基于声强可视化的船舶结构声振能量特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
船舶结构振动与噪声控制是一项十分必要的研究课题,它涉及到船舶在运行过程中对环境的影响、舒适性、结构安全性和隐身性等方面。因此,有效减少振动和噪声已成为船舶结构设计的一个重要目标。在船舶设计的早期阶段就需要考虑到声振要求,针对舰船中存在的结构噪声源进行分析,研究声振动在船体结构中产生、传播和耗散的机理和规律,使所建造的舰船满足低振动、低噪声的要求。本课题正是围绕这一出发点开展理论和数值研究。
     介绍了结构声振动传递问题的主要研究方法:对国内外结构振动声强试验和计算方法的研究进行了系统的总结;归纳了角谱声学和科学计算可视化的研究现状;并进行了板梁组合结构有限元模型固有频率的分析。
     针对船舶结构中广泛使用的加筋板,基于结构声强法研究了加筋板振动能量的传输,分布和耗散特性。介绍了结构声强分量的计算可视化的相关理论,以及系统功率输入和输出的计算公式;在数值算例中,利用有限元法对三种常见的加筋板模型进行了简谐集中力作用下的动力计算,然后通过编制程序计算结构声强分量,进行结构噪声源的定位,实现能量传输和衰减的可视化;同时针对不同的加筋形式对能量传递路径的影响也进行了讨论;研究了不同加筋板阻尼器能量耗散特性。最后以舰船平台板架为例揭示了结构声强技术在舰船振动设计的应用价值。
     在振动声强计算程序的基础上将流线可视化和振动能量可视化技术集成起来,基于Matlab软件完成动力分析和数据计算的相互调用,实现振动能量流的集成可视化显示;编制了数值仿真交互可视化界面,通过后台的调用计算,从而取代人工重复性的工作,在实际工程问题中可以节省很多计算时间和成本。借助于集成可视化技术可以准确揭示振动能量在耦合板中的传递分布特性,分析振动波在复杂耦合结构中的传播机理及在进一步实施主/被动控制中提供更准确的科学依据。
     针对船舶与海洋工程中常见的开口结构,基于振动能量可视化技术进行了开口加筋板能量流动特性的研究和振动抑制的探索。推导了结构声强和振动能量的平衡关系;分析表明,结构开口的出现,显著影响了振动能量在加筋板结构中的传递和分布;振动能量主要集中于开口的边界位置,应变能的最大幅值大多位于激励点位置和开口的夹角处。基于能量传递和分布可视化图,准确的判定敷设约束阻尼层的位置和数量,有效的控制开口加筋平板结构的振动响应,同时显著降低结构声能量的传递。
     对于流体加载结构振动和声学特性研究,介绍了声振能量传递和声固耦合相关理论;给出了结构振动能量与声辐射能量的关系,并从能量的角度出发,探讨了流体载荷对振动能量流动的影响,其中包括流体参数,激励频率等。通过辐射声强矢量图可以明显的观察到结构声的近场效应,即振动能量会从空间流向板的表面,此时流体介质对结构的反作用力不断的将能量返回给振动板表面,这一个流动过程体现了能量在流体和结构表面之间的交换和守恒,能量在这一区域流出和流入趋于稳定,因此大部分的能量驻留在结构的近场。由理论公式可知,声能量的量级主要取决于板单元的响应贡献的叠加,而结构声强则取决于振动能量在板结构中的分布和大小。因此可以通过改变或耗散结构振动能量的方法,进而控制声辐射能量的大小;通过能量可视化技术可以清晰的揭示能量集中的区域,在能量输入点和能量聚集区域确定合理的能量耗散控制点,通过添加外部阻尼器的方法,探讨阻尼耗散对频段内声振动能量传递的影响,取得了一些有实用价值的结论。
     对于结构声振动传递问题,从波数域角度入手,从本质上研讨振动波在介质中传递的波矢分量特性。应用声学角谱法,推导了典型平面倏逝波相位空间分布的解析表达式;给出了有限声源辐射场的角谱函数公式和可视化表达;在波数域求解了流体加载无限大平板在集中力和分布线力作用下的振动响应问题,推导了简支矩形板的波数域模态速度响应解析表达式;给出了不同激励参数下简支平板波数域结构声强可视化图;同时计算分析了不同板厚和流体密度对流体加载板临界频率的影响。
     本文从声振能量可视化的角度,以数值仿真结合理论推导为主,从物理和波数空间共同揭示结构声振传递规律,为结构声辐射机理及控制研究提供简捷、准确的理论依据。
Reduction of vibration and noise of marine structures has been an important issue to designers. In these fields the accurate investigation of vibration energy transmission and distribution is of particular importance for structural noise and vibration control. This dissertation addresses a study on numerical analysis of vibration and radiation intensity. The major contents of the dissertation are as follows.
     The various methods related to vibration and noise radiated problems are introduced. The advantages and disadvantages of the approaches are discussed. The basic principle and development status of structural vibration intensity measurement and calculation technology are explained. The research prospects of angular spectrum approach and Visualization of Scientific Computing (ViSC) are also discussed.
     Three typical stiffened plate models under harmonic point force exciting are calculated to predict the vibration intensity's components by finite element approach. Then, the intensity vector map visualization is used to indicate the location of vibration source and the sinking position where the energy is dissipated. The effects of stiffeners on the changes of energy transmission path through plate are also discussed. Moreover the input energy at the exciting point and dissipated energy at the damper are investigated. Also, an application of structural vibration intensity technique towards the design for platform of ship is explored.
     Based on the Matlab software, the Vibration Energy Flow Graphical User Interface(VEF-GUI) is designed by combing the dynamic analysis and mathematical processing capabilities. Furthermore, the Interactive Visual Interface containing numerical simulation and engineering test module is developed, which can save a lot of work and costs in research and practical engineering applications. The transmission and distribution of vibration energy flow in coupled plates are studied by VEF-GUI. The intensity vector, streamline map and energy distribution of coupled plates subject to a point force excitation are calculated and visualized to predict vibration energy transmission. The vibrational energy flows are very complex and dependent on the excitation frequencies, junction forms and boundaries. The vibration intensity method together with visualization techniques provides a powerful tool for vibration control.
     The energy flow visualization and control in vibrating stiffened plates with a cutout are studied using finite element method. The vibration intensity streamline, vibration energy and strain energy distribution of stiffened plates with cutout at different excitation frequencies are calculated respectively and visualized for the various cases. The cases of different size and boundaries conditions of cutouts are also investigated. It is found that the cutout or opening completely changes the paths and distributions of the energy flow in stiffened plate. The magnitude of energy flow is significantly larger at the edges near the cutout boundary. The position of maximum strain energy distribution is not corresponding to the position of maximum vibrational energy. Furthermore, the energy-based control using constrained damping layer (CDL) for vibration suppression is also analyzed. According to the energy distribution maps, the CDL patches are applied to the locations that have higher energy distribution at the targeted mode of vibration. The present energy visualization technique and energy-based CDL treatments can be extended to the vibration control of vehicles structures.
     The vibration energy flow in a fluid-loaded stiffened plate and the structural-acoustic coupling from the energy flow point of view are investigated using intensity vector technique in this paper. The spatial distribution of the vibration and acoustic energy flow is visualized to show the position of energy source, the direction of flowing energy and the amount of radiation sound energy with visualization technique. The numerical results show that the fluid loading changes the vibrational and sound energy flows. The structural-acoustic energy flow under air loading condition is generally at a smaller rate than that of under water loading condition from the spectrum plot. From GUI plots the sound energy flow clearly shows the structural near field behavior where the intensity vectors bend back to the panel surface. Furthermore, significant discrepancy between the sound energy distribution near the surface of the plate and the vibration energy in the stiffened plate is observed. The external damper significantly influences the vibrational and sound energy flows and the damping control strategies are investigated. The visualizations of the energy clearly show that the damper should be placed close to the energy input source and more damping involved more energy dissipated.
     An efficient Fourier transform technique to address the vibration structural and sound characteristics of a fluid-loaded plate excited by a mechanical force is presented. The process is based on the formulation in the wave number domain of the transversal response of the plate and of the acoustic response in the fluid domain. Analytical expressions in wave number space is obtained for these fields in the case of an infinite plate with point force and unform line force and a simply supported plate with point force. The cases using the two-dimensional Fourier transform to deduce the wave number fields of simply supported plate are discussed concerning structural intensity results on the plate.The angular spectrum function of various limited radiation source is developed and visualized to model the propagation of a wave field. This technique provides an efficient tool to analyse the vibro-acoustic behaviour of the structure.
     The characteristic of structural and sound energy transmission and distribution is invested in detail. The application of the vibration intensity methods together with Graphical User Interface visualization technique has improved the quality of structure-borne noise diagnostics and has made it possible to visualize energy wave phenomena in a vibrating structure.
引文
[1]温家宝.国务院船舶工业调整振兴规划.北京,2009.
    [2]金咸定,赵德有.船体振动学[M].上海:上海交通大学出版社,2000.
    [3]姚熊亮.船体振动[M].哈尔滨:哈尔滨工程大学出版社,2004.
    [4]何柞镛.结构振动与声辐射[M].哈尔滨:哈尔滨工程大学出版社,2001.
    [5]Junger M C. Sound scattering by thin elastic shells [J]. J. Acoust. Soc.Am.,1952,24(1):366-373.
    [6]吴文伟,冷文浩,沈顺根.具有等间距相同加强筋板的声辐射[J].中国造船,1999,40(3):72-81.
    [7]汤渭霖,范军.水中弹性球壳的共振声辐射理论[J].声学学报,2000,25(4):308-312.
    [8]陈军明,黄玉盈,陈云新.水中加肋球壳振动和声辐射研究[J].华中科技大学学报(自然科学版),2003,31(5):110-113.
    [9]Stepanishen P R. Modal coupling in the vibration of fluid-loaded cylindrical shells [J]. J. Acoust. Soc. Am.,1982,71(4):813-823.
    [10]Burroughs C B. Acoustic radiation from fluid-loaded infinite circular cylinders with doubly periodic ring supports [J]. J. Acoust. Soc. Am.,1984,75(3):715-722.
    [11]Laulagnet B, Guyader J L. Modal analysis of a shell's acoustic radiation in light and heavy fluids [J]. J. Sound and Vib.,1989,131(3):397-415.
    [12]Laulagnet B, Guyader J L. Sound radiation by finite cylindrical ring stiffened shells [J]. J. Sound and Vib.,1990,138(2):173-191.
    [13]Harari A, Sandman B E. Analytical and experimental determination of the vibration and pressure radiation from a submerged, stiffened cylindrical shell with two end plates [J]. J. Acoust. Soc. Am.,1994,95(6):3360-3368.
    [14]骆东平,徐治平.环肋柱壳在流场中振动特性分析[J].中国造船,1990,2:67-79.
    [15]骆东平,谭林森.用纵筋加强的环肋柱壳静动力性能分析[J].中国造船,1993,1:72-85.
    [16]谢官模,骆东平.环肋圆柱壳在流场中辐射声场压力的解析解[J].应用数学和力学,1995,16(12):1061-1066.
    [17]左迎涛,张小铭,徐慕冰.流体声介质中无限长薄圆柱壳的频散特性[J].华中理工大学学报,1997,25(6):37-39.
    [18]吴成军,陈花玲,黄协清.浸没圆柱薄壳远场辐射声场的理论预估[J].西安交通大学学报,1999,33(1):107-110.
    [19]汤渭霖,何兵蓉.水中有限长加肋圆柱壳体振动和声辐射近似解析解[J].声学学报,2001,26(1):1-5.
    [20]谢官模,李军向,罗斌等.环肋、舱壁和纵骨加强的无限长圆柱壳在水下的声辐射特性[J].船舶力学,2004,8(2):101-108.
    [21]刘涛,范军,汤渭霖.水中弹性圆柱壳的共振声辐射[J].声学学报,2002,27(1):62-66.
    [22]刘涛,汤渭霖,何世平.数值/解析混合方法计算含复杂结构的有限长圆柱壳体声辐射[J].船舶力学,2003,7(4):99-104.
    [23]曾革委,黄玉盈,马运义.舱壁和环肋加强的无限长圆柱壳声弹耦合模型及其声特性[J].固体力学学报,2002,23(3):269-279.
    [24]Geers T L, Felippa C A. Doubly asymptotic approximations for vibration analysis of submerged structures[J]. J.Acoust.Soc. Am.,1983,73(4):1152-1159.
    [25]Geers T L, Zhang P. Doubly asymptotic approximations for submerged structures with internal fluid volumes:formulation [J]. ASME Journal of Applied Mechanics,1994,61(1):893-899.
    [26]黎胜,赵德有.用边界元法计算结构振动辐射声场[J].大连理工大学学报,2000,40(4):391-394.
    [27]稽醒,减跃龙,程玉民.边界元法进展及通用程序[M].上海:同济大学出版社,1997.
    [28]Rizzo F J, Shippy D J. An advanced boundary integral equation method for three-dimensional thermoelasticity [J]. Int. J. Num. Meth. Eng.,1977,11(1):1753-1768.
    [29]李小瑜,傅志方.结构振动辐射声场的预估—边界积分方程中奇异积分的间接处理[J].振动工程学报,1989,2(1):59-65.
    [30]赵翔,谢壮宁,黄幼玲.自由场结构体声辐射研究[J].声学学报,1994,19(1):22-31.
    [31]赵键,汪鸿振,朱物华.边界元法计算已知振速封闭面的声辐射[J].声学学报,1989,14(4):250-257.
    [32]Hui C Y, Shia D. Evaluations of hypersingular integrals using Gaussian quadrature [J].Int. J. Num. Meth. Eng.,1999,44(1):205-214.
    [33]Kazantzakis J G, Theocaris P S. The evaluation of certain two-dimensional singular integrals used in three-dimensional elasticity [J].Int. J. Solids structures,1979,15(1):203-207.
    [34]唐友刚.高等结构动力学[M].天津:天津大学出版社,2002.
    [35]Kiefling L, Feng G C. Fluid-structure finite element vibrational analysis [J].AIAA J,1976,14(1):199-203.
    [36]Craggs A. The transient response of a coupled plate-acoustic system using plate and acoustic finite elements [J].J. Sound Vib.,1971,15(1):509-528.
    [37]Chen H C, Taylor R L. Vibration analysis of fluid-solid systems using a finite element displacement formulation [J]. International Journal for Numerical Methods in Engineering,1981,29(1):683-698.
    [38]Everstine G G. A symmetric Potential formulation for fluid-structure interaction [J]. Journal of Sound and Vibration,1981,79(1):157-160.
    [39]Bettess P. Infinite elements, International Journal for Numerical Methods in Engineering [J].1977(1),11(1):53-64.
    [40]Zienkiewicz O C, Bando K, Bettess P, et al. Mapped infinite elements for exterior wave problems [J].International Journal for Numerical Methods in Engineering,1985,21(1):1229-1251.
    [41]Moyer E T. Performance of mapped infinite elements for exterior wave scattering applications [J]. Communications in Applied Numerical Methods,1992,8(1):27-39.
    [42]Astley R J. Infinite elements for wave problems:a review of current formulations and an assessment of accuracy [J].International Journal for Numerical Methods in Engineering,2000,49(1):951-976.
    [43]Chen L H, Schweikert D G. Sound radiation from an arbitrary body [J].Journal of the Acoustical Society of America,1963,35(1):1626-1632.
    [44]Ziekiewicz O C, Kelly D W, Bettess P. The coupling of the finite element method and boundary solution procedures [J].Int. J. Numer. Meth. Engng.,1977,11(1):355-375.
    [45]Wilton D T. Acoustic radiation and scattering from elastic structures [J].Int.J. Numer.Meth.Engng.,1978,13(1):123-138.
    [46]Mathews I C. Numerical techniques for three-dimensional steady-state fluid-structure interaction [J]J.Acoust.Soc.Am.,1986,79(5):1317-1325.
    [47]Seybert A F, Wu T W, Wu X F. Radiation and scattering of acoustic waves from elastic solids and shells using the boundary element method[J]. Journal of the Acoustical Society of America,1988,84(1):1906-1912.
    [48]Everstine G C, Henderson F M. Coupled finite element/boundary element approach for fluid-structure interaction [J].J. Acoust. Soc. Am.,1990,87(5):1938-1947.
    [49]Everstine G C,Henderson F M. Coupled finite element/boundary element approach for fluid-structure interaction [J] Journal of the Acoustical Society of America,1990,87(1):1938-1947.
    [50]Cunefare K,Rosa S D. An improved state-space method for coupled fluid-structure interaction analysis [J].J.Acoust.Soc.Am.,1990,105(1):206-210.
    [51]Seybert A F, Wu T W, Li W L. A coupled FEM/BEM for fluid-structure interaction using Ritz vectors and eigenvectors [J].ASME TRANS,J.Vib.Acoust.,1993,115(1):152-158.
    [52]Giordano J A, Koopmann G H.State space boundary element-finite element coupling for fluid-structure interaction analysis [J]. J.Acoust.Soc.Am.,1995,98(1):363-372.
    [53]Tournour M, Atalla N. Vibro-acoustic behavior for an elastic box using state-of-the-art FEM-BEM approaches [J]. Noise Conrtol Eng. J.,1998,46(3):83-90.
    [54]Wu C J. Double-layer structural-acoustic coupling for cylindrical shell by using a combination of WDA and BIE [J].Applied Acoustics,2002,63(1):1143-1154.
    [55]Zhou Q, Joseph PF. A numerical method for the calculation of dynamic response and acoustic radiation from an underwater structure[J]. Journal of Sound and Vibration,2005,283(3):853-873.
    [56]张升明,吴士冲.流固耦合有限元分析及储液器振动研究[J].船舶结构学论文集 (二),1990.
    [57]裴智勇,吴卫国,翁长俭.高速船舱壁加筋板流固耦合振动分析[J].工程力学,2003,20(2):159-162.
    [58]恽伟君,段根宝.附连水效应的分析及其弱耦合项的处理[J].振动与冲击,1982,(3):20-27.
    [59]恽伟君,段根宝.流固耦合振动的组合模态分析法[J].中国造船,1986,(1):50-64.
    [60]沈顺根,李琪华.王大云等.加肋旋转壳结构噪声声辐射水弹性研究[J].中国造船,1992,(2):253-262.
    [61]张敬东,何祚镛.传递矩阵-边界元方法预报水下旋转薄壳振动和声辐射[J].哈尔滨船舶工程学院学报,1989,10(4):435-444.
    [62]张敬东,何祚镛.有限元+边界元-修正的模态分解法预报水下旋转薄壳的振动和声辐射[J].声学学报,1990,15(1):12-19.
    [63]崔宏武,赵德有,罗志雍.结构振动的水中声辐射计算[J].中国造船,1990,31(4):49-54.
    [64]黎胜,赵德有.用有限元/边界元方法进行结构声辐射的模态分析[J].声学学报,2001,26(2):174-179.
    [65]俞孟萨,史小军,陈克勤.采用有限元和边界元方法分析弹性加肋圆柱壳的声学相似性[J].中国造船,1999,(3):65-71.
    [66]徐张明,沈荣稼等.利用FEM/IBEM计算流体介质中的壳体的结构声耦合问题[J].振动工程学报,2002,15(3):363-367.
    [67]徐张明,汪玉等.双层壳体的船舶动力舱振动与声辐射的有限元结合边界元数值计算[J].中国造船,2002,43(4):39-44.
    [68]童宗鹏,王国治.舰艇结构水下振动和声辐射特性研究[J].华东船舶工业学院学报(自然科学版),2003,17(2):18-22.
    [69]彭旭,骆东平.船舶结构建模及水下振动和辐射噪声预报[J].噪声与振动控制,2003,6:9-12.
    [70]邹春平,陈端石,华宏星.船舶水下辐射噪声特性研究[J].船舶力学,2004,8(1):113-124.
    [71]杨德庆,郑靖明,王德禹等.基于Sysnoise软件的船舶振动声学数值计算[J].中国造船,2002,43(4):32-37.
    [72]杨德庆,王德禹,刘洪林等.舰艇振动声学特性数值分析[J].上海交通大学学报,2002,36(11):1537-1543.
    [73]杨德庆,王德禹,刘洪林等.某型艇近场噪声和自噪声数值计算[J].声学学报,2003,28(5):421-424.
    [74]Lyon R H, Maidanik G. Power flow between two coupled oscillators [J].J.Acou.Soc. Am.,1962,34(1):627-639.
    [75]Tso Y K, Hansen C H. An Investigation of The Coupling Loss Factor for a Cylinder/Plate Structure [J]. Journal of Sound and Vibration,1997,199(4):629-643.
    [76]王宏伟,赵德有.平板与周期加筋板间耦合损耗因子的研究[J].船舶力学,2001,5(2):55-61.
    [77]盛美萍,王敏庆,孙进才.非保守耦合系统的耦合损耗因子[J].声学学报,1999,24(5):550-556.
    [78]孙进才.复杂结构的损耗因子和耦合损耗因子的测量方法[J].声学学报,1995,20(2):127-134.
    [79]孙丽萍.能量有限元法研究及其应用[D].哈尔滨:哈尔滨工程大学船舶工程学院,2004.
    [80]Vlahopoulos N, Garza-Rios L O, Mollo C. Numerical implementation, validation and marine applications of an energy finite element formulation [J] Journal of Ship Research,1999, 43(3):143-156.
    [81]Nefske D J,Sung S H. Power flow finite element analysis of dynamic systems basic theory and applications to beams [J]. ASME Transactions,Journal of vibration, Acoustics,stress and Reliability,1989,111 (1):94-106.
    [82]Cremer L,Heckl M,Ungar E E. Structure-borne Sound,Second[M]. Berlin:Edition Springer-Verlag, 2005.
    [83]Goyder H G D,White R G.Vibrational power flow from machines into built-up structures.Part Ⅰ.Introduction and approximate analyses of beam and plate-like foundations [J] Journal of Sound and Vibration,1980,68(1):59-75.
    [84]Goyder H G D,White R G.Vibrational power flow from machines into built-up structures.Part Ⅱ.Wave propagation and power flow in beam-stiffened plates[J]. Journal of Sound and Vibration, 1980,68(1):77-95.
    [85]Goyder H G D, White R G.Vibrational power flow from machines into built-up structures.Part Ⅲ.Power flow through isolation systems[J].Journal of Sound and Vibration,1980,68(1):97-117.
    [86]阿.斯.尼基福罗夫.船体结构声学设计[M].北京:北京国防工业出版社,1998.
    [87]欧大生,欧阳光耀.功率流理论在振动控制中的应用与发展[J].船海工程,2001,(S2):1-9.
    [88]伍先俊,朱石坚,曹建华.结构声振研究的功率流方法[J].力学进展,2006,(03):363-371.
    [89]王术新,姜哲.振动结构功率流的研究现状及进展[J].现代制造工程,2004,(08):104-106.
    [90]殷学文,崔宏飞,顾晓军,黄捷,沈荣瀛.功率流理论、统计能量分析和能量有限元法之间的关联性[J].船舶力学,2007,(04):637-646.
    [91]李凯,赵德有,黎胜.结构振动声强法研究及应用[J].应用声学,2010,29(5):391-400.
    [92]Pavic G. Measurement of structure borne wave intensity [J]. Journal of Sound and Vibration, 1976,49(2):221-230.
    [93]Langley R S. A wave intensity technique for the analysis of high frequency vibration [J]. Journal of Sound and vibration,1992,159(3):483-502.
    [94]Noiseux D U. Measurement of power flow in uniform beams and plates [J].Journal Acoustical Society of America,1970,47(1):238-247.
    [95]Verheij J W. Cross-spectral density methods for measuring structure borne power flow on beams and pipes[J].Journal of Sound Vibration[J],1980,70(1):133-138.
    [96]Fahy F J,Pierri R. Application of Cross-Spectral Density to a Measurement of Vibration Power Flow Between Connected Plates[J]. J. Acoust. Soc. Am.,1997,62(5):1297-1298.
    [97]Linjama J, Lahti T.Estimation of bending wave intensity in beams using the frequency response technique [J] Journal of Sound Vibration,1992,153(1):21-36.
    [98]Troshin A G, Popkov V I. Measurement of Vibration Power Flow in Rod Structures by Using Piezoelectric Film Sensors[C].Proceedings of the 4th International Congress on Intensity Technique, Senlis,France,1993,169-174.
    [99]Bauman P D. Analytical and Experimental Evaluation of Various Techniques for the Case of Flexural Waves in One-Dimensional Structures[J].Journal of Sound and Vibration,1994, 14(5):677-694.
    [100]Morikawa R, Naramura K, Ueha S. Structural Intensity Derivation Using Normal and In-Plane Vibration Displacements Measured by a Laser Doppler Vibrometer[C]. Proceedings of Inter-Noise, 1995,673-640.
    [101]Ahmida K M, Arruda J R F. Spectral Element-Based Prediction of Active Power Flow in Timoshenko Beams[J].International Journal of Solid and Structures,2000,38(1):1669-1679.
    [102]Lee Usik, Lee Changho. Spectral element modeling for extended Timoshenko beams [J]. Journal of Sound and Vibration,2009,319(5):993-1002.
    [103]Walsh S J, White R G. Vibrational power transmission in curved beams [J]. J.S.V.,2000,233 (3):455-488.
    [104]Pavic G. Vibrational Energy Flow in Elastic Circular Cylindrical Shells [J]. Journal of Sound and Vibration,1990,142(1):293-310.
    [105]Briscoe A R, Pinnington R J. Axisymmetric Vibration Power Measurement in Empty and Fluid Filled Pipes [J] Journal of Sound and Vibration,1996,192(1):771-791.
    [106]Ming R S, Pan J, Norton M P. The Measurement of Structure-Borne Sound Energy Flow in an Elastic cylindrical Shell [J] Journal of Sound and Vibration,2001,242(4)719-735.
    [107]Park D H, Hong S Y, Kil H G. Power Flow Models and Analysis of In-Plane Waves in Finite Couples Thin Plates [J] Journal of Sound and Vibration,2001,244(4):651-668.
    [108]Cuschieri J M, McCollum M D. In-Plane and Out-of-Plane Waves Power Transmission Through an L-Type Junction Using Mobility Power Flow Approach [J] Journal of the Acoustical Society of America,1996,100(2):857-870.
    [109]Lyon R H. In-Plane Contribution to Structural Noise Transmission [J] Journal of Noise Control Engineering,1986,26(1):22-27.
    [110]Gibbs B M, Craven P. G. Sound Transmission and Mode Coupling at Junctions of Thin Plates. Part Ⅱ:Parametric Survey [J]. Journal of Sound and Vibration,1981,77(1):429-435.
    [111]Craik R J M, Thancanamootoo A. Applications of the Dynamic Stiffness Method to the Free and Forced Vibrations in Aircraft Structures [J].Applied Acoustics,1992,37(2):85-109.
    [112]Mandal N K, Leong M S,and Rahman R A. Measurement of Quasi-Longitudinal Wave Power in Thin Single-Layer Naturally Orthotropic Plates [J]. International Journal of Acoustics and Vibration,2000,5(2):106-108.
    [113]Mandal N K, Rahman R A, Leong M S. Prediction of Structure-Borne Sound in Orthotropic Plates for Far-Field Conditions[J] Journal of Vibration and Control,2002,8(1):3-12.
    [114]Mandal N K. Far-field power transmissions in orthotropic plates:A new approach[J].Shock and Vibration,2008,15(1):71-78.
    [115]赵其昌.振动结构中的功率流测量声学学报[J].1989,14(4):258-269.
    [116]明瑞森.应用结构声强技术测量耦合损耗因子[J].振动工程学报,1997,10(1):48-54.
    [117]李天匀,刘土光,刘理.结构声强测量方法及其误差分析[J].振动测试与诊断1999,19(1):30-36.
    [118]孙朝晖,秦浩明,王冲等.双传感器振强测量及误差分析[J].1996,9(3):254-261.
    [119]仪垂杰,黄协清,吴成军,吕广庆,陈花玲,张铁山.装甲车板结构声强度和振动强度的测量研究[J].清华大学学报(自然科学版),1996,(4):76-83.
    [120]王术新,姜哲,朱志伟.一种测量一维结构振动功率流的新方法[J].振动工程学报,2003,(3):368-372.
    [121]艾延廷,陈英涛,闻邦椿.虚拟振强分析仪设计[J].振动与冲击,2005,(3):85-90.
    [122]Maynard J D, Williams E G, Lee Y. Near-Field Acoustic Holography:Ⅰ. Theory of Generalized Holography and Development of N AH [J] Journal of the Acoustical Society of America,1985, 78(1):1395-1413.
    [123]Williams E G, Dardy H G. Near-Field Acoustic Holography Using an Underwater-Automated Scanner[J] Journal of the Acoustical Society of America,1985,78(1):789-798.
    [124]Williams E G,Dardy H D SIMP A. Structural Intensity From the Measurement of Acoustic Pressure[C].in Proceedings of the 2nd International Congress on Intensity Technique, France,Senlis,1985.
    [125]Romano A J, Williams E G. On the Use of Acoustic Holography for the Determination of Intensity of Structures[C]. in Proceedings of the 4th International Congress on Intensity Technique, Senlis, France,1993.
    [126]Pascal J C, Loyau T, Mann, J. A. ⅢStructural Intensity From Spatial Fourier Transform and BAHIM Acoustic Holography Method[C]. in Proceedings of the 3rd International Congress on Intensity Technique, Senlis, France,1990.
    [127]Pascal J C, Carniel X, Chalvidan V. Determination of Structural Intensity and Mechanical Excitation Using Holographic Interferometry[C]. in Proceedings of the 4th International Congress on Intensity Technique, Senlis, France,1993:137-144.
    [128]Linjama J. Structural Intensity Measurements Using Two Laser Vibrometers[C]. Proceedings of Inter-Noise,1992:541-544.
    [129]McDevitt T E, Koopmann G H,Burroughs C B. Two-Channel Laser Vibrometer Techniques for Vibration Intensity Measurements,Part 1:Flexural Intensity [J] Journal of Vibration and Acoustics, 1993,115(1):436-440.
    [130]Berthelot Y H, Yang M, Jarzynski J. Recent Progress on Laser Doppler Measurement in Structural Acoustics[C]. in Proceedings of the 4th International Congress on Intensity Technique, Senlis, France,1993:199-206.
    [131]Freschi A A, Pereira A K A, Ahmida K M. Analyzing the Total Structural Intensity in Beams Using a Homodyne Laser Doppler Vibrometer[J]. Shock and Vibration,2000,7(1):299-308.
    [132]Gavric L, Pavic G. A finite element method for computation of structural intensity by the normal mode approach [J]. Journal of Sound and Vibration,1993,164(1):29-43.
    [133]Hambric S A. Power flow and mechanical intensity calculations in structural finite element analysis [J] Journal of Vibration and Acoustical,1990,112(1):542-549.
    [134]Romano A J, Abraham P B, Williams E G. A pointing vector formulation for thin shells and plates, and its application to structural intensity analysis and source localisation [J]. Part Ⅰ:theory, J. Acoust. Soc. Am.,1990,87(1):1166-1175.
    [135]Williams E G. Structural intensity in thin cylindrical shells[J]. Journal of Acoustical Society of America,1991,89(1):1615-1622.
    [136]Bernhard R J, Bouthier O. Model of the space averaged energetics of plates[J]. AIAA, 1990(1):3921-3296.
    [137]Wang Z H, XING J T, Price W G. An investigation of power flow characteristics of L-shaped plates adopting a substructure approach[J]. Journal of Sound and vibration,2002,250(4):627-648
    [138]Xing J T, Price W G. A power-flow analysis based on continuum dynamics[J]. Proceedings of the Royal Society A,1999,455(1):401-436.
    [139]Cieslik J, Bochniak W. Vibration energy flow in ribbed plates[J]. Mechanics.2008,25(3):119-123.
    [140]Yong Zhang, J.Adin Mann. Examples of using structural intensity and the force distribution to study vibraton plates [J]. Journal of the Acoustical Society of America,2002,99(1):354-361.
    [141]Xu X D, Lee H P, Wang Y Y. The energy flow analysis in stiffened plates of marine structures [J]. Thin-Walled Structures,2004,42(1):979-994.
    [142]Xu X D, Lee H P, Lu C. The structural intensities of composite plates with a hole[J]. Compos Struct, 2004,65(1):493-498.
    [143]Xu X D, Lee H P, Lu C. Numerical study on energy transmission for rotating hard disk systems by structural intensity technique [J]. Int J Mech Sci,2004,46(1):639-652.
    [144]Liu Z S, Lee H P, Lu C. Structural intensity study of plates under low-velocity impact [J]. Int J Impact Eng 2005,31(8):957-75.
    [145]Tran T Q N, Lee H P, Lim S P. Structural intensity analysis of thin laminated composite plates subjected to thermally induced vibration [J]. Composite Structures,2007,78(1):70-83.
    [146]Khun M S, Lee H P, Lim S P. Structural intensity in plates with multiple discrete and distributed spring-dashpot systems [J].Journal of Sound and Vibration,2004,276(1):627-648.
    [147]Zong Z, Lee H P, Lu C. A three-dimensional human head finite element model and power flow in a human head subject to impact loading [J]. Journal of Biomechanics,2006,39(2):284-292.
    [148]Cieslik Jacek, Bochniak Wojciech. Energy approach to evaluation of vibrational energy transmission in joints[C].19th International Congress on Acoustics, Madrid,2007.9.
    [149]Liu Z S, Lee H P, Lu C. Passive and active interior noise control of box structure using structural intensity Method [J]. Applied Acoustics,2006,67(2):112-134.
    [150]Marcus Stein, Lothar Kurtze,Rainer Nordmann. Diredted propagation of structure borne sound in plane structures[C]. Tenth international Congress on Sound and Vibration,2003.
    [151]Audraina P. Investigation of active structural intensity control in finite beams:Theory and experiment [J]. J. Acoust. Soc. Am.,2000,108(2):2895-2899.
    [152]Mohamed S, AzzouzJ. Ro. Control of Sound Radiation of an Active Constrained Layer Damping Plate/Cavity System Using the Structural Intensity Approach [J]. Journal of vibration and control, 2002,8(6):904-918.
    [153]王东方,贺鹏飞,刘子顺,李岩.复合材料层合板在动集中力作用下的结构声强特性[J].力学季刊,2007,28(2):217-223.
    [154]谢基榕,吴文伟.基于有限元的功率流分析方法及实现[J].船舶力学,2009,13(1):144-149.
    [155]李凯,赵德有,黎胜.加筋板结构振动声强可视化研究[J].中国舰船研究,2010,5(4):16-22.
    [156]Kai Li, Sheng Li, De-you Zhao. Investigation on vibration energy flow characteristics in coupled plates by visualization techniques [J]. Journal of Marine Science and Technology, 2010,18(6):907-914.
    [157]Vergote K, Vandepitte D, Desmet W. Application of the Wave Based Method for the calculationof structural intensity and power flow in plates[C]. Proceedings of ISMA,2008:1653-1665.
    [158]Lee H P, Lim S P, Khun M S. Diversion of energy flow near crack tips of a vibrating plate using the structural intensity technique[J]. Journal of Sound and Vibration,2006,296(1):602-622.
    [159]李天匀,刘土光,李喆,施其.振动功率流方法诊断梁的损伤[J].振动工程学报,2000,13(4):638-643.
    [160]朱翔,李天匀,赵耀,刘敬喜.基于有限元的损伤结构功率流可视化研究[J].机械工程学报,2009,45(2):132-137.
    [161]王术新,姜哲.用功率流方法探讨摩托车架焊接质量[J].江苏理工大学学报,2000,21(4):16-19
    [162]Wong W O, Wang X Q, Cheng L. Modal power flow analysis of a damaged plate [J]. Journal of Sound and Vibration,2009,320(1):84-100.
    [163]Goodman J W. Introduction to Fourier Optics[M]. McGraw-Hill, New York,1996.
    [164]Clement G T, Hynynen K. Field characterization of therapeutic ultra-sound phased arrays through forward and backward planar projection. J. Acoust. Soc. Am.,2000,108(1):441-446.
    [165]Wu P, Kazys R,Stepinski T. Analysis of the numerically implemented angular spectrum approach based on the evaluation of two-dimensional acoustic fields. Part Ⅰ. Errors due to the discrete Fourier transform and discretization [J]. J. Acoust. Soc. Am.,1996,99 (1):1339-1348.
    [166]Wu P, Kazys R,Stepinski T. Analysis of the numerically implemented angular spectrum approach based on the evaluation of two-dimensional acoustic fields. Part Ⅱ. Characteristics as a function of angular range[J]. J. Acoust. Soc. Am.,1996,99 (1):1349-1359.
    [167]Orofino D P, Pedersen P C. Efficient angular spectrum decomposition of acoustic sources Part I: Theory [J]. IEEE Trans. Ultrason. Ferroelec. Freq. Contr.,1993,40(3):238-249.
    [168]Orofino D P, Pedersen P C. Efficient angular spectrum decomposition of acoustic sources Part II: Results [J]. IEEE Trans. Ultrason. Ferroelec. Freq. Contr.,1993,40(3):250-257.
    [169]Wu P, Kazys R,Stepinski T. Optimal selection of parameters for the angular spectrum approach to numerically evaluate acoustic fields[J]. J. Acoust. Soc. Am.,1997,101 (1):125-134.
    [170]Assaad J, Rouvaen J. Numerical evaluation of the far-field directivity pattern using the fast Fourier transform[J]. J. Acoust.Soc. Am.,1998,104(1):72-81.
    [171]Christopher P T, Parker K J. New approaches to the linear propagation of acoustic fields [J]. J. Acoust. Soc. Am.,1991,90(1):507-521.
    [172]Williams E G, Maynard J D. Numerical evaluation of the Rayleigh integral for planar radiators using the FFT[J]. J. Acoust. Soc. Am.,1982,72(1):2020-2030.
    [173]Williams E G. Fourier Acoustics:Sound Radiation and Near-Field Acoustical Holography[M]. Academic, San Diego,1999.
    [174]Williams E G, Houston B H, Herdic R C. Fast Fourier transform and singular value decomposition formulations for patch near-field acoustical holography [J]. J.Acoust. Soc. Am.,2003, 114(3):1322-1333.
    [175]何祚镛,何元安,王曼.近场声全息技术应用有关物理问题研究[J].声学学报,2007,32(2):137-143.
    [176]聂在平.半空间格林函数的角谱平面高效计算[J].电波科学学报,2004,19(3):263-268.
    [177]龚秀芬,叶式公,河康烈.利用角谱方法分析超声换能器声场[J].南京大学学报(自然科学版),2000,36(3):342-350.
    [178]颜廷华,冯冲.基于流线的流场可视化研究与实现[J].信息技术与信息化,2008,3(1):50-53.
    [179]胡星,杨光.流线可视化技术研究与进展[J].计算机应用研究,2002,19(5):8-11.
    [180]包小军.浅谈科学计算可视化及其应用[J].科技信息,2008,36(1):270-271.
    [181]唐泽圣,孙延奎,邓俊辉.科学计算可视化理论与应用研究进展[J].清华大学学报(自然科学版),2001,41(4):199-202.
    [182]唐伏良,张向明,茅及愚,刘令勋.科学计算可视化的研究现状和发展趋势[J].计算机应用,1997,17(3):8-11.
    [183]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [184]朱菊芬,郑罡.带旋转自由度C0类任意四边形板(壳)单元[J].计算力学学报,2000,17(3):287-292.
    [185]傅永华.关于偏心梁单元刚度矩阵的几点说明[J].力学与实践,1996,18(2):65-67.
    [186]Harik I E, Guo M. Finite element analysis of eccentrically stiffened plates in free vibration[J]. Computers and Structures,1992,49 (1):1007-1014.
    [187]Bedair D K. Fundamental frequency determination of stiffened plates using sequential quadratic programming[J]. Journal of Sound and Vibration,1997,199(1):87-106.
    [188]Kessissoglou N. Power transmission in L-shaped plates including flexural and in-plane vibration[J]. J. Acoust. Soc. Am.,2004,115(1):1157-1169.
    [189]李天匀,张维衡.L形加筋板结构的导纳功率流研究[J].振动工程学报,1997,10(1):112-117.
    [190]周平,赵德有.基于动态刚度阵法的加筋板间能量流研究[J].大连理工大学学报,2008,48(1):98-104.
    [191]伍先俊,朱石坚.基于有限元的功率流计算及隔振系统优化设计技术研究[J].船舶力学,2005,9(4):138-145.
    [192]Bouthier O, Bernhard R J. Simple models of energy flow in vibrating plates [J]. Journal of Sound and Vibration,1995,182(1):149-164.
    [193]Ichchou M N, Jezequel L. Comments on simple models of the energy flow in vibrating membranes and transversely vibrating plates [J]. Journal of Sound and Vibration,1996,195(1):679-685.
    [194]Xu X D, Lee H P, Lu C. Streamline representation for structural intensity fields[J]. Journal of Sound and Vibration,2005,280(1):449-454.
    [195]Paramasivam P. Free vibration of square plates with square openings [J]. Journal of Sound and Vibration,1973,30(2):173-178.
    [196]Sivasubramonium B, Rao G V, Krishnan A. Free vibration of longitudinally stiffened curved panels with cutout[J]. Journal of Sound and Vibration,1999,226(1):41-55.
    [197]Lam K Y, Hung K C. Vibration study on plates with stiffened openings using orthogonal polynomials and partitioning method [J].Computer and Structures,1990,33(3):295-301.
    [198]Lee H P, Lim S P. Free Vibration of Isotropic and Orthotropic Square Plate with Square Cutouts Subjected to in Plane Forces [J]. Computers and Structures,1992,43(1):431-437.
    [199]Srivastava A K L, Datta P K, Sheikh A H. Buckling and vibration of stiffened plates subjected to partial edge loading [J]. International Journal of Mechanical Sciences,2003,45(1):73-93.
    [200]Srivastava A K L, Datta P K, Sheikh A H. Vibration and dynamic stability of stiffened plates subjected to in-plane harmonic edge loading [J]. International Journal of Structural Stability and Dynamics,2002:2(2):185-206.
    [201]Srivastava A K L, Datta P K, Sheikh A H. Dynamic stability of stiffened plates subjected to non-uniform harmonic in-plane edge loading [J]. Journal of Sound and Vibration,2003, 262(5):1171-1189.
    [202]Sahu S K, Datta P K. Dynamic Stability of Curved Panels with Cutouts [J]. J. Sound Vib,2002, 251(4):683-696.
    [203]Srivastava A K L, Datta P K, Sheikh A H. Dynamic Instability of Stiffened Plates With Cutout Subjected to In-Plane Uniform Edge Loadings [J]. Int. J. Struct. Stab. Dyn.,2003,3(3):391-403.
    [204]Patel S N, Datta P K, Sheikh A H. Dynamic instability analysis of stiffened shell panels subjected to partial edge loading along the edges [J]. Int J Mech Sci.,2007,49(1):1309-1324.
    [205]孙雪荣,朱锡.船舶水下结构噪声的研究概况与趋势[J].振动与冲击,2005,24(1):106-113.
    [206]Zheng H, Cai C, Tan X. Optimization of Partial Constrained Layer Damping Treatment for Vibrational Energy Minimization of Vibrating Beams [J]. Computers and Structures,2004,82 (1):2493-2507.
    [207]Kim T W, Kim J H. Eigensensitivity Based Optimal Distribution of a Viscoelastic Damping Layer for a Flexible Beam [J]. Journal of Sound and Vibration,2004,273(1):201-218.
    [208]Lee D H, Wang W S. Layout Optimization of Unconstrained Viscoelastic Layer on Beams Using Fractional Derivative Model [J]. AIAA Journal,2004,42(10):2167-2170.
    [209]Patrice M, Pascal A, Berry A. A novel implementation of active structural flow control[J]. Smart Structural and Materials,2001,4327:560-569.
    [210]桂洪斌.敷设粘弹性阻尼的板和加筋板的振动机理研究[D].大连:大连理工大学,2001.
    [211]Fahy F J. Sound Intensity [M]. Elsevier Science, London,1989.
    [212]Adin Mann Ⅲ J,Tichy J, Romano A J. Instantaneous and time-averaged energy transfer in acoustic fields[J].J.Acoust.Soc.Am.,1987,82(1):17-30.
    [213]Crocker M J, Jacobsen F. in "Sound Intensity," in Encyclopedia of Acoustics [M]. Wiley, New York,1997.
    [214]Jacobsen F. A note on instantaneous and time-averaged active and reactive sound intensity [J]. J. Sound Vib,1991,147(1):489-490.
    [215]Tanaka N. Vibration and acoustic power flow of an actively controlled thin plate[J]. Noise Control Engineering Journal,1996,44(1):23-33.
    [216]Junger M C, Feit D. Sound, structures and their interaction[M].2nd ed. The MIT Press, Cambridge,1986.
    [217]Finnveden S, Finnveden. Evaluation of modal density and group velocity by a finite element method[J]. Journal of Sound and Vibration,2004,273(1):51-75.
    [218]Houillon L, Houillon M N, Ichchou. Wave motion in thin walled structures [J]. Journal of Sound and Vibration,2005,281(3):483-507.
    [219]Ichchou, M N, Berthaut J, Collet M. Multi-mode wave propagation ribbed plates:Part Ⅰ, k-space characteristics [J]. International Journal of Solids and Structures,45(5):1179-1195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700