大功率LED微小型相变热沉制造及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大功率LED作为新型固态照明光源与传统光源相比具有节能、环保和长寿命等优势,随着LED光源向小型化、大功率化方向发展,金属实体封装热沉存在较大的扩散热阻难以满足其散热需求,散热问题已成为大功率LED应用亟需解决的难题。本文提出了一种基于相变传热原理的大功率LED封装级散热器件—微小型相变热沉,对其制造工艺进行了分析,将强化沸腾结构应用于蒸发面以提高沸腾效率,制造了相变热沉并对其进行了性能测试,结果表明相变热沉具有较快的热响应特性和良好的传热性能。论文主要研究内容如下:
     (1)相变热沉系统理论分析及结构设计
     提出了基于相变热沉的大功率LED封装结构,相变热沉由本体、端盖、吸液芯和工质组成,分析了其传热原理;建立了变截面实体金属热沉和相变热沉的热阻模型,对实体铜质热沉和相变热沉热阻进行了理论分析,实体铜质金属热沉扩散热阻大于相变热沉热阻,影响相变热沉热阻的最大因素为蒸发端表面的强化沸腾效率;考虑了热沉材料、密封结构、工质和吸液芯、灌注和抽真空等因素对相变热沉各参数进行了设计。
     (2)相变热沉蒸发端强化沸腾结构成形方法
     在分析管外和平面沸腾结构成形工艺基础上,提出了相变热沉蒸发端面三维沸腾结构加工方法,采用犁切-挤压成形方法加工周向螺旋状微沟槽,建立了犁切-挤压速度和周向螺旋状微沟槽成形时间与进给量之间的关系模型并进行了分析;采用冲压成形方法加工放射状径向微沟槽,建立了干涉长度和进给角度、冲压深度以及刀具夹角之间的关系模型并进行了分析,最终形成的三维微沟槽强化沸腾结构在蒸发端平面内实现径向和周向之间的相互连通。
     (3)蒸发端面强化沸腾结构成形数值模拟分析
     在分析大变形刚塑性有限元模拟基本理论的基础上,以DEFORM-3D软件为平台分别建立了周向犁切-挤压和径向冲压成形的三维有限元模型,研究了周向和径向微沟槽成形时不同加工参数对沟槽塑性变形、应力分布和切削力的影响规律。数值模拟分析结果表明,犁切挤压深度和进给量影响周向微沟槽成形,并与冲压深度和进给角度参数共同影响最终三维微沟槽结构成形,沟槽塑性变形模拟结果与实验结果一致。
     (4)大功率LED微小型相变热沉制造
     分析了微小型相变热沉制造工艺,研究了蒸发端三维沸腾结构成形机理并进行了优化,得到了最优三维沸腾结构加工参数;研究了铜粉烧结温度和烧结时间对吸液芯孔隙率和脱模难易程度的影响,确定了最佳烧结温度和烧结时间参数;同时对灌注抽真空密封焊接各参数进行了分析,最后制造出了大功率LED微小型相变热沉。
     (5)相变热沉性能测试与分析
     通过热响应红外测试,分析了相变热沉和实体金属热沉在相同热输入条件下的热响应速度和温度分布,相变热沉热响应快的面积远大于铜质实体金属热沉热响应快的面积;通过传热性能实验,测试了不同热载荷、不同工质以及不同偏转角度条件下对相变热沉的性能的影响,结果表明,相变热沉具有良好的传热性能,在环境温度为20℃时,相变热沉适合功率为10W以下的LED封装散热,而实体金属热沉仅适合3W以下的LED封装散热。
High power Light Emitting Diode (LED) is a new type of solid-state light source. There are a number of advantages compared to traditional light sources such as energy conservation, environmental friendly and long life time etc. With the development of LED light source to miniaturization and high power, traditional solid heat sink is difficult to meet cooling demand of high power LED due to spreading resistance, so thermal management has become one of the challenges for application of high power LED. In this paper, a kind of miniaturized phase change heat sink based on principle of phase change heat transfer is designed for high power LED packaging and its manufacturing technique is analysized. Boiling enhancement structures is formed in evaporation surface to improve boiling efficiency and it is proved that phase change heat sink possessed faster heat response performance and higher heat transfer performance than that of traditional solid heat sink by heat transfer testing. The research in the paper is mainly as follows:
     (1) Theory analysis and design of phase change heat sink
     High power LED packaging structure based on phase change heat sink, which makes up of main body, end-cover, wick and refrigerant, is designed and its heat transfer principle is analysized. Thermal resistance model of solid and phase change heat sink with variable section are established respectively. It is found that spreading resistance of solid heat sink is greater than that of phase change heat sink and the most important factor to impact thermal resistance of phase change heat sink is boiling efficiency of evaporation surface by the theoretical analysis. Considering the materials, sealing method, refrigerant, wick, perfusion and vacuum, structure parameters of phase change heat sink are designed.
     (2) Forming method of boiling enhancement structures in evaporation surface
     Based on analysis of forming technology for boiling structure of outside tube and plane, forming method of 3D boiling enhancement structures in evaporation surface of phase change heat sink is designed. Spiral groove is processed by ploughing-extrusion (P-E) method, meanwhile, relationship between P-E speed, processing time and feed is analysized. Radial groove is formed by stamping method based on spiral grooves to obtain 3D enhancement structures which interconnect the radial and circumferential grooves in evaporation surface. Relationship among interferential length, feed angle, stamping depth and angle of stamping tool is analysized.
     (3) Finite numerical simulation of boiling enhancement structures forming
     3D finite element model of spiral P-E and radial stamping are established based on the analysis of theory of large rigid plastic deformation by the DEFORM-3D software. Groove plastic deformation, distribution rule of stress and force in the spiral and radial grooves process under different parameters are simulated. The results show that the spiral grooves are influenced by P-E depth and feed, and 3D boiling structures are affected by P-E depth, feed, stamping depth and feed angle together. Simulation results of groove are consistent with the experimental results.
     (4) Manufacturing of miniaturized phase change heat sink for high power LED
     Manufacturing technology of miniaturized phase change heat sink is analysized. Formation mechanism of 3D enhancement structure is researched and the processing parameters are optimized. Relationships of sintering temperature, sintering time of copper wick and porosity and withdrawing state are studied. The optimized parameters of sintering temperature and time are determined. At the same time, processing parameters of refrigerant injection, vacuum-pumping and welding, are investigated. Finnaly, miniaturized phase-change heat sinks for high power LED are obtained.
     (5) Performance testing and analysis of phase change heat sink
     Heat response performance and temperature distribution are observed by the infrared test. It is found that the area of higher temperature of phase change heat sink is far larger than that of solid heat sink in the equivalent heating time. Heat transfer performances under different input power, refrigerants and inclination of phase change heat sink are tested. The results show that phase change heat sink is suitable for less than 10W LED heat dissipation and solid heat sink is only suitable for less than 3W.
引文
[1] Park J. W., Yoon Y. B., Shin S. H., et al. Joint structure in high brightness light emitting diode (HB LED) packages[J]. Materials Science and Engineering: A, 2006, 441(1-2): 357-361
    [2] Mahajan R., Nair R., Wakhaerkar V., et al. Emerging directions for packaging technologies [J]. Intel Technology Journal, 2002, 6: 62-75
    [3] Viswannath R., Wakharkar V., Watwe A., et al. Thermal performance challenges from silicon to systems [J]. Intel Technology Journal, 2000, 3rd quarter: 1-16
    [4] Narendran N., Gu Y., Freyssinier J. P., et al. Solid-state lighting: failure analysis of white LEDs[J]. Journal of Crystal Growth, 2004, 268(3-4): 449-456
    [5]于慈远,于湘珍,杨为民.电子设备热分析/热设计/热测试技术初步研究[J].微电子学, 2000, 30(5): 334-337
    [6] Pang Y. F.. Integrated Thermal Design and Optimization Study of Active Integrated Power Electronic Modules[D]. Virginia Polytechnic Institute and State University, 2002
    [7] Dion L. M.. Development of Strategies in Finding the Optimal Cooling of Systems of Integrated Circuits[D]. Virginia Polytechnic Institute and State University, 2004
    [8] Adam C., Samuel G.. Thermal effects in packaging high power light emitting diode arrays[J]. Applied Thermal Engineering, 2009, 29(2-3): 364-371
    [9] Kleiner M. B., Kuehn S. A., Haberger Karl. High performance forced air cooling scheme employing microchannel heat exchangers[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology Part A, 1995, 18(4): 7952-804
    [10] Benefits of lumileds: Solid state lighting Solutions vs. Conventional Lighting[R]. Lumileds Lighting. Application brief AB17 (2/05), www.luxeon.com
    [11] Energy Savings Potential of Solid State Lighting in General Illumination Applications[R]. Navigant Consulting Inc., Washington DC, November, 2003
    [12] Robert V. S.. High-brightness LED market overview[J]. Proceedings of SPIE, 2001, 4445: l-4.
    [13] Steigerwald D. A., Jerome C. B., Dave C., et al. Illumination with Solid State Lighting Technology[C]. IEEE journal on selected topics in Quantum Electronics, 2002, 8(2): 310-320
    [14] Kim A. Y., Gotz W., Steigerwald D.A. et al. Performance of High-Power AlInGaNLight Emitting Diodes[J]. Phys. Stat. Sol, 2001, 188(1): 15-21
    [15] Jeff Y. T.. Light Emitting Diodes (LEDs) for General Illumination[M]. Optoelectronics Industry Development Association, Washington D.C., 2002
    [16] Paul S. M., Bhat J., Chen C. H., et al. High Power White LED Technology for Solid State Lighting[R]. Lumileds Lighting LLC Company, 2001
    [17]应根裕,胡文波,邱勇等.平板显示技术[M].北京:人民邮电出版社, 2002
    [18] Barton D. L., Osinski M., Perlin P., et al. Single-quantum well InGaN green light emitting diode degradation under high electrical stress[J]. Microelectronics Reliability, 1999, 39(8): 1219-1227
    [19] Barton L., Marek O.. Degradation Mechanisms in GaN/AIGaN/InGaN LEDs and LDs [A]. IEEE Proc SPIE, 1998, 3279: 259-262
    [20]刘洁,孙家跃.与LED匹配的白光发射荧光体的研究进展[J].化学通报, 2005, 6: 417-424
    [21] Muthu S., Schuurmans F. J. P., Pashley M. D.. Red, Green, and Blue LEDs for White Light Illumination[C]. IEEE J. Select. Topics Quantum Electron, 2002, 8: 333-338
    [22]罗毅,郭文平,邵嘉平等. GaN基蓝光发光二极管的波长稳定性研究[J].物理学报, 2004, 8(53): 2720-2723
    [23] Basaran C., Ye H., Hopkins D. C., et al. Failure Modes of Flip Chip Solder Joints Under High Electric Current Density[J]. Journal of Electronic Packaging, 2005, 127(2): 157-163
    [24]王健,黄先,刘丽,等.温度和电流对白光LED发光效率的影响[J].发光学报, 2008, 29(2): 358-362
    [25] Mehmet A., James P., Stanton W.. Thermal challenges in the future generation solid state lighting application: Light emitting diodes[C]. IEEE 8th Intersociety Conference Thermal and Thermo Mechanical Phenomena in Electronics Systems. ITHERM 2002. 30 May-1 June, 2002: 113-120
    [26] Narendran N., Deng L., Pysar R. M., et al. Performance characteristics of high power 1ight emitting diodes[C]. 3rd Int. Conf. on Solid State Lighting, Proc. SPIE, San Diego, CA, 2003, 5187: 267-275
    [27] ARIKA M., BECKERB C., WEAVER S., et al. Thermal management of LEDs: Package to system[C]. Proceedings of SPIE- Third international conference on solid state lighting, San Diego, CA, 2004, 5187: 64-75
    [28] Lighting Researeh and Development Building Technologies Program office of EnergyEffieieney and Renewable Energy, U. S. Department of Energy. Solid-State Lighting Program Planning Workshop Report[R]. SanDiego, California, February 3-4, 2005
    [29]邱海平.电子元器件奇仪器的热控制技术[M].电子工业出版社, 1991
    [30] Steranka F. M., Bhat J., Collins D., et al. High Power LEDs-Technology Status and Market Applications[J]. Phys. Stat. sol., 2002, 194(2): 380-388
    [31] Rainer H.. Thermal management of golden dragon LED[R]. Osram Opto Semiconductors, October, 2008
    [32] Available: www.laminaceramics.com
    [33] Jung K. P., Hyun D. S., Young S. P., et al. A suggestion for high power LED package based on LTCC [C]. IEEE 56th Electronic Components and Technology Conference. San Diego, California, USA. 2006: 1070-1075
    [34] Tae Y. C., Dimos P., Joy T., et al. Measurement of thermal conductivity of individual multiwalled carbon nanotubes by the 3-ωmethod[J]. Applied Physics Letters, 2005, 87(1): 013108-1
    [35] Rao B. S., Hemambar C., Pathak A. V., et al. Al/SiC carriers for microwave integrated circuits by a new technique of pressureless infiltration[J]. IEEE Transaction on Electronics Packaging Manufacturing, 2006, 29(1): 58-63
    [36] Liu S., Yang J., Gan Z., et al. Structural optimization of a microjet based cooling system for high power LEDs[J]. International Journal of Thermal Sciences, 2008, 47(8): 1086-1095
    [37] Lu X., Hua T. C., Liu M. J., et al. Thermal analysis of loop heat pipe used for high-power LED[J]. Thermochimica Acta, 2009, 493(1-2): 25-29
    [38] Unnikrishnan V., Suresh V. G., Jayathi Y. M.. Transport in Flat Heat Pipes at High Heat Fluxes From Multiple Discrete Sources[J]. Journal of Heat Transfer, 2004, 126(3): 347-354
    [39] Kim L., Jong H. C., Sun H. J., et al. Thermal analysis of LED array system with heat pipe[J]. Thermochimica Acta, 2007, 455(1-2): 21-25
    [40] Cohen H., Bayley F. J.. Heat transfer problem of liquid cooled gas turbine blacles[J]. Proc. Inst. Mech. Eng, 1955, 169(33): 1063-1080
    [41] Shiraishi M., Kikuchi K., Yamanishi T.. Investigation of heat transfer characteristics of a two-phase closed thermosyphon[C]. Proceedings of the Fourth International Heat Pipe Conference, London, England, 1981: 95-104
    [42] Sunil S. M., Yogendra K. J., Nakayama W.. Single Chamber Compact Thermosyphons with Micro-Fabricated Components[C]. Proceedings of the 7th IntersocietyConference on Thermal and Thermomechanical Phenomenon in Electronic Systems, Las Vegas, NV, 2000: 321-327
    [43] Yuan L., Joshi Y. K., Nakayama W.. Effect of Condenser Location and Tubing Length on the Performance of a Compact Two-Phase Thermosyphon[A]. Proceedings of the ASME Heat Transfer Division, 2001, 7: 291-299
    [44] Yuan L., Joshi Y. K., Nakayama W. Effect of condenser location and imposed circulation on the performance of a compact two-phase thermosyphon [J]. Microscale Thermophys Eng, 2003, 7(2): 163-179
    [45] Pal A., Joshi Y. K., Patel C. D., et al. Design and performance evaluation of a compact thermosyphon [J]. IEEE Trans. Compon. Packag. Technol, 2002, 25(4): 601-607
    [46]孙世梅,邢万坤,朱洪江,等.热虹吸管蒸发段强化沸腾传热研究[J].吉林化工学院学报, 2000(9): 41-43
    [47]苏达士.微型两相闭式热虹吸环路系统的设计与制造研究[D].博士论文,广州:华南理工大学, 2008
    [48] Cotter T. P.. Principles and prospects of micro heat pipes[C]. Proceedings of the 5th International Heat Pipe Conference, Tsukuba, Japan, 1984: 328-334
    [49] Wang J., Catton I.. Enhanced evaporation heat transfer in triangular grooves covered with a thin fine porous layer[J]. Applied Thermal Engineering, 2001, 21(17): 1721-1737
    [50] Kang S. W., Tsai S. H., Chen H. C.. Fabrication and test of radial grooved micro heat pipes[J]. Applied Thermal Engineering, 2002, 22(14): 1559-1568
    [51] Lin L., Rengasamy P., John L.. High performance miniature heat pipe[J]. International Journal of Heat and Mass Transfer, 2002, 45(15) :3131-3142
    [52] Sung J. K., Joung K. S., Kyu H. D.. Analytical and experimental investigation on the operational characteristics and the thermal optimization of a miniature heat pipe with a grooved wick structure[J]. International Journal of Heat and Mass Transfer, 2003, 46(11): 2051-2063
    [53]陈平.小型圆热管内壁微沟槽挤压-犁削成形机理及传热性能研究[D].博士论文,广州:华南理工大学, 2006
    [54]李勇.沟槽式微热管内壁轴向齿槽钢球高速旋压成形方法研究[D].博士论文,广州:华南理工大学, 2008
    [55]赵小林.微型沟槽式热管成形机理及其性能研究[D].博士论文,广州:华南理工大学, 2008
    [56] Stenger F. J.. Experimental feasibility study of water-filled capillary-pumped heat-transfer loop [M]. Ohio: NASA Lewis Research Center, 1966
    [57] Chen P. C., Lin W. K.. The application of capillary pumped loop for cooling of electronic components[J]. Applied Thermal Engineering, 2001, 21(17): 1739-1754
    [58] Yan Y. H., Ochterbeck J. M.. Numerical Investigation of the Steady-State Operation of a Cylindrical Capillary Pumped Loop Evaporator[J]. Journal of Electronic Packaging, 2003, 125(2): 251-260
    [59] Lin H. W., Lin W. K.. An axial heat transfer analytical model for capillary-pumped loop vapor line temperature distributions[J]. Applied Thermal Engineering, 2007, 27(11-12): 2086-2094
    [60]张加迅,侯增祺. CPL储液器的温度调控方案[J].导弹与航天运载技术, 2002, 3: 60-62
    [61]林唯耕,陈绍文.微小化毛细泵吸环路miniature CPL应用于笔记本计算机传热之研究[J].工程热物理学报, 2002, 5: 602-604
    [62]池勇.高性能小型毛细泵环设计、加工及性能分析[D].博士论文,广州:华南理工大学, 2007
    [63] Liu J., Pei N. Q., Guo K. H., et al. Experimental investigation on a mechanically pumped two-phase cooling loop with dual-evaporator[J]. International Journal of Refrigeration, 2008, 31(7): 1176-1182
    [64] Roger R. R., Thiago D.. Development of an experimental loop heat pipe for application in future space missions[J]. Applied Thermal Engineering, 2005, 25(1): 101-112
    [65] Roger R. R., Nadjara D. S.. Loop heat pipe performance enhancement using primary wick with circumferential grooves[J]. Applied Thermal Engineering, 2008, 28(14-15): 1745-1755
    [66] Tsai M. C., Yu C. S., Kang S. W.. Flat plate loop heat pipe with a novel evaporator structure[C]. Proceedings of 21st Annual IEEE Semiconductor Thermal Measurement and Management Symposium. San Jose, CA USA, 15-17 March, 2005: 187-190
    [67] Yi J., Liu Z. H., Wang J.. Heat transfer characteristics of the evaporator section using small helical coiled pipes in a looped heat pipe[J]. Applied Thermal Engineering, 2003, 23(1): 89-99
    [68] Randeep S., Aliakbar A., Masataka M.. Operational characteristics of a miniature loopheat pipe with flat evaporator [J]. International Journal of Thermal Sciences, 2008, 47(11): 1504-1515
    [69] Joung W.l, Yu T., Lee J.. Experimental study on the loop heat pipe with a planar bifacial wick structure[J]. International Journal of Heat and Mass Transfer, 2008, 51(7-8): 1573-1581
    [70] Zuo Z., Hoover L. R., Phillips A. L.. Advanced Thermal Architecture for Cooling of High Power Electronics[J]. IEEE Transactions on Components and Packaging Technologies, 2002, 25(4): 629- 634
    [71] Ioan S., Greg C., Ravi M., et al. Air-cooling extension-performance limits for processor cooling applications[C]. Ninteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2003: 74-81
    [72] Scott K. T., Richard C. L., Kirk L. Y.. Fully developed laminar flow in trapezoidal grooves with shear stress at the liquid vapour interface[J]. Heat and Mass Transfer, 2001, 44: 3397-3412
    [73] Jiao A. J., Ma H. B., Critser J. K.. Evaporation heat transfer characteristics of a grooved heat pipe with micro-trapezoidal grooves[J]. Heat and Mass Transfer, 2007, 50: 2905-2911
    [74] Bello O. T., Liebenberg L., Meyer J. P.. Constructal cooling channels for micro-channel heat sinks[J]. Heat and Mass Transfer, 2007, 50(21-22): 4141-4150
    [75] Ayman M., Ibrahim H.. Two-phase pressure drop and flow visualization of FC-72 in a silicon microchannel heat sink[J]. International Journal of Heat and Fluid Flow, 2009, 30(6): 1171-1182
    [76]李如春,方迎联.大功率LED阵列的热沉结构设计和参数优化[J].浙江工业大学学报. 2009, 37(1): 83-85
    [77]洪芳军,郑平,常欧亮,等.树型微通道网络芯片热沉的试验研究[J].上海交通大学学报, 2009, 43(10): 1649-1653
    [78] Hsieh S. S., Lee R. Y., Shyu J. C., et al. Analytical solution of thermal resistance of vapor chamber heat sink with and without pillar[J]. Energy Conversion and Management. 2007, 48(10): 2708-2717
    [79] CHUN J. W.. Advanced thermal enhancement and management of LED packages[J]. International Communications in Heat and Mass Transfer, 2009, 36(3): 245-248
    [80] Lee S., Song S., Van A., et al. Constriction/Spreading Resistance Model for Electronics Packaging[C]. ASME/JSME Thermal Engineering Conference, 1995, 4:199-206
    [81] Nield D. A., Kuznetsov A. V.. Local thermal nonequilibrium effects in forced convection in a porous medium channel: a conjugate problem[J]. International Journal of Heat and Mass Transfer, 1999, 42(17): 3245-3252
    [82] Ioan S., Greg C., Ravi M. et al. Spreading in the Heat Sink Base: Phase Change Systems or Solid Metals?? IEEE Transaction on Components and Packaging Technologies, 2002, 25(4): 621-628
    [83]李西兵.烧结式微热管的制造方法及其传热性能研究[D].博士论文,广州:华南理工大学, 2009
    [84]陆龙生,汤勇,袁冬,等.微热管的灌注抽真空制造技术[J].机械工程学报, 2009, 45(6): 122-127
    [85] Nakayama W., Daikoku T., Kuwahara H., et al. Dynamic Model of Enhanced Boiling Heat Transfer on Porous Surfaces, Part I: Experimental Investigation [J]. J Heat Transfer Trans ASME, 1980, 102(3): 445-450
    [86] Bergles A. E.. Enhancement of pool boiling[J]. International journal of refrigeration, 1997, 20(8): 545-551
    [87] Marto D. J., Epere V. J. L.. Pool Boiling Heat Transfer From Enhanced Surfaces to Dielectric Fluids[J]. Advances in Enhanced Heat Transfer, ASME HTD, 1981, 18: 93-102
    [88] Thome R., John H.. Reboliers with Enhanced Boiling Tubes[J]. Heat Transfer Engineering, 1988, 9(4): 45-61
    [89]谭华玉,高春阳,刘立新.多孔表面的制造方法及其强化沸腾传热效果的比较[J].流体机械, 2006, 34(1): 80-85
    [90] Michael M. D., Lester D. E.. Liquid heat exchanger interface and method[P]. United States Patent 3990862, Nov. 9, 1976
    [91] Clarence E. A.. Boiling heat transfer surface and method[P]. United States Patent 4018264, Apr. 19, 1977
    [92] Scott G. L., Massoud K.. Pool-boiling CHF enhancement by modulated porous-layer coating: theory and experiment[J]. International Journal of Heat and Mass Transfer, 2001, 44(22): 4287-4311
    [93] Ralph L. W.. The Evolution of Enhanced Surface Geometries for Nucleate Boiling[J]. Heat Transfer Engineering, 1981, 2(3): 46-69
    [94] Fujie K., Nakayama W., Kuwahara H., et al. Heat transfer wall for boiling liquids[P].United States Patent 4060125, Nov. 29, 1977
    [95] Nakayama W., Daikoku T., Nakajima T.. Effects of pore diameters and system pressure on saturated pool nucleate boiling heat transfer from porous surfaces [J]. J Heat Transfer Trans ASME, 1982, 104(2): 286-291
    [96] Murthy S. S., Joshi Y. K., Nakayama W.. Single chamber compact two-phase heat spreaders with micro-fabricated boiling enhancement structures[J]. IEEE Transactions on Components and Packaging Technologies, 2002, 25(1): 156-163
    [97] Das A. K., Das P. K., Saha P.. Performance of different structured surfaces in nucleate pool boiling[J]. Applied Thermal Engineering, 2009, 29(17-18): 3643-3653
    [98] Tang Y., Liu S., Xia W., et al. The establishment and analysis of fin formation model during ploughing process[J]. Journal of Materials Processing Technology, 2003, 138(1-3): 390-393
    [99]夏伟,吴斌,汤勇,等.整体翅片管的劈切-挤压加工[J].中国有色金属学报, 2001, 11(1): 27-30
    [100]刘亚俊,杨卓如,万珍平,等.不锈钢表面整体翅片犁切-挤压加工机理[J].华南理工大学学报, 2004, 32(4): 61-65
    [101]袁启龙,李言,肖继明,等.切削-挤压复合成形技术[J].中国有色金属学报, 2005, 15(6): 860-864
    [102] Nam P. S.. Overview of the Delamination Theory of Wear[J]. Wear, 1977, 44(1): 1-16
    [103] Kayaba T., Hokkirigawa K., Kato K.. Analysis of the Abrasive Wear Mechanism by Successive Observations of Wear Processes in a Scanning Electron Microscope [J]. Wear, 1986, 110(3-4): 419-430
    [104] CHI Y., TANG Y., CHEN J., et al. Forming process of cross-connected finned micro-grooves in copper strips [J]. Transaction of Nonferrous Metals Society of China, 2007, 17(4): 267-272
    [105] CHEN P., TANG Y., LIU X., et al. Formation of integral fins function-surface by extrusion-ploughing process[J]. Transactions of Nonferrous Metals Society of China, 2006, 16(5): 1029-1034
    [106] Tang Y., Chi Y., Wan Z. P., et al. A novel finned micro-groove array structure and forming process[J]. Journal of Materials Processing Technology, 2008, 203(1-3), 548-553
    [107]乔端,钱仁根.非线性有限元法及其在塑性加工中的应用[M].北京:冶金工业出版社, 1990
    [108]孙菊芳.有限元法及其应用(第一版)[M].北京:北京航空航天大学出版社, 1990
    [109] Klamecki B. E.. Incipient chip formation in metal cutting-a three dimension finite element analysis [D]. Urbana: Department of Mechanical and Industrial Engineering, University of Illinois, 1973
    [110] Wen Q., Guo Y. B., Beth A. Todd. An adaptive FEA method to predict surface quality in hard machining[J]. Journal of Materials Processing Technology. 2006, 173(1): 21-28
    [111] Liu X., Pen H., Chen T.. Effect of Different Edge Preparation on High Speed Turning Hardened Steel Process[J]. Materials Science Forum, 2006, 532-533(26): 412-415
    [112] Stenkowski J. S., Moon K. J.. Finite element prediction of chip geometry and tool/workpiece temperature distributions in orthogonal metal cutting[J]. Journal of engineering for industry, 1990, 112(4): 313-318
    [113] Zhang L.. On the separation criteria in the simulation of orthogonal metal cutting using the finite element method[J]. Journal of Materials Processing Technology, 1999, 89-90: 273-278
    [114]宋金玲,魏天路,顾立志.金属切削中刀-屑接触长度的有限元分析[J].农业机械学报, 2003, 34(3): 118-121
    [115] Usui E., Maekawa K., Shirakashi T.. Simulation Analysis of Built-Up Edge Formation in Machining of Low Carbon Steel[J]. Bull. Japan. Soc. Precision Eng., 1981, 15(4): 237-242
    [116] Komvopoulos K., Erpenbeck S. A.. Finite Element Modeling of Orthogonal Metal Cutting[J]. Journal of Engineering for Industry, 1991, 113(3): 253-267
    [117] Ng E. G., Aspinwall D. K., Brazil D., et al. Modeling of temperature and forces when orthogonally machining hardened steel[J]. International Journal of Machine Tools & Manufacture, 1999, 39: 885-903
    [118] Iwata K., Osakada K., Terasaka Y.. Process modeling of orthogonal cutting by the rigid-plastic finite element method[J]. Journal of Engineering Materials and Technology, 1984, 106(2): 132-138
    [119] Sasahara H., Obikawa T., Shirakashi T.. FEM analysis of cutting sequence effect on mechanical characteristics in machined layer[J]. Journal of materials processing technology, 1996, 62(4): 448-453
    [120]邓文君,夏伟,周照耀,等.正交切削高强耐磨铝青铜的有限元分析[J].机械工程学报, 2004, 40(3): 71-75
    [121]王勖成,邵敏.有限单元法基本原理和数值方法(第二版)[M].北京:清华大学出版社, 1997
    [122] Shamasunder S., Tseng A. A., Aung W., et al. Numerical and experimental study of the thermal behavior of coining and upsetting processes[J]. Journal of materials processing technology, 1993, 36(2): 199-221
    [123]陆龙生.管式均热板多孔壁面沟槽复合毛细吸液芯成形机理研究[D].华南理工大学博士学位论文, 2009
    [124] Wang J., Catton I.. Biporous heat pipes for high power electronic device cooling[C]. Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 2001: 211-218
    [125] Chen Z. Q., Cheng P., Zhao T. S.. An experiment study of two phase flow and boiling heat transfer in BI-dispersed porous channels[J]. Heat Mass Transfer, 2000, 27(3): 293-302
    [126] Murer S., Lybaert P., Gleton L., et al. Experimental and numerical analysis of the transient response of a miniature heat pipe[J]. Applied thermal engineering. 2005, (25): 2566-2577
    [127] Seok H. M., Choon G. C., Gunn H., et al. Experimental Study on Performance of a Miniature Heat Pipe with Woven-Wired Wick[C]. 2000 Inter Society Conference on Thermal Phenomena, 2000: 129-133
    [128] Leong K. C., Liu C. Y.. Characterization of sintered copper wicks used in heat pipes[J]. Journal of Porous Materials, 1997, 37(4): 303-308
    [129] Ahmed Y. M. Z., Riad M. I., Sayed A. S., et al. Correlstion between factors controlling preparation of porous copper via sintering technique using experimental design[J]. Int. J. Powder Technology, 2007,175(10):48-54
    [130] Zhao Y. Y., Fung T., Zhang L. P.. Lost carbonate sintering process for manufacturing metal foams[J]. Scripta Materialia, 2005, 52(4): 295-298
    [131]岂兴明,苏俊林,矫津毅.小型平板热管的传热特性[J].吉林大学学报(工学版), 2006, 36(5): 669-672
    [132] Paisarn N., Osod K.. Study on the convective heat transfer and pressure drop in the micro-channel heat sink[J]. International Communications in Heat and Mass Transfer, 2009, 36(1): 39-44
    [133] Murakami M., Ogushi T., Sakurai Y., et al. Heat pipe heat sink[A]. Proc. 6th International Heat Pipe Conference[C]. France: Grenoble, 1987: 257-261
    [134] Lim H. T., Kim S. H., Im H. D., et al. Fabrication and evaluation of a copper flat micro heat pipe working under adverse-gravity orientation[J]. Journal of Micromechanics and Microengineering, 2008, 18: 1-8
    [135] Gima S., Nagata T., Zhang X., et al. Indirect cooling of IC chips using a two phase closed thermosyphon loop [J]. Adv Electron Packag., 2003, 2: 337-342
    [136] Hsieh S. S., Lee R. Y., Shyu J. C., et al. Thermal performance of flat vapor chamber heat spreader[J]. Energy Conversion and Management. 2008, 49(6): 1774-1784
    [137] Plesch D., Bier W., Seidel D., et al. Miniature heat pipes for heat removal from microelectronic circuits[C], Micromechanical Sensors, Actuators and Systems ASME-DSC. 1991, (32): 303-314
    [138] Vafal K., Zhu N., Wang W.. Analysis of Asymmetric Disk-Shaped and Flat-Plate Heat Pipes[J]. Journal of Heat Transfer, 1995, 117(1): 209-218
    [139]张建奇,方小平.红外物理[M].西安:西安电子科技大学出版社, 2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700