC, Yuan YY, Du JZ, Yang XZ, Wang J. Recent Progress in Polyphosphoesters: From Controlled Synthesis to Biomedical Applications. Macromolecular Bioscience 2009;9(12):1154-1164.
    15. Pretula J, Kaluzynski K, Szymanski R, Penczek S. Preparation of poly(alkylene H-phosphonate)s and their derivatives by polycondensation of diphenyl H-phosphonate with diols and subsequent transformations. Macromolecules 1997 Dec 29;30(26):8172-8176.
    16. Pretula J, Kaluzynski K, Wisniewski B, Szymanski R, Loontjen T, Penczek S. H3PO4 in a direct synthesis of oligo-poly(ethylene phosphate) from ethylene glycol. Journal of Polymer Science Part a-Polymer Chemistry 2006;44(7):2358-2362.
    17. Liaw DJ. Synthesis of polyphosphates by the polyaddition of bisphenol-S diglycidyl ether and aryl phosphorodichloridates. Journal of Polymer Science Part a-Polymer Chemistry 1997;35(12):2365-2369.
    18. Penczek S, Pretula J. High-Molecular-Weight Poly(Alkylene Phosphate)S and Preparation of Amphiphilic Polymers Thereof. Macromolecules 1993 Apr 26;26(9):2228-2233.
    19. Penczek S, Pretula J, Kaluzynski K. Synthesis of a triblock copolymer:Poly(ethylene glycol)poly(alkylene phosphate)-poly(ethylene glycol) as a modifier of CaCO3 crystallization. Journal of Polymer Science Part a-Polymer Chemistry 2005 Feb 1;43(3):650-657.
    20. Wen J, Zhuo RX. Enzyme-catalyzed ring-opening polymerization of ethylene isopropyl phosphate. Macromolecular Rapid Communications 1998;19(12):641-642.
    21. Kaluzynski K, Libiszowski J, Penczek S. A new class of synthetic polyelectrolytes. acidic polyesters of phosphoric acid, (poly(hydroxyalkylene phosphoates)). Macromolecules 1976;9(2):365-367.
    22. Harper E, Dang WB, Lapidus RG, Garver RI. Enhanced efficacy of a novel controlled release paclitaxel formulation (PACLIMER Delivery System) for local-regional therapy of lung cancer tumor nodules in mice. Clinical Cancer Research 1999;5(12):4242-4248.
    23. Li KW, Dang WB, Tyler BM, Troiano G, Tihan T, Brem H, et al. Polilactofate microspheres for paclitaxel delivery to central nervous system malignancies. Clinical Cancer Research 2003;9(9):3441-3447.
    24. Mao HQ, Shipanova-Kadiyala I, Zhao Z, Dang WB, Brown A, Leong KW. Biodegradable poly(terephthalate-co-phosphate)s:synthesis, characterization and drug-release properties. Journal of Biomaterials Science-Polymer Edition 2005;16(2):135-161.
    25. Kakizawa Y, Kataoka K. Block copolymer micelles for delivery of gene and related compounds. Advanced Drug Delivery Reviews 2002;54(2):203-222.
    26. Luten J, van Nostruin CF, De Smedt SC, Hennink WE. Biodegradable polymers as non-viral carriers for plasmid DNA delivery. Journal of Controlled Release 2008; 126(2):97-110.
    27. Lechardeur D, Verkman AS, Lukacs GL. Intracellular routing of plasmid DNA during non-viral gene transfer. Advanced Drug Delivery Reviews 2005;57(5):755-767.
    28. Lu ZZ, Wu J, Sun TM, Ji J, Yan LF, Wang J. Biodegradable polycation and plasmid DNA multilayer film for prolonged gene delivery to mouse osteoblasts. Biomaterials 2008;29(6):733-741.
    29. Wang S, Wan ACA, Xu XY, Gao SJ, Mao HQ, Leong KW, et al. A new nerve guide conduit material composed of a biodegradable poly(phosphoester). Biomaterials 2001;22(10):1157-1169.
    30. Chin L, Meyerson M, Aldape K, Bigner D, Mikkelsen T, VandenBerg S, et al. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 2008;455(7216):1061-1068.
    31. Wang DA, Williams CG, Yang F, Cher N, Lee H, Elisseeff JH. Bioresponsive phosphoester hydrogels for bone tissue engineering. Tissue Engineering 2005; 11 (1-2):201-213.
    32. Wang DA, Williams CG, Li QA, Sharma B, Elisseeff JH. Synthesis and characterization of a novel degradable phosphate-containing hydrogel. Biomaterials 2003;24(22):3969-3980.
    33. Li Q, Wang J, Shahani S, Sun DDN, Sharma B, Elisseeff JH, et al. Biodegradable and photocrosslinkable polyphosphoester hydrogel. Biomaterials 2006;27(7):1027-1034.
    34. Yang XZ, Sun TM, Dou S, Wu J, Wang YC, Wang J. Block Copolymer of Polyphosphoester and Poly(L-Lactic Acid) Modified Surface for Enhancing Osteoblast Adhesion, Proliferation, and Function. Biomacromolecules 2009; 10(8):2213-2220.
    35. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics:a review. Journal of Controlled Release 2000;65(1-2):271-284.
    36. Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. European Journal of Pharmaceutics and Biopharmaceutics 2009;71(3):409-419.
    37. Gabizon A, Goren D, Horowitz AT, Tzemach D, Lossos A, Siegal T. Long-circulating liposomes for drug delivery in cancer therapy:A review of biodistribution studies in tumor-bearing animals. Adv Drug Deliver Rev 1997 Mar 17;24(2-3):337-344.
    38. Gref R, Domb A, Quellec P, Blunk T, Muller RH, Verbavatz JM, et al. The Controlled Intravenous Delivery of Drugs Using Peg-Coated Sterically Stabilized Nanospheres. Adv Drug Deliver Rev 1995 Sep; 16(2-3):215-233.
    39. Maruyama K, Ishida O, Takizawa T, Moribe K. Possibility of active targeting to tumor tissues with liposomes. Adv Drug Deliver Rev 1999 Nov 10;40(1-2):89-102.
    40. Ruenraroengsak P, Cook JM, Florence AT. Nanosystem drug targeting:Facing up to complex realities. Journal of Controlled Release;141(3):265-276.
    41. Caldorera-Moore M, Guimard N, Shi L, Roy K. Designer nanoparticles:incorporating size, shape and triggered release into nanoscale drug carriers. Expert Opinion on Drug Delivery;7(4):479-495.
    42. Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery:The need for precision in reporting particle size parameters. European Journal of Pharmaceutics and Biopharmaceutics 2008;69(1):1-9.
    43. Park JH, Saravanakumar G, Kim K, Kwon IC. Targeted delivery of low molecular drugs using chitosan and its derivatives. Adv Drug Deliver Rev;62(1):28-41.
    44. Torchilin V. Multifunctional and stimuli-sensitive pharmaceutical nanocarriers. European Journal of Pharmaceutics and Biopharmaceutics 2009;71(3):431-444.
    45. Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Experimental and Molecular Pathology 2009;86(3):215-223.
    46. Bae Y, Kataoka K. Intelligent polymeric micelles from functional poly(ethylene glycol)-poly(amino acid) block copolymers. Adv Drug Deliver Rev 2009;61(10):768-784.
    47. Shim MS, Kwon YJ. Acid-transforming polypeptide micelles for targeted nonviral gene delivery. Biomaterials;31 (12):3404-3413.
    48. Hu CMJ, Zhang LF. Therapeutic Nanoparticles to Combat Cancer Drug Resistance. Current Drug Metabolism 2009;10(8):836-841.
    49. Jabr-Milane LS, van Vlerken LE, Yadav S, Amiji MM. Multi-functional nanocarriers to overcome tumor drug resistance. Cancer Treatment Reviews 2008;34(7):592-602.
    50. Morimoto N, Ohki T, Kurita K, Akiyoshi K. Thermo-responsive hydrogels with nanodomains:Rapid shrinking of a nanogel-crosslinking hydrogel of poly(N-isopropyl acrylamide). Macromolecular Rapid Communications 2008;29(8):672-676.
    51. Quan CY, Wei H, Sun YX, Cheng SX, Shen K, Gu ZW, et al. Polyethyleneimine modified biocompatible poly(N-isopropylacrylamide)-based nanogels for drug delivery. Journal of Nanoscience and Nanotechnology 2008;8(5):2377-2384.
    52. Devalapally H, Shenoy D, Little S, Langer R, Amiji M. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs:part 3. Therapeutic efficacy and safety studies in ovarian cancer xenograft model. Cancer Chemotherapy and Pharmacology 2007;59(4):477-484.
    53. Shenoy D, Little S, Langer R, Amiji M. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs.1. In vitro evaluations. Molecular Pharmaceutics 2005;2(5):357-366.
    54. Shenoy D, Little S, Langer R, Amiji M. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive system for tumor-targeted delivery of hydrophobic drugs:Part 2. In vivo distribution and tumor localization studies. Pharmaceutical Research 2005;22(12):2107-2114.
    55. Potineni A, Lynn DM, Langer R, Amiji MM. Poly(ethylene oxide)-modified poly(beta-amino ester) nanoparticles as a pH-sensitive biodegradable system for paclitaxel delivery. Journal of Controlled Release 2003;86(2-3):223-234.
    56. Ulbrich K, Etrych T, Chytil P, Jelinkova M, Rihova B. Antibody-targeted polymer-doxorubicin conjugates with pH-controlled activation. Journal of Drug Targeting 2004;12(8):477-489.
    57. Fattal E, Couvreur P, Dubernet C. "Smart" delivery of antisense oligonucleotides by anionic pH-sensitive liposomes. Adv Drug Deliver Rev 2004;56(7):931-946.
    58. Meng FH, Hennink WE, Zhong Z. Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials 2009;30(12):2180-2198.
    59. Talelli M, Rijcken CJF, van Nostrum CF, Storm G, Hennink WE. Micelles based on HPMA copolymers. Adv Drug Deliver Rev;62(2):231-239.
    60. Gaucher G, Marchessault RH, Leroux JC. Polyester-based micelles and nanoparticles for the parenteral delivery of taxanes. Journal of Controlled Release;143(1):2-12.
    61. Kabanov AV, Batrakova EV, Alakhov VY. Pluronic (R) block copolymers as novel polymer therapeutics for drug and gene delivery. Journal of Controlled Release 2002;82(2-3):189-212.
    62. Kabanov AV, Batrakova EV, Alakhov VY. Pluronic((R)) block copolymers for overcoming drug resistance in cancer. Adv Drug Deliver Rev 2002;54(5):759-779.
    63. Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles:nanosized vehicles for drug delivery in cancer. Trends in Pharmacological Sciences 2009;30(11):592-599.
    64. Barenholz Y. Liposome application:problems and prospects. Current Opinion in Colloid & Interface Science 2001;6(1):66-77.
    65. Allen TM, Martin FJ. Advantages of liposomal delivery systems for anthracyclines. Seminars in Oncology 2004;31(6):5-15.
    66. Nanjwade BK, Bechra HM, Derkar GK, Manvi FV, Nanjwade VK. Dendrimers:Emerging polymers for drug-delivery systems. European Journal of Pharmaceutical Sciences 2009;38(3):185-196.
    67. Ruiz-Hitzky E, Darder M, Aranda P, Ariga K. Advances in Biomimetic and Nanostructured Biohybrid Materials. Advanced Materials;22(3):323-336.
    68. Liu J, Liu F, Gao K, Wu JS, Xue DF. Recent developments in the chemical synthesis of inorganic porous capsules. Journal of Materials Chemistry 2009;19(34):6073-6084.
    69. Raemdonck K, Demeester J, De Smedt S. Advanced nanogel engineering for drug delivery. Soft Matter 2009;5(4):707-715.
    70. Kabanov AV, Vinogradov SV. Nanogels as Pharmaceutical Carriers:Finite Networks of Infinite Capabilities. Angewandte Chemie-International Edition 2009;48(30):5418-5429.
    1 Zhao Z, Wang J, Mao HQ, Leong KW. Polyphosphoesters in drug and gene delivery. Advanced Drug Delivery Reviews 2003; 55(4):483-499.
    2. Huang SW, Zhuo RX. Recent advances in polyphosphoester and polyphosphoramidate-Based biomaterials. Phosphorus Sulfur and Silicon and the Related Elements 2008; 183(2-3):340-348.
    3. Wang YC, Yuan YY, Du JZ, Yang XZ, Wang J. Recent Progress in Polyphosphoesters: From Controlled Synthesis to Biomedical Applications. Macromolecular Bioscience 2009;9(12):1154-1164.
    4. Wang J, Mao HQ, Leong KW. A novel biodegradable gene carrier based on polyphosphoester. Journal of the American Chemical Society 2001; 123(38):9480-9481.
    5. Wang J, Zhang PC, Mao HQ, Leong KW. Enhanced gene expression in mouse muscle by sustained release of plasmid DNA using PPE-EA as a carrier. Gene Therapy 2002; 9(18):1254-1261.
    6. Wang S, Wan ACA, Xu XY, Gao SJ, Mao HQ, Leong KW, et al. A new nerve guide conduit material composed of a biodegradable poly(phosphoester). Biomaterials 2001;22(10):1157-1169.
    7 Wu J, Liu XQ, Wang YC, Wang J. Template-free synthesis of biodegradable nanogels with tunable sizes as potential carriers for drug delivery. Journal of Materials Chemistry 2009;19(42):7856-7863.
    8. Chew SY, Wen J, Yim EKF, Leong KW. Sustained release of proteins from electrospun biodegradable fibers. Biomacromolecules 2005; 6:2017-2024.
    9. He JL, Ni PH, Wang S, Shao HY, Zhang MZ, Zhu XL. Synthesis and Physicochemical Characterization of Biodegradable and pH-Responsive Hydrogels Based on Polyphosphoester for Protein Delivery. Journal of Polymer Science Part a-Polymer Chemistry 2010; 48(9):1919-1930.
    10. Wang J, Huang SW, Zhang PC, Mao HQ, Leong KW. Effect of side-chain structures on gene transfer efficiency of biodegradable cationic polyphosphoesters. International Journal of Pharmaceutics 2003;265(1-2):75-84.
    11. Lu ZZ, Wu J, Sun TM, Ji J, Yan LF, Wang J. Biodegradable polycation and plasmid DNA multilayer film for prolonged gene delivery to mouse osteoblasts. Biomaterials 2008; 29(6):733-741.
    12 Sun TM, Du JZ, Yan LF, Mao HQ, Wang J. Self-assembled biodegradable micellar nanoparticles of amphiphilic and cationic block copolymer for siRNA delivery. Biomaterials 2008;29(32):4348-4355.
    13. Leong KW, Qiang L, Jun W, Shahani S, Sun DDN, Sharma B, et al. Biodegradable and photocrosslinkable polyphosphoester hydrogel. Biomaterials 2006; 27(7):1027-1034.
    14. Du JZ, Sun TM, Weng SQ, Chen XS, Wang J. Synthesis and characterization of photo-cross-linked hydrogels based on biodegradable polyphosphoesters and poly(ethylene glycol) copolymers. Biomacromolecules 2007; 8(11):3375-3381.1.
    15. Huang SW, Wang J, Zhang PC, Mao HQ, Zhuo RX, Leong KW. Water-soluble and nonionic polyphosphoester:Synthesis, degradation, biocompatibility and enhancement of gene expression in mouse muscle. Biomacromolecules 2004; 5(2):306-311.
    16. Liaw DJ. Synthesis of polyphosphates by the polyaddition of bisphenol-S diglycidyl ether and aryl phosphorodichloridates. Journal of Polymer Science Part a-Polymer Chemistry 1997; 35(12):2365-2369.
    17. Mao HQ, Shipanova-Kadiyala I, Zhao Z, Dang WB, Brown A, Leong KW. Biodegradable poly(terephthalate-co-phosphate)s:synthesis, characterization and drug-release properties. Journal of Biomaterials Science-Polymer Edition 2005; 16(2):135-161.
    18. Penczek S, Pretula J. High-Molecular-Weight Poly(Alkylene Phosphate)S and Preparation of Amphiphilic Polymers Thereof. Macromolecules 1993 Apr 26; 26(9):2228-2233.
    19. Penczek S, Pretula J, Kaluzynski K. Synthesis of a triblock copolymer:Poly(ethylene glycol)poly(alkylene phosphate)-poly(ethylene glycol) as a modifier of CaCO3 crystallization. Journal of Polymer Science Part a-Polymer Chemistry 2005 Feb 1; 43(3):650-657.
    20. Pretula J, Kaluzynski K, Szymanski R, Penczek S. Preparation of poly(alkylene H-phosphonate)s and their derivatives by polycondensation of diphenyl H-phosphonate with diols and subsequent transformations. Macromolecules 1997 Dec 29; 30(26):8172-8176.
    21. Pretula J, Kaluzynski K, Wisniewski B, Szymanski R, Loontjen T, Penczek S. H3PO4 in a direct synthesis of oligo-poly(ethylene phosphate) from ethylene glycol. Journal of Polymer Science Part a-Polymer Chemistry 2006; 44(7):2358-2362.
    22. Duda A, Penczek S. Polymerization of Epsilon-Caprolactone Initiated by Aluminum Isopropoxide Trimer and/or Tetramer. Macromolecules 1995; 28(18):5981-5992.
    23. Kowalski A, Duda A, Penczek S. Polymerization of L,L-lactide initiated by aluminum isopropoxide trimer or tetramer. Macromolecules 1998; 31(7):2114-2122.
    24. Duda A, Penczek S. On the Difference of Reactivities of Various Aggregated Forms of Aluminum Triisopropoxide in Initiating Ring-Opening Polymerizations. Macromolecular Rapid Communications 1995; 16(1):67-76.
    25. Wen J, Kim GJA, Leong KW. Poly(D,Llactide-co-ethyl ethylene phosphate)s as new drug carriers. Journal of Controlled Release 2003; 92(1-2):39-48.
    26. Du JZ, Chen DP, Wang YC, Xiao CS, Lu YJ, Wang J, et al. Synthesis and micellization of amphiphilic brush-coil block copolymer based on poly(epsilon-caprolactone) and PEGylated polyphosphoester. Biomacromolecules 2006; 7(6):1898-1903.
    27. Libiszowski j, Kaluzynsi K, Penczek S. Polymerization of cyclic esters of phosphoric acid Ⅵ. Poly(alkyl ethylene phosphates). Polymerization of 2-alkoxy-2-oxo-1,3,2-dioxaphospholanes and the structure of the polymers. Journal of Polymer Science, Polymer Chemistry Edition 1978;16(6):1275-1283.
    28. Xiao CS, Wang YC, Du JZ, Chen XS, Wang J. Kinetics and mechanism of 2-ethoxy-2-oxo-1,3,2-dioxaphospholane polymerization initiated by stannous octoate. Macromolecules 2006; 39(20):6825-6831.
    29. Florczak M, Libiszowski J, Mosnacek J, Duda A, Penczek S. L,L-lactide and epsilon-caprolactone block copolymers by a'poly(L,L-lactide) block first'route. Macromolecular Rapid Communications 2007; 28(13):1385-1391.
    30. Kowalski A, Libiszowski J, Biela T, Cypryk M, Duda A, Penczek S. Kinetics and mechanism of cyclic esters polymerization initiated with tin(II) octoate. Polymerization of epsilon-caprolactone and L,L-lactide co-initiated with primary amines. Macromolecules 2005;38(20):8170-8176.
    31. Kowalski A, Duda A, Penczek S. Kinetics and mechanism of cyclic esters polymerization initiated with tin(II) octoate.3. Polymerization of L,L-dilactide. Macromolecules 2000;33(20):7359-7370.
    32. Kolb HC, Finn MG, Sharpless KB. Click chemistry:Diverse chemical function from a few good reactions. Angewandte Chemie-International Edition 2001;40(11):2004-+.
    33. Becer CR, Hoogenboom R, Schubert US. Click Chemistry beyond Metal-Catalyzed Cycloaddition. Angewandte Chemie-International Edition 2009;48(27):4900-4908.
    34. Hong CY, You YZ, Pan CY. Synthesis of water-soluble multiwalled carbon nanotubes with grafted temperature-responsive shells by surface RAFT polymerization. Chemistry of Materials 2005; 17:2247-2254.
    35. Lutz JF, Borner HG, Weichenhan K. Combining ATRP and "click" chemistry:a promising platform toward functional biocompatible polymers and polymer bioconjugates. Macromolecules2006;39(19):6376-6383.
    36. Topham PD, Sandon N, Read ES, Madsen J, Ryan AJ, Armes SP. Facile Synthesis of Well-Defined Hydrophilic Methacrylic Macromonomers Using ATRP and Click Chemistry. Macromolecules2008;41(24):9542-9547.
    37. Parrish B, Breitenkamp RB, Emrick T. PEG-and peptide-grafted aliphatic polyesters by click chemistry. Journal of the American Chemical Society 2005;127(20):7404-7410.
    1. Riess G. Micellization of block copolymers. Progress in Polymer Science 2003;28(7):1107-1170.
    2. Rodriguez-Hernandez J, Checot F, Gnanou Y, Lecommandoux S. Toward'smart' nano-objects by self-assembly of block copolymers in solution. Progress in Polymer Science 2005;30:691-724.
    3. Kakizawa Y, Kataoka K. Block copolymer micelles for delivery of gene and related compounds. Advanced Drug Delivery Reviews 2002;54(2):203-222.
    4. Torchilin VP. Multifunctional nanocarriers. Advanced Drug Delivery Reviews 2006;58(14):1532-1555.
    5. Attwood D, Booth C, Yeates SG, Chaibundit C, Ricardo N. Block copolymers for drug solubilisation:Relative hydrophobicities of polyether and polyester micelle-core-forming blocks. International Journal of Pharmaceutics 2007;345(1-2):35-41.
    6. Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics:a review. Journal of Controlled Release 2000;65(1-2):271-284.
    7. Maeda H, Bharate GY, Daruwalla J. Polymeric drugs for efficient tumor-targeted drug delivery based on EPR-effect. European Journal of Pharmaceutics and Biopharmaceutics 2009;71(3):409-419.
    8. Otsuka H, Nagasaki Y, Kataoka K. PEGylated nanoparticles for biological and pharmaceutical applications. Advanced Drug Delivery Reviews 2003;55(3):403-419.
    9. Byrne JD, Betancourt T, Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Advanced Drug Delivery Reviews 2008;60(15):1615-1626.
    10. Gaucher G, Marchessault RH, Leroux JC. Polyester-based micelles and nanoparticles for the parenteral delivery of taxanes. Journal of Controlled Release;143(l):2-12.
    11. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery:design, characterization and biological significance. Adv Drug Deliv Rev.2001;47:113-31.
    12. Xiao CS, Wang YC, Du JZ, Chen XS, Wang J. Kinetics and mechanism of 2-ethoxy-2-oxo-1,3,2-dioxaphospholane polymerization initiated by stannous octoate. Macromolecules 2006;39(20):6825-6831.
    13. Kabanov AV, Nazarova IR, Astafieva IV, Batrakova EV, Alakhov VY, Yaroslavov AA, et al. Micelle Formation and Solubilization of Fluorescent-Probes in Poly(Oxyethylene-B-Oxypropylene-B-Oxyethylene) Solutions. Macromolecules. 1995;28:2303-14.
    14. Ashwell G, Harford J. Carbohydrate-specific receptors of the liver. Annu Rev Biochem. 1982;51:531-4.
    15. Nishikawa M, Yamauchi M, Morimoto K, Ishida E, Takakura Y, Hashida M. Hepatocyte-targeted in vivo gene expression by intravenous injection of plasmid DNA complexed with synthetic multi-functional gene delivery system. Gene Ther. 2000;7:548-55.
    16. Morimoto K, Nishikawa M, Kawakami S, Nakano T, Hattori Y, Fumoto S, et al. Molecular weight-dependent gene transfection activity of unmodified and galactosylated polyethyleneimine on hepatoma cells and mouse liver. Mol Ther.2003;7:254-61.
    17. Sato A, Takagi M, Shimamoto A, Kawakami S, Hashida M. Small interfering RNA delivery to the liver by intravenous administration of galactosylated cationic liposomes in mice. Biomaterials.2007;28:1434-42.
    18. Zhao CL, Winnik MA, Riess G, Croucher MD. Fluorescence Probe Techniques Used to Study Micelle Formation in Water-Soluble Block Copolymers. Langmuir.1990;6:514-6.
    19. David A, Kopeckova P, Rubinstein A, Kopecek J. Enhanced-biorecognition and internalization of HPMA copolymers containing multiple or multivalent carbohydrate side-chains by human hepatocarcinoma cells. Bioconjugate Chem.2001;12:890-9.
    20. Mamot C, Drummond DC, Greiser U, Hong K, Kirpotin DB, Marks JD, et al. Epidermal growth factor receptor (EGFR)-targeted immunoliposomes mediate specific and efficient drug delivery to EGFR-and EGFRvⅢ-overexpressing tumor cells. Cancer Res.2003;63:3154-61.
    21. Schiff PB, Horwitz SB. Taxol stabilizes microtubules in mouse fibroblast cells. Proc Natl Acad SciU S A.1980;77:1561-5.
    22. Schiff PB, Fant J, Horwitz SB. Promotion of microtubule assembly in vitro by taxol. Nature. 1979;277:665-7.
    1. Bae Y, Fukushima S, Harada A, Kataoka K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery:Polymeric micelles that are responsive to intracellular pH change. Angewandte Chemie-International Edition 2003;42(38):4640-4643.
    2. Oishi M, Hayashi H, Michihiro ID, Nagasaki Y. Endosomal release and intracellular delivery of anticancer drugs using pH-sensitive PEGylated nanogels. Journal of Materials Chemistry 2007;17(35):3720-3725.
    3. Li Y-L, Zhu L, Liu Z, Cheng R, Meng F, Cui J-H, et al. Reversibly stabilized multifunctional dextran nanoparticles efficiently deliver Doxorubicin into the nuclei of cancer cells. Angew Chem Int Ed Engl 2009;48(52):9914-9918.
    4. Kim D, Lee ES, Oh KT, Gao ZG, Bae YH. Doxorubicin-Loaded Polymeric Micelle Overcomes Multidrug Resistance of Cancer by Double-Targeting Folate Receptor and Early Endosomal pH. Small 2008;4(11):2043-2050.
    5. Willet N, Gohy JF, Lei LC, Heinrich M, Auvray L, Varshney S, et al. Fast multiresponsive micellar gels from a smart ABC triblock copolymer. Angewandte Chemie-International Edition 2007;46:7988-7992.
    6. Takae S, Miyata K, Oba M, Ishii T, Nishiyama N, Itaka K, et al. PEG-detachable polyplex micelles based on disulfide-linked block catiomers as bioresponsive nonviral gene vectors. Journal of the American Chemical Society 2008;130(18):6001-6009.
    7. Jiang JQ, Tong X, Zhao Y. A new design for light-breakable polymer micelles. Journal of the American Chemical Society 2005;127(23):8290-8291.
    8. Wei H, Cheng SX, Zhang XZ, Zhuo RX. Thermo-sensitive polymeric micelles based on poly(N-isopropylacrylamide) as drug carriers. Prog Polym Sci 2009;34(9):893-910.
    9. Dimitrov I, Trzebicka B, Muller AHE, Dworak A, Tsvetanov CB. Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities. Prog Polym Sci 2007;32:1275-1343.
    10. Liu SQ, Wiradharma N, Gao SJ, Tong YW, Yang YY. Bio-functional micelles self-assembled from a folate-conjugated block copolymer for targeted intracellular delivery of anticancer drugs. Biomaterials 2007;28(7):1423-1433.
    11. Morishima Y. Thermally responsive polymer vesicles. Angewandte Chemie-International Edition 2007;46(9):1370-1372.
    12. Iwasaki Y, Wachiralarpphaithoon C, Akiyoshi K. Novel thermoresponsive polymers having biodegradable phosphoester backbones. Macromolecules 2007 Nov;40(23):8136-8138.
    13. Vihola H, Laukkanen A, Valtola L, Tenhu H, Hirvonen J. Cytotoxicity of thermosensitive polymers poly(N-isopropylacrylamide), poly(N-vinylcaprolactam) and amphiphilically modified poly(N-vinylcaprolactam). Biomaterials 2005;26(16):3055-3064.
    14. Klaikherd A, Nagamani C, Thayumanavan S. Multi-Stimuli Sensitive Amphiphilic Block Copolymer Assemblies. Journal of the American Chemical Society 2009;131(13):4830-4838.
    15. Yu L, Zhang HA, Ding JD. A subtle end-group effect on macroscopic physical gelation of triblock copolymer aqueous solutions. Angewandte Chemie-International Edition 2006;45(14):2232-2235.
    16. Nakayama M, Okano T. Polymer terminal group effects on properties of thermoresponsive polymeric micelles with controlled outer-shell chain lengths. Biomacromolecules 2005;6(4):2320-2327.
    17. Carrot G, Hilborn JG, Trollsas M, Hedrick JL. Two general methods for the synthesis of thiol-functional polycaprolactones. Macromolecules 1999;32(16):5264-5269.
    18. Babin J, Pelletier M, Lepage M, Allard JF, Morris D, Zhao Y. A New Two-Photon-Sensitive Block Copolymer Nanocarrier. Angewandte Chemie-International Edition 2009;48(18):3329-3332.
    19. Wei H, Zhang XZ, Cheng C, Cheng SX, Zhuo RX. Self-assembled, thermosensitive micelles of a star block copolymer based on PMMA and PNIPAAm for controlled drug delivery. Biomaterials 2007;28(1):99-107.
    20. Soppimath KS, Tan DCW, Yang YY. pH-triggered thermally responsive polymer core-shell nanoparticles for drug delivery. Advanced Materials 2005; 17(3):318-+.
    21. Soppimath KS, Liu LH, Seow WY, Liu SQ, Powell R, Chan P, et al. Multifunctional core/shell nanoparticles self-assembled from pH-induced thermosensitive polymers for targeted intracellular anticancer drug delivery. Advanced Functional Materials 2007;17(3):355-362.
    22. Lomas H, Canton I, MacNeil S, Du J, Armes SP, Ryan AJ, et al. Biomimetic pH sensitive polymersomes for efficient DNA encapsulation and delivery. Advanced Materials 2007;19(23):4238-+.
    23. Dong XW, Mattingly CA, Tseng MT, Cho MJ, Liu Y, Adams VR, et al. Doxorubicin and Paclitaxel-Loaded Lipid-Based Nanoparticles Overcome Multidrug Resistance by Inhibiting P-Glycoprotein and Depleting ATP. Cancer Research 2009;69(9):3918-3926.
    24. Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, et al. The effect of particle design on cellular internalization pathways. Proceedings of the National Academy of Sciences of the United States of America 2008;105(33):11613-11618.
    1. Raemdonck K, Demeester J, De Smedt S. Advanced nanogel engineering for drug delivery. Soft Matter 2009;5(4):707-715.
    2. Yan M, Ge J, Liu Z, Ouyang PK. Encapsulation of single enzyme in nanogel with enhanced biocatalytic activity and stability. Journal of the American Chemical Society 2006;128(34):11008-11009.
    3. Lee ES, Kim D, Youn YS, Oh KT, Bae YH. A virus-mimetic nanogel vehicle. Angewandte Chemie-International Edition 2008;47(13):2418-2421.
    4. Oh JK, Drumright R, Siegwart DJ, Matyjaszewski K. The development of microgels/nanogels for drug delivery applications. Prog Polym Sci 2008 Apr;33(4):448-477.
    5. Oh JK, Siegwart DJ, Lee HI, Sherwood G, Peteanu L, Hollinger JO, et al. Biodegradable nanogels prepared by atom transfer radical polymerization as potential drug delivery carriers:Synthesis, biodegradation, in vitro release, and bioconjugation. Journal of the American Chemical Society 2007;129(18):5939-5945.
    6. Kabanov AV, Vinogradov SV. Nanogels as Pharmaceutical Carriers:Finite Networks of Infinite Capabilities. Angewandte Chemie-International Edition 2009;48(30):5418-5429.
    7. Oishi M, Hayashi H, Michihiro ID, Nagasaki Y. Endosomal release and intracellular delivery of anticancer drugs using pH-sensitive PEGylated nanogels. Journal of Materials Chemistry 2007;17(35):3720-3725.
    8. I(?) Choi W, Tae G, Kim YH. One pot, single phase synthesis of thermo-sensitive nano-carriers by photo-crosslinking of a diacrylated pluronic. Journal of Materials Chemistry 2008;18(24):2769-2774.
    9. Petros RA, Ropp PA, DeSimone JM. Reductively labile PRINT particles for the delivery of doxorubicin to HeLa cells. Journal of the American Chemical Society 2008; 130(15):5008-+.
    10. Yu WY, Zhang N, Li CJ. Saccharide Modified Pharmaceutical Nanocarriers for Targeted Drug and Gene Delivery. Current Pharmaceutical Design 2009;15(32):3826-3836.
    11. Butun V, Sonmez S, Yarligan S, Taktak FF, Atay A, Butun S. Micelles and'reverse micelles'with a novel water-soluble diblock copolymer. Polymer 2008;49(19):4057-4065.
    12. Ogura M, Tokuda H, Imabayashi SI, Watanabe M. Preparation and solution behavior of a thermoresponsive diblock copolymer of poly(ethyl glycidyl ether) and poly(ethylene oxide). Langmuir 2007;23(18):9429-9434.
    13. McAllister K, Sazani P, Adam M, Cho MJ, Rubinstein M, Samulski RJ, et al. Polymeric nanogels produced via inverse microemulsion polymerization as potential gene and antisense delivery agents. Journal of the American Chemical Society 2002;124(51):15198-15207.
    14. Oh JK, Tang CB, Gao HF, Tsarevsky NV, Matyjaszewski K. Inverse miniemulsion ATRP: A new method for synthesis and functionalization of well-defined water-soluble/cross-linked polymeric particles. Journal of the American Chemical Society 2006;128(16):5578-5584.
    15. Wu J, Liu XQ, Wang YC, Wang J. Template-free synthesis of biodegradable nanogels with tunable sizes as potential carriers for drug delivery. Journal of Materials Chemistry 2009;19(42):7856-7863.
    16. Xiong MH, Wu J, Wang YC, Li LS, Liu XB, Zhang GZ, et al. Synthesis of PEG-Armed and Polyphosphoester Core-Cross-Linked Nanogel by One-Step Ring-Opening Polymerization. Macromolecules 2009;42(4):893-896.
    17. Patel K, Bahadur P, Guo C, Ma JH, Liu HZ, Yamashita Y, et al. Salt induced micellization of very hydrophilic PEO-PPO-PEO block copolymers in aqueous solutions. European Polymer Journal 2007;43(5):1699-1708.
    18. Wang D, Wu T, Wan XJ, Wang XF, Liu SY. Purely salt-responsive micelle formation and inversion based on a novel schizophrenic sulfobetaine block copolymer:Structure and kinetics of micellization. Langmuir 2007;23:11866-11874.
    19. Dan A, Ghosh S, Moulik SP. The solution behavior of poly(vinylpyrrolidone):Its clouding in salt solution, solvation by water and isopropanol, and interaction with sodium dodecyl sulfate. Journal of Physical Chemistry B 2008;112(12):3617-3624.
    20. Bender AT, Beavo JA. Cyclic nucleotide phosphodiesterases:molecular regulation to clinical use. Pharmacol Rev 2006 Sep;58(3):488-520.
    21. Hwu JR, Lin YS, Josephrajan T, Hsu MH, Cheng FY, Yeh CS, et al. Targeted Paclitaxel by Conjugation to Iron Oxide and Gold Nanoparticles. Journal of the American Chemical Society 2009;131(1):66-+.
    1. Lage H. An overview of cancer multidrug resistance:a still unsolved problem. Cellular and Molecular Life Sciences 2008;65(20):3145-3167.
    2. La Porta CAM. Mechanism of Drug Sensitivity and Resistance in Melanoma. Current Cancer Drug Targets 2009;9(3):391-397.
    3. Robey RW, To KKK, Polgar O, Dohse M, Fetsch P, Dean M, et al. ABCG2:A perspective. Advanced Drug Delivery Reviews 2009;61(1):3-13.
    4. Lin JH. Drug-drug interaction mediated by inhibition and induction of P-glycoprotein. Advanced Drug Delivery Reviews 2003;55(1):53-81.
    5. Oh KT, Baik HJ, Lee AH, Oh YT, Youn YS, Lee ES. The Reversal of Drug-Resistance in Tumors Using a Drug-Carrying Nanoparticular System. International Journal of Molecular Sciences 2009;10(9):3776-3792.
    6. Meng FH, Hennink WE, Zhong Z. Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials 2009;30(12):2180-2198.
    7. Koo AN, Lee HJ, Kim SE, Chang JH, Park C, Kim C, et al. Disulfide-cross-linked PEG-poly(amino acid)s copolymer micelles for glutathione-mediated intracellular drug delivery. Chemical Communications 2008(48):6570-6572.
    8. Lee ES, Gao ZG, Bae YH. Recent progress in tumor pH targeting nanotechnology. Journal of Controlled Release 2008;132(3):164-170.
    9. Tang LY, Wang YC, Li Y, Du JZ, Wang J. Shell-Detachable Micelles Based on Disulfide-Linked Block Copolymer As Potential Carrier for Intracellular Drug Delivery. Bioconjugate Chemistry 2009;20(6):1095-1099.
    10. Sun HL, Guo BN, Cheng R, Meng FH, Liu HY, Zhong ZY. Biodegradable micelles with sheddable poly(ethylene glycol) shells for triggered intracellular release of doxorubicin. Biomaterials 2009;30(31):6358-6366.
    11. Gouaze V, Liu YY, Prickett CS, Yu JY, Giuliano AE, Cabot MC. Glucosylceramide synthase blockade down-regulates P-glycoprotein and resensitizes multidrug-resistant breast cancer cells to anticancer drugs. Cancer Research 2005;65(9):3861-3867.
    12. Kabanov AV, Batrakova EV, Alakhov VY. Pluronic((R)) block copolymers for overcoming drug resistance in cancer. Advanced Drug Delivery Reviews 2002;54(5):759-779.
    13. Verma A, Stellacci F. Effect of Surface Properties on Nanoparticle-Cell Interactions. Small 20101; 6(1):12-21.
    14. Sahay G, Batrakova EV, Kabanov AV. Different Internalization Pathways of Polymeric Micelles and Unimers and Their Effects on Vesicular Transport. Bioconjugate Chemistry 2008; 19(10):2023-2029.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700