柑橘全爪螨细胞色素P450及其相关基因的鉴定和表达模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
柑橘全爪螨Panonychus citri (McGregor)是我国柑橘产区的第一大害螨,其大量发生严重影响柑橘的产量和品质,且以化学防治为主的控制措施加之该螨自身的特点(繁殖速度快、体小、活动范围小等),导致其抗性问题日益凸显。目前,对于相橘全爪螨解毒代谢及抗药性机理的报道相对较少,且多集中在生化水平及有限基因的鉴定方面。细胞色素P450酶系作为昆虫(螨)体内一类关键解毒酶系,可代谢多种内源和外源化合物,在昆虫(螨)对杀虫(螨)剂解毒代谢过程中起着十分重要的作用。诸多研究表明,蜱螨P450与拟除虫菊酯类、有机磷类、METIs、季酮酸类、生物源类等多种杀螨剂抗性有关。国内外有关细胞色素P450酶系的研究多针对P450的特性展开,而对于酶系发挥作用的关键因子NADPH-细胞色素P450还原酶(CRP)和细胞色素b5(CYB5)的作用地位涉及相对较少。因此,对细胞色素P450酶系进行整体研究,将有利于全面理解细胞色素P450酶及其相关基因在解毒代谢过程中的作用方式和具体定位,从而为全面解析其解毒代谢及介导的代谢抗性机制奠定理论基础。
     本学位论文以柑橘全爪螨为研究对象,围绕细胞色素P450对药剂胁迫的响应机制这一科学问题,开展了系统地研究工作。具体内容包括:从柑橘全爪螨田间种群敏感性监测出发,在掌握柑橘全爪螨抗性水平的基础上,在生化水平上比较分析了三种主要代谢酶的酶学特性,锁定细胞色素P450作为研究重点;建立了柑橘全爪螨全螨态转录组数据库,筛选鉴定出包括细胞色素P450在内的诸多解毒代谢酶基因信息;进一步克隆P450、CPR及CYB5基因的cDNA全长序列,解析这些基因在不同螨态、不同药剂胁迫及诱导条件下的表达模式,初步建立柑橘全爪螨细胞色素P450基因的真核表达体系。研究结果对于全面揭示柑橘全爪螨P450酶系的解毒代谢机制及其介导的抗药性机制具有重要的理论意义,在实践上对于制订柑橘全爪螨抗药性的治理策略亦具有重要的指导意义。本学位论文的主要研究结果总结如下:
     1柑橘全爪螨抗药性监测及主要解毒酶活性比较
     1.1柑橘全爪螨4个田间种群的抗药性测定
     通过改进后的叶碟浸渍法,对采自重庆4个地区(北碚、璧山、忠县、武隆)的柑橘全爪螨对阿维菌素、三唑锡、哒螨灵和螺螨酯的抗性水平进行了测定。结果表明,四种不用类型杀螨剂相比较,阿维菌素的杀螨活性最强,4个种群对其敏感性水平最高,螺螨酯和哒螨灵次之,三唑锡的杀螨活性最差,4个种群对其敏感性水平最低。不同种群间相比较发现,柑橘全爪螨璧山种群对阿维菌素最为敏感,忠县和武隆种群对其敏感性最低,LC5o分别是璧山种群的11倍和12倍;忠县种群对三唑锡的抗性水平最低,璧山种群抗性水平最高,但总体差异不大;对哒螨灵而言,璧山种群对其敏感性最高,武隆种群、忠县种群与璧山种群的LCso十分接近,而北碚种群对哒螨灵的抗性水平最高,与璧山种群相比其相对抗性倍数达4倍;重庆4个柑橘全爪螨种群对螺螨酯的抗性水平差异比较明显,抗性水平由高到底依次为:璧山种群、忠县种群、武隆种群和北碚种群。
     1.2柑橘全爪螨三种主要解毒酶活性比较
     1.2.1不同发育阶段主要解毒酶活性比较
     通过微量酶标板法对柑橘全爪螨不同螨态P450s、GSTs和CarEs活性进行了测定。比较分析发现,幼螨期P450s比活力最高,分别是成螨、若螨和卵P450s活力的2.66、2.70和16.02倍,且差异显著;柑橘全爪螨若螨和成螨期GSTs活力均显著高于其它发育阶段,卵期GSTs活力最低;柑橘全爪螨幼螨期CarEs比活力最高,其次是成螨和若螨,卵期最低。以上结果也暗示P450s和CarEs可能在幼螨期主要参与对外界化合物的代谢过程,而GSTs则可能主要在成螨和幼螨期行使解毒代谢功能。
     1.2.2不同种群主要解毒酶活性比较
     研究表明,P450s、GSTs和CarEs的活力分别在北碚种群、忠县种群、忠县种群最高,但总体来看代谢酶活性变化与抗性水平之间相关程度不高,分析可能与4个地区施药背景不同、杀螨剂类型及作用靶标不同、以及不同种群问的遗传背景存在差异有关。
     1.2.3不同药剂胁迫下主要解毒酶活性比较
     在生物测定的基础上,选择5种杀螨剂(阿维菌素、三唑锡、甲氰菊酯、哒螨灵和螺螨酯)及柑橘次生挥发物(柠檬醛),以LC30浓度对柑橘全爪螨处理,24h后测定三种代谢酶的活性。结果表明,经不同药剂处理后P450活性均有不同程度的提高,其中经螺螨酯处理后P450的活力最高;对于GSTs而言,除阿维菌素外,其余5种药剂均能显著诱导GSTs活力升高,其中螺螨酯处理后GSTs的活力最高;然而,经螺螨酯处理后,CarEs的活力显著降低,其余5种药剂处理后,其活力无显著变化。综上分析发现,P450s和GSTs对以上6种药剂的胁迫反应比较灵敏,而CarEs则较为迟钝,也暗示P450s和GSTs在一定程度上参与柑橘全爪螨对上述药剂的代谢过程。
     1.2.4巴比妥酸钠对主要解毒酶的诱导效应
     柑橘全爪螨经P450酶特异性诱导剂巴比妥酸钠(19.96mg/L)诱导24h后,P450s和GSTs活性显著上升,而CarEs活性则被显著抑制。
     2柑橘全爪螨转录组分析及解毒酶基因鉴定
     2.1全螨态转录组数据库建立及数据分析
     为尽可能全面获得柑橘全爪螨的基因转录本信息,提取获得柑橘全爪螨4个螨态的高质量RNA,并基于Illumina HiseqTM2000平台进行测序,将数据提交至NCBI的SRA数据库,登录号为SRA045743.1。序列分析发现共获得51,214,018条clean reads,经过一系列组装拼接后,得到65,149条Unigene。将所有Unigene提交至nr、Swiss-Prol、KEGG、COG和GO数据库进行BLASTX比对,以E=10-5为阈值,分别有32,535、25,813、22,725、15,412和10,421条Unigene成功得到注释。对nr数据库成功注释的Unigene进行同源性分析,发现柑橘全爪螨Unigene与昆虫纲相关基因的亲缘关系最近,其中9%的Unigene与赤拟谷盗Tribolium castaneum相关基因的同源性最高,其次为印度跳蚁Harpegnathos saltator (6%)和佛罗里达弓背蚁(5%),与蛛形纲的肩突硬蜱Ixodes scapularis同源性亦达1.7%。
     对柑橘全爪螨Unigene进行GO分类发现,共有10,421个Unigene在GO数据库得到注释,且被划分到生物过程、细胞组分和分子功能3大主要类别的50个功能组中。其中注释基因最多的功能组是细胞组分中的cell,有7,035个Unigene,注释基因最少的是分子功能中的channel regulator activities和细胞组分中的virion,两个功能组均只有2个Unigene。将所有Unigene在COG中比对,有15,412个Unigene被成功注释,并且被划分到25个不同的功能家族,其中注释Unigene最多的功能家族是general function prediction(3,642个),注释Unigene最少的功能家族是nuclear structure(11个)。
     2.2解毒酶基因筛选及代谢通路分析
     根据nr数据库比对结果,共筛选鉴定出柑橘全爪螨与解毒代谢相关的P450Unigene79个,且分别有12、9、26和7个Unigene与CYP2、CYP3、CYP4和CYP6家族基因亲缘关系最近,其余25个Unigene与其它家族(CYP9、CYP18、CYP314和线粒体P450)基因的同源性较高。有58个P450Unigene在KEGG数据库得到注释到,共参与16条代谢通路;筛选鉴定出柑橘全爪螨24个GSTs Unigene,分属于7个家族(delta、kappa、mu、omega、sigma、theta和zeta),其中有19个Unigene通过在KEGG数据库注释到10条代谢通路中;筛选鉴定出柑橘全爪螨13个CarE Unigene,根据同源性分析,有4个Unigene归于Clade A,分别有3个和1个Unigene归于Clade B和D;代谢通路分析发现,仅有4个Unigene能够成功注释,且均属于同1条代谢通路。总体来看上述三种解毒酶所涉及通路大多与外源物质或药剂的代谢有关,从另一角度佐证了解毒酶的主要功能。
     3柑橘全爪螨P450及其相关基因的克隆与序列分析
     基于转录组数据库中鉴定出的P450Unigene信息,利用RACE结合RT-PCR技术,从柑橘全爪螨体内分离克隆出了11个P450基因的cDNA全长序列,提交至细胞色素P450命名委员会命名后,登录入至GenBank,其名称和登陆号分别为:CYP4CL2(JQ690089)、CYP384A2(KC201279)、CYP385C7(KJ173877)、CYP385C8(KJ173878)、CYP389D1(KC201278)、CYP392A22(KC201275)、CYP392A23(KC201276)、CYP392A24(KC201277)、CYP392A25(KJ173880)、CYP392B6(KJ173879)和CYP392F1(KC201274)。这11个P450基因的开放阅读框长度范围为1,494-1,758bp,编码氨基酸序列在497-585aa之间。此外,利用ProParaam、 TMHMM等生物信息学软件对P450蛋白组成、理化性质、跨膜区段及信号肽位点进行分析和预测,结果表明这11个P450基因均为微粒体型,也暗示可能与外源化合物的解毒代谢相关。同时,柑橘全爪螨11个P450氨基酸序列中均含有经典血红素结合位点、C螺旋、Ⅰ螺旋、K螺旋和meander等保守区域的特征基序,且CYP4CL2序列中含有CYP4家族特征序列EVDTFMFA/GHDTT。
     通过对本研究克隆获得的11个及之前本课题组获得的1个柑橘全爪螨P450基因全长序列进行同源性比对,结果发现这12个P450基因核苷酸同源性在36.47%-96.39%之间,氨基酸同源性在16.29%-96.39%之间,且相同家族基因序列的同源性较高。以从二斑叶螨基因组数据库中选取所有的75个P450基因序列作为参照,利用MEGA5.05的最大似然法构建系统发育树,结果发现柑橘全爪螨12个P450基因分属于3个集团(CYP2Clan、CYP3Clan和CYP4Clan),且相同家族基因聚在一起。
     根据转录组数据库信息,克隆获得了柑橘全爪螨CPR及CYB5基因cDNA全长序列,GenBank登陆号分别为KJ173881和KJ173882。PcCPR和PcCYB5基因完整开放阅读框分别包含2,061和324个碱基,编码686和107个氨基酸。序列多重比对发现,柑橘全爪螨PcCPR与二斑叶螨CPR同源性最高,且在氨基酸序列中发现P450还原酶的保守功能区包括FMN结合区、FAD结合区和NADPH结合区。此外,与其它20个物种进行系统发育分析,发现按照蛛形纲、昆虫纲、哺乳动物纲和双子叶植物纲聚为4大类,PcCPR与二斑叶螨亲缘关系最近,节点自展值达100%。对CYB5进行序列分析后发现,靠近N段的血红素结合区十分保守,且PcCYB5与二斑叶螨相关基因的同源性最高。
     4柑橘全爪螨P450及其相关基因的表达模式解析
     4.1细胞色素P450基因表达模式解析
     4.1.1柑橘全爪螨不同发育阶段P450基因的表达模式
     运用qPCR技术完成了对柑橘全爪螨12个具有全长序列的P450基因和14个P450Unigene片段在不同发育阶段的表达模式解析。结果发现,26个P450基因的表达伴随柑橘全爪螨的整个生命历程,CYP4CF1、CYP4CL2、CYP392A25和CYP392B6在幼螨阶段表达量均最高,CYP385C7和CYP389D1基因则在若螨特异高表达,此外有10个Unigene也在幼、若螨阶段表达水平较高,说明以上16个基因可能过多参与到幼螨和若螨阶段对内外源物质的代谢过程中;CYP384A2和两个Unigene表达水平随龄期增长而逐渐升高,暗示基因随螨体的生长发育,解毒代谢能力也逐渐增强;此外还发现CYP392A22、CYP392A24及Unigene1146、Unigene27622在卵期高表达,推测可能与卵期抵御外界次生物质胁迫有关;而CYP385C8和CYP392F1则在螨体内呈组成型表达,在整个生长发育过程中均可能行使重要作用。
     4.1.2柑橘全爪螨P450基因对药剂胁迫的响应表达模式
     在前期生物测定基础上,完成了阿维菌素、甲氰菊酯、哒螨灵和柠檬醛对柑橘全爪螨不同时间和不同浓度的胁迫处理,进而对26个P450基因进行了表达模式解析。qPCR结果发现,柑橘全爪螨P450对阿维菌素响应幅度最大,CYP385家族基因(CYP385C7和CYP385C8)上调倍数均在25倍以上,而CYP392家族四个基因(CYP392A22、CYP392A23、CYP392A25和CYP392B6)的相对表达量也分别达到了对照的41.46、68.66、25.56和11.34倍。在时间效应方面,本研究中大多数P450基因均在药剂胁迫24h后表达量达到最高,仅两个Unigene在胁迫前期(12h)均发生响应,CYP4CL2和CYP392F1表现出的诱导效应较为滞后;P450基因在特定浓度的高表达呈家族分布,CYP385家族两个基因(CYP385C7和CYP385C8) mRNA水平在低浓度LC10胁迫下达到最高,CYP392家族5个基因(CYP392A22、CYP392A23、CYP392A24、CYP392A25和CYP392F1)均能被亚致死浓度LC30最大程度诱导,致死中浓度胁迫下,CYP4家族基因(CYP4CF1和CYP4CL2)相对表达量达最高峰值。
     甲氰菊酯胁迫下,大多数P450基因表达均能被诱导上调,CYP4CL2表达量上升倍数最大(4.48倍)。CYP392家族4条基因(CYP392A24、CYP392A25、CYP392B6和CYP392F1)及CYP384A2、CYP389D1均在12h后表达水平最高,CYP4家族基因的最大诱导值出现在24h;经LC30胁迫24h后,CYP4CF1、CYP4CL2、 CYP392A22、CYP392B6和CYP392F1基因表达量均达到最大值,且显著高于对照,CYP385C8能够被甲氰菊酯LCso浓度显著诱导,暗示了以上基因在很大程度上参与了柑橘全爪螨对甲氰菊酯的代谢过程。
     同上述两种杀螨剂不同,柑橘全爪螨P450基因对哒螨灵的响应数目和幅度都有所降低,CYP385C7、CYP385C8和CYP392A22在哒螨灵胁迫12h后,表达量即达到最大值,说明这三个基因在哒螨灵胁迫初期发挥主要作用,CYP4CL2和CYP392家族4个基因(CYP392A23、CYP392A24、CYP392A25和CYP392B6)表达最高峰则分别推至24h和36h,暗示其分别在中后期参与对螨体内哒螨灵的解毒过程;低浓度胁迫下,仅CYP4CL2表达量最高,而CYP392家族3个基因和CYP385C8基因均可能参与到柑橘全爪螨对较高剂量哒螨灵的代谢过程中。
     柠檬醛特定条件胁迫处理下,柑橘全爪螨12个具有全长序列的P450基因表达量均显著上调。绝大多数P450基因表达水平在柠檬醛胁迫24h和36h后达到最高峰值,说明柑橘全爪螨P450对柠檬醛响应模式相对比较滞后;此外定量结果发现高浓度柠檬醛对P450的诱导效果较为明显,LCso浓度处理下,10个P450全长基因和8个Unigene的相对表达量均达到最高峰。总体来看CYP385C7、 CYP385C8、CYP392A23、CYP392B6和CYP384A2上调幅度较大,均超过8倍,相对于其它P450基因而言,可推测上述5个基因在介导柑橘全爪螨对柠檬醛解毒代谢及适应寄主环境过程中发挥主要作用。
     4.1.3柑橘全爪螨P450基因对巴比妥酸钠诱导响应的表达模式
     巴比妥酸钠对多数P450基因均表现出显著的诱导效应,且诱导最大值多出现在24h和36h后,此外发现CYP392A23、CYP392A25、CYP392B6、CYP384A2和Unigene9596的表达量同诱导浓度之间呈正相关。
     4.2PcCPR和PcCYB5基因表达模式解析
     4.2.1柑橘全爪螨不同发育阶段PcCPR和PcCYB5基因的表达模式
     PcCPR基因在幼螨和若螨中表达水平均显著高于其它两个发育阶段,在幼螨阶段表达量最高,卵期最低,PcCPR表达模式同P450不同发育阶段酶活性变化-致,也说明了其在幼螨和若螨阶段主要参与了P450的解毒代谢过程,也反映出CPR同P450间的协同作用。PcCYB5基因则在若螨期表达量最高,其次为卵和幼螨、成螨阶段表达水平最低,暗示PcCYB5基因在若螨阶段保持较为活跃的电子传递活动。
     4.2.2柑橘全爪螨PcCPR和PcCYB5基因对药剂胁迫响应的表达模式
     在阿维菌素胁迫下,PcCPR基因反应较为迅速,LC10浓度处理12h后表达量均达最大值;低浓度和高浓度的甲氰菊酯均能抑制CPR基因的表达,仅亚致死浓度能显著诱导PcCPR的表达上调;哒螨酮对PcCPR的诱导效应最为强烈,且柠檬醛不同浓度和不同时间胁迫均能使PcPCR基因表达水平升高。上述结果也说明PcCPR在很大程度上参与到P450对外源物质的代谢过程中。对于PcCYB5而言,阿维菌素、甲氰菊酯、哒螨灵和柠檬醛均能够显著诱导其表达水平升高,并且其表达模式同PcCPR基因表达量变化在时间和浓度梯度上呈现一定的互补效应,暗不PcCYB5和PcCPR协同作用保证电子传递的有序进行,共同参与到P450酶系抵御外界环境压力的过程中。
     4.2.3柑橘全爪螨PcCPR和PcCYB5基因巴比妥酸钠诱导响应的表达模式
     qPCR结果发现,巴比妥酸钠均能显著诱导PcCPR和PcCYB5基因的表达,且表现出良好的诱导时间效应和浓度效应,二者表达量均随时间和浓度的增加而升高。
     5柑橘全爪螨P450基因的真核表达
     运用Bac-to-Bac昆虫杆状病毒表达系统,选择柑橘全爪螨2个细胞色素P450基因CYP392A24和CYP392F1,采用双酶切及DNA重组技术,构建了Bacmid-CYP392A24和Bacmid-CYP392F1病毒表达载体,实现对草地贪夜蛾Spodoptera frugiperda Sf9细胞的侵染和蛋白表达,后续对表达产物进行P450含量测定时,发现两个蛋白均以失活态存在,说明仍需进一步完善表达及蛋白纯化体系。而真核表达体系的构建将为今后柑橘全爪螨P450基因功能的验证和目的基因的解毒代谢能力研究奠定基础。
     综上所述,本学位论文研究运用叶碟浸渍法对重庆4个地区柑橘全爪螨田间种群的抗性水平进行了监测,同时完成了对代谢抗性相关的三大解毒酶活性的比较研究;基于高通量测序平台,构建了柑橘全爪螨全螨态转录组数据库,针对性地筛选鉴定出了包括P450在内的主要解毒酶基因,并进行了代谢通路分析;克隆获得了柑橘全爪螨11个P450基因cDNA全长序列,以及P450酶系重要功能基因CPR和CYB5的cDNA全长序列;运用qPCR技术,系统解析了柑橘全爪螨26个P450基因(12个含有全长序列的P450基因、14个P450Unigene片段)和CPR、CYB5基因在不同发育阶段、不同药剂胁迫及诱导条件下的表达模式,鉴定出一系列与杀螨剂和植物次生物质代谢相关的P450基因;基于Bac-to-Bac系统,建立了柑橘全爪螨P450真核表达体系。研究结果丰富了柑橘全爪螨P450酶系的基础生物学信息,为筛选与柑橘全爪螨抗性相关P450基因提供了基础数据支撑,并对从P450氧化还原作用系统上全面阐述其介导的代谢抗性机制具有重要的理论和实践意义。
The citrus red mite, Panonychus citri (McGregor)(Acari:Tetranychidae), is re-garded as the major citrus mite in China. The outbreak of this pest and injury to the plants caused by mite feeding can affect citrus harvest quantity and quality. Control of this mite depends largely on spraying of acaricides. However, frequent acaricides exposure combined with several biology characteristics of this mite (such as high fecundity, short life cycle), facilitate the development of strong resistance in this species to commonly used acaricides. To date, few studies have been attributed to the resistance mechanisms in P. citri, which mostly focus on the biochemical analysis and the identification of resistance genes. As a class of key detoxification enzymes in insects/mites, cytochrome P450monooxygenases (P450s) can metabolize a wide range of endogenous and exogenous chemical substances. Many studies have suggested that P450s in ticks and mites are involved in the resistance to many acaricides/insecticides, including pyrethroids, organophosphates (OPs), Mitochondrial Electron Transport Inhibitors (METI's), tetronic acids, as well as biological pesticides. Researches around world have been focused particularly on cytochrome P450, while the important P450redox partners NADPH cytochrome P450reductase (CPR) and cytochrome b5are often ignored. Thus, carrying out study on P450and its redox system will be conducive to obtaining a comprehensive understanding of the action modes and roles of P450, which can help to reveal the metabolism resistance mechanism mediated by P450s.
     Therefore, our study was aimed at the response pattern of P. citri P450s under the stress of xenobiotics. At the beginning, we conducted the monitoring of resistance to four acaricides in P. citri collected from different citrus orchards in Chongqing and compared the activities of three major detoxification enzymes. As a result, cytochrome P450was chosen as the focus of our research. Secondly, we generated a cDNA library containing four different developmental stages of P. citri and identified a number of detoxification enzyme genes, which would provide abundant information for the study on the molecular resistance mechanisms of P. citri. Based on the transcriptome data, we amplified several full-lengths P450s, as well as CPR and CYB5genes. In addition, the expression reaction of P450, CPR and CYB5genes under different chemical stress was further examined. Finally, the eukaryotic expression system of P450genes in P. citri was established preliminarily, which would contribute to the functional verification of cytochrome P450system. The main results are as follows:
     1Monitoring of resistance to four acaricides in different field populations of Chongqing and comparison of the activities of major detoxification enzymes
     1.1Investigation of susceptibility to four acaricides of different field populations of P. citri
     A modified leaf-dip bioassay method was used to measure the toxicity of four acaricides (abamectin, azocyclotin, pyridaben, spirodiclofen) on four P. citri popula-tions (Beibei, Bishan, Wulong, Zhongxian) sampled from Chongqing. The result showed that abamectin exhibited the highest acaricidal activity among these four acaricides, while the four field populations showed a less susceptibility to spirodiclofen and pyridaben. However, the citrus red mites in Chongqing showed a highest level of resistance to azocyclotin. We learned from the monitoring data for abamectin that, the Bishan population was more susceptible to this acaricide than other three populations. Zhongxian and Wulong populations showed greater tolerance to abamectin and their LC50values were11-and12-folds higher than that of Bishan population. The resistance levels of four populations to azocyclotin were closed and ranged from209.9to379.9mg/L. Samples collected from Zhongxian showed the lowest resistance level to azocyclotin and Bishan population was more tolerant than other populations. Beibei population showed the highest resistance to pyridaben with a LC50value of25.5mg/L, which was4-fold higher than that of the most sensitive population (Bishan). The resistance levels of four populations to spirodiclofen showed great variability and the LC50values were arranged in descending order as follows:Bishan population, Zhongxian population, Wulong population and Beibei population.
     1.2Comparison of the activities of three major detoxification enzymes
     1.2.1Comparison of the major detoxification enzymes activities in different developmental stages
     We assayed and compared the P450s, GSTs and CarEs activities in eggs, larvae, nymphs, and adults though a96-well microplate reader. The results suggested that the highest specific activity of P450s was observed in larvae, which was2.66-,2.70-and16.02-folds significantly higher than that in adults, nymphs and eggs. GSTs activity in adults and nymphs were much higher than that in other developmental stages, and the specific activity of GSTs was lowest in eggs. The CarEs specific activity in four stages ranged from0.46to13.60nmol/min/μg, and the value was largest in larva stage and least in egg stage, respectively. In summary, the results indicated that P450s and CarEs might play important roles in metabolism of xneobiotic during the larva stage, while GSTs was involved in protection against environmental stress during the nymph and adult stages.
     1.2.2Comparison of the major detoxification enzymes activities of different field populations
     The specific activities of P450s was highest in Beibei population, while GSTs and CarEs activities were both highest in Zhongxian population. However, there was no significant correlation between the activities of detoxification enzymes and the re-sistance levels to different acaricides, which might be caused by different background of pesticide application, targets of various acaricides and genetic structures of four populations.
     1.2.3Comparison of the activities of major detoxification enzymes after xenobiotics treatments
     Based on the bioassay, the mites were treated with LC30of five acaricides (abamectin, azocyclotin, fenpropathrin, pyridaben and spirodiclofen) and one kind of volatile secondary metabolites from citrus (citral) for24h. P450s activities increased after exposure to different chemicals, and reached the maximum value when treated by spirodiclofen. Except abamectin, other five different xenobiotics could significantly induce the GSTs activities. Similarly, GSTs activity was also the highest after treatment with spirodiclofen. However, when stimulated by spirodiclofen, CarEs activity was significantly lower than that of control, while the activities stayed still after exposure to other acaricides and citral. Compared to CarEs, P450s and GSTs could respond to the stress of xenobiotics more quickly and sensitively, which indicated that these two enzymes might take part in the metabolism process of the above xenobiotics.
     1.2.4Comparison of the major detoxification enzymes activities induced by sodium barbiturate
     After induction with19.96mg/L sodium barbiturate for24h, the activities of both P450s and GSTs increased, and CarEs activity was significantly inhibited by this chemical.
     2Transcriptome analysis of P. citri and identification of detoxification enzymes genes
     2.1Generation and analysis of the transcriptome database of P. citri
     In order to obtain a P. citri comprehensive transcriptome, the cDNA library was constructed using the mixture of RNA extracted from four developmental stages and generated by Illumina Hi seqTM2000. As a result, a total of51,214,018clean reads were generated and further assembled into65,149Unigenes. Using BLASTX with a cut-off E-value of10-5, there were32,535Unigenes successfully annotated in nr,25,813in Swiss-Prot,22,725in KEGG,15,412in COG and10,421in GO databases, respectively. The homology analysis of the Unigenes annotated in nr suggested that, P. citri Unigenes had higher similarity to Insecta than other classes;9%of the mite Unigenes showed the highest homology to sequences from Tribolium castaneum, followed by Harpegnathos saltator (6%) and Camponotus floridanus (5%). Additionally,1.7%of the annotated Unigenes were best matched to genes from Ixodes scapularis, which also belonged to Arachnida.
     The result of GO classification showed that10,421Unigenes which were annotated in nr were divided into three categories and50functional groups. The most abundant group was "cell"(7,035Unigenes) and the smallest group was "channel regulator activities"(2Unigenes). A total of15,412Unigenes annotated in COG were classified into25families. The largest family "general function prediction" contained3,642Unigenes, while the smallest group was "nuclear structure"(11Unigenes).
     2.2Identification of genes encoding detoxification enzymes and analysis of metabolic pathways
     There were79P450Unigenes identified from the nr annotation of the P. citri transcriptome. Among these P450-related unique transcripts,12,9,26and7Unigenes were divided to CYP2, CYP3, CYP4and CYP6families, respectively. The remaining25Unigenes belonged to other families, including CYP9, CYP18, CYP314and Mitochondrial CYP family. All the P450Unigenes were screened against KEGG database and58were found to be involved in16pathways. We also identified24GSTs Unigenes from nr annotation of the P. citri transcriptome, which were assigned to the delta, kappa, mu, omega, sigma, theta and zeta families. In the KEGG annotation database,19GSTs Unigenes involved in10pathways were detected. A total of13 sequences encoding CarE were identified from the nr annotation results of P. citri transcriptome, among which there were four, three and one Unigenes were divided into Clade A, Clade B and Clade D, respectively. Only four CarE Unigenes could be annotated in KEGG database and involved in one pathway.
     3Full-length molecular cloning and sequences analysis of P450and its relative genes from P. citri
     Based on the transcriptome data,11novel P450genes were cloned from P. citri using the RT-PCR and RACE techniques. All the full-length cDNA sequences were deposited in GenBank and submitted to the P450nomeclature committee. The P450names and the corresponding GenBank accession numbers were as follows:CYP4CL2(JQ690089), CYP384A2(KC201279), CYP385C7(KJ173877), CYP385C8(KJ173878), CYP389D1(KC201278), CYP392A22(KC201275), CYP392A23(KC201276), CYP392A24(KC201277), CYP392A25(KJ173880), CYP392B6(KJ173879), CYP392F1(KC201274). The P450cDNAs contained opening reading frames (ORFs) of1,494-1,758bp that encoding497-585amino acid residues. Furthermore, the bioinformatics software such as ProParam, TMHMM and SignalP3.0were used to analyze the components of protein, physicochemical characteristics, transmembrane structure and signal peptide. As a result, the11P450proteins were considered to be microsomal P450s, which would play important roles in the detoxification of xenobiotics. Protein sequence alignments revealed the typical conserved P450motifs, including the heme binding domain, Helix C, Helix I, Helix K and the meander region. Moreover, the CYP4signature motif EVDTFMFA/GHDTT was present at the amino acid sequence of CYP4CL2.
     We compared the pairwise percentage identities of both nucleotide and predicted amino acid sequences among12P. citri P450genes (11P450s obtained in this research and one P450gene CYP4CF1cloned in our previous study). The percentages of nucleotide sequence identities were36.47-96.39%and the pairwise percentages of their encoded proteins were16.29-96.39%. To analyze the phylogenetic relationships,75P450s of Tetranychus urticae were downloaded from BIOINFORMATICS&SYSTEM BIOLOGY and aligned to the12P. citri P450genes. A phylogenetic tree was constructed with MEGA5.05applying the Maximum Likelihood method and revealed that the12P. citri P450s belonged to3Clans (CYP2Clan, CYP3Clan and CYP4Clan). Additionally, CYPs within the same family were clustered in the same branch.
     The CPR and CYB5genes were also isolated from P. citri with the GenBank accession numbers of KJ173881and KJ173882. The PcCPR cDNA sequence contained an ORF of2,061nucleotides encoding686amino acids, while the PcCYB5cDNA sequence contained an ORF of324nucleotides encoding107amino acids. A multiple alignment of the amino acid sequences was conducted among PcCPR and other three arthropod CPRs. The result showed that PcCPR shared the greatest identity with T. urticae CPR and consisted of three conserved domains such as FMN, FAD and NADPH binding regions. Phylogenetic analysis suggested that CPRs from the same class were grouped together. PcCPR originated from a same evolutionary root with the CPR in T. urticae with the bootstrap value of100, which was consistent with the result of homology analysis. In addition, we generated the protein sequence alignment among CYB5s and found the typical conserved motif (the heme binding region) at the N terminus. Moreover, PcCYB5also had the highest homology with T. urticae CYB5.
     4Transcription profiles of P450and its relative genes from P. citri
     4.1Transcription profiles of P450genes
     4.1.1Developmental expression profiles of P450genes
     Developmental expression profiles of12P450genes containing entire coding region and14Unigenes were analyzed by RT-qPCR. The results showed that the transcripts of26P450genes were detected at all the life stages of P. citri. CYP4CF1, CYP4CL2, CYP392A24and CYP392B6were highly expressed at larval stage, while higher mRNA levels of CYP385C7and CYP389D1were observed at nymphal stage. Additionally,10P450Unigenes had the highest relative expression quantities in the larvae or nymphs. It was inferred that the16P450genes above might be involved in the detoxification process during larval and nymphal stages. The expression levels of CYP384A2and two Unigenes were increased during the development of P. citri, which indicated that the metabolic capacity also increased in ontogeny of the citrus red mite. We also found the expression levels of CYP392A22, CYP392A24, Unigene1146and Unigene27622were significant higher in the eggs, which suggested that these four P450genes might be associated with xenobiotic metabolism in the egg stage. The expression quantities of CYP385C8and CYP392F1were relatively stable, which suggested that the two genes might play important roles during the whole life of P. citri.
     4.1.2Response profiles of P450genes under xenobiotic stress
     To determine the response of P450genes, three acaricides (abamectin, fenpropathrin and pyridaben) and citral were chosen in this study. Based on the bioassay, the mites were treated in two different manners:time treatment (12,24and36h) and concentration treatment (LC10, LC30and LC50). The RT-qPCR analyses revealed that the transcription response of P450genes was very apparent after treatment with abamectin. Two CYP385members (CYP385C7and CYP385C8) was up-regulated more than25-folds and four CYP392genes (CYP392A22, CYP392A23, CYP392A25and CYP392B6) transcripts increased41.46,68.66,25.56and11.34-folds, respectively. For time course effect of abamectin on the expression patterns of P450s, the majority of the26genes had a highest mRNA level after24h and only two Unigenes transcripts reached the peak12h later. Compared to the P450genes above, CYP4CL2and CYP392F1exhibited a slower response. Two CYP385genes(CYP385C7and CYP385C8) expression levels were highest when treated with LQ10abamectin, the relative expression quantities of five CYP392members (CYP392A22, CYP392A23, CYP392A24, CYP392A25and CYP392F1) increased up to the maximum value after exposure to sub-lethal concentration (LC30) abamectin. Under the tress of abamectin at a median lethal concentration (LC50), the CYP4s(CYP4CF1and CYP4CL2) transcripts reached the highest level.
     Most of the detected P450genes could be induced by fenpropathrin, and the relative quantity of CYP4CL2was higher than other genes (4.48-folds). Following exposure to fenpropathrin for12h, four CYP392genes (CYP392A24, CYP392A25, CYP392B6and CYP392F1) as well as CYP384A2and CYP389D1reached the maximum expression. The highest transcription levels of two CYP4s were both observed24h later. After treatment with LC30fenpropathrin, the five genes CYP4CF1, CYP4CL2, CYP392A22, CYP392B6and CYP392F1were significantly up-regulated and the expression levels of them reached the peak. The results also showed that CYP385C8could be significant induced by the LC50of fenpropathrin. It could be indicated that these genes might participated in the detoxification process for fenpropathrin of P. citri.
     Unlike treatments with abamectin and fenpropathrin, the number of P450genes which were up-regulated reduced and the changes of relative quantities were less obvious after exposure to pyridaben. CYP385C7, CYP385C8and CYP392A22transcripts reached the peak after pyridaben treatment for12h, which suggested that the three CYPs might be involved in the detoxification of this acaricide during the early stage. The expression levels of CYP4CL2and four CYP392members (CYP392A23, CYP392A24, CYP392A25and CYP392B6) reached a maximum after24h or36h treatment and these genes might play roles in resisting the pyridaben stress during the middle and late stages. Only the mRNA level of CYP4CL2could be induced to the peak by LCio pyridaben concentration, while three CYP392genes and CYP385C8might be associated with the metabolism of high concentration pyridaben.
     The expression of all the12P450genes containing full-length cDNA increased significantly when treated by citral. The highest mRNA levels of most P450genes were detected after24h or36h treatment, which indicated that the response to citral of P450s in P. citri had a lag-effect. Moreover, qPCR analyses revealed that the high concentration of citral could lead to an obvious induction effect on P450s. There were ten P450genes containing entire ORF and eight Unigenes reached the highest expression level after exposure to citral at the concentration of LC50. The results also showed that the expression changes of CYP385C7, CYP385C8, CYP392A23, CYP392B6and CYP384A2were higher than other P450s (>8-folds increase), which could be inferred that the five CYPs might have important roles in the detoxification of citral and adaptation to the host environment.
     4.1.3Response profiles of P450genes induced by sodium barbiturate
     The sodium barbiturate exhibited significant induction effects on the majority of P450genes in P. citri and the highest induction levels were detected after treatment for24h or36h in most cases. It was also found that a positive correlation existed between the relative expression quantities of five CYPs (CYP392A23, CYP392A25, CYP392B6, CYP384A2and Unigene9596) and the induction concentrations.
     4.2Transcription profiles of PcCPR and PcCYB5genes
     4.2.1Developmental expression profiles of PcCPR and PcCYB5genes
     The expression levels of PcCPR at larval and nymphal stages were significantly higher than that in other two stages. The highest expression quantity was observed in larvae, while the mRNA level was the lowest in eggs. The developmental expression profile of PcCPR was consistent with the P450s activities during the life stages, indicating that PcCPR was mainly involved in the detoxification process mediated by P450s during larval and nymphal stages. Moreover, this phenomenon also suggested that a cooperative action existing between CPR and P450s in P. citri. The highest mRNA level of PcCYB5was detected in nymphs, which indicated that PcCYB5was likely to play an important role in delivering the electrons to P450catalysis.
     4.2.2Response profiles of PcCPR and PcCYB5genes under xenobiotic stress
     The qPCR results showed that PcCPR exhibited a rapid response under the abamectin stress. The PcCPR transcripts reached a maximum after exposure to LC10abamectin for12h. The expression of PcCPR was inhibited by fenpropathrin at the concentrations LC10and LC50, while the sub-lethal concentration (LC30) could significantly induced PcCPR transcripts. Pyridaben showed the strongest induction effect on PcCPR and the citral treatments with different concentrations and times resulted in the up-regulation of PcCPR expression. Thus we concluded that PcCPR could be involved in the metabolic process for xenobiotics of P450. The expression of PcCYB5was significantly up-regulated after treatment with three acaricides and citral. It was also found that a complementary effect existed between the expression profiles of PcCYBS and PcCPR, which indicated that the cooperation of the two genes would ensure the high-speed transfer of electrons.
     4.2.3Response profiles of PcCPR and PcCYBS genes induced by sodium barbiturate
     The qPCR analyses showed that both PcCPR and PcCYBS expression levels increased significantly after sodium barbiturate induction. These two genes transcripts rose with the increase of treatment time and concentration.
     5Eukaryotic expression of P450genes from P. citri
     In order to study the function of CYP392A24and CYP392F1, we conducted the eukaryotic expression experiment with Bac-to-Bac baculovirus expression system. Two recombinant virus expression vectors Bacmid-CYP392A24and Bacmid-CYP392F1were successfully constructed in the use of double digestion of XhoⅠ/HindⅢ and BamHI/PstI restriction enzymes as well as the DNA recombination technology. Transfecting Sf9cells with the recombinant vectors, we finally obtained the expression products. The P450contents were determined by reduced CO-difference spectrum, but the CYP392A24and CYP392F1proteins were proved to be inactive. Therefore, the expression and protein purification system is still need to be improved in the future. However, the generation of eukaryotic expression system for P. citri P450s will provide the technical foundation for the functional verification of P450s and research on the detoxification capacity of target genes.
     In summary, we conducted the resistance monitoring in different populations of P. citri and compared the major detoxification enzymes activities. The transcriptome database of P. citri was generated via high throughput sequencing technology. Based on the transcriptome data, we identified the genes related to detoxification and analyzed their putative metabolic pathways. Using RT-PCR and RACE techniques,11P450genes as well as PcCPR and PcCYB5were isolated from P. citri. Transcription profiles of26P450genes (12CYPs containing entire coding region and14Unigenes), PcCPR and PcCYB5were determined through qPCR technique from P. citri including different developmental stages, acaricides and citral stress and sodium barbiturate induction. As a result, a series of P450genes involving in the detoxification of xenobiotics were identified. Furthermore, we generated the eukaryotic expression system for P. citri P450s and constructed two recombinant virus expression vectors. The results enriched the P450genes information of P. citri and will provide basic data for exploring the resistance related P450genes. Additionally, our study will promote the research on the metabolism resistance mechanism mediated by P450s.
引文
1. Migeon A, Dorkeld F. Spider mites web, http://www.montpellier.inra.fr/CBGP/spmweb.,2012.
    2.刘映红,李隆术,赵志模.桔全爪螨与柑桔相互作用的研究,蛛形学报,1995,4:103-110.
    3. Whalon ME, Mota-Sanchez RM, Hollingworth RM, Duynslager L. Artrhopods resistant to pesticides database (ARPD), http://www.pesticideresistance.org.,2011.
    4. Niu JZ, Liu GY, Dou W, Wang JJ. Susceptibility and activity of glutathione S-transferases in nine field populations of Panonychus citri (Acari:Tetranychidae) to pyridaben and azocyclotin, Fla. Entomol.,2011,94:321-329.
    5. Hu J, Wang C, Wang J, You Y, Chen F. Monitoring of resistance to spirodiclofen and five other acaricides in Panonychus citri collected from Chinese citrus orchards, Pest Manag. Sci.,2010, 66:1025-1030.
    6.陈达荣,钟捷英.福州地区桔全爪螨对水胺硫磷抗性测定,植物保护,1990,16:12-13.
    7.刘永华,蒋红波,袁明龙,樊钰虎,杨丽红,陈静,王进军.柑橘全爪螨对4种杀螨剂的抗性监测及增效作用,果树学报,2010,27:570-574.
    8.冉春,陈洋,袁明龙,王进军,刘浩强,姚廷山.桔全爪螨田间种群对杀螨剂的敏感性,植物保护学报,2008,35:537-540.
    9.丁天波,牛金志,夏文凯,孙倩倩,豆威,王进军.柑橘全爪螨田间种群敏感性测定及三种主要解毒酶活性比较,应用昆虫学报,2012,49:382-389.
    10.张昆,丁天波,杨爵铭,豆威,王进军.柑橘全爪螨两个田间种群抗性监测及羧酸酯酶生化特性研究,应用昆虫学报,2013,50:362-367.
    11. Ran C, Chen Y, Wang JJ. Susceptibility and carboxylesterase activity of five field populations of Panonychus citri (McGregor)(Acari:Tetranychidae) to four acaricides, Int. J. Acarol.,2009,35: 115-121.
    12.唐振华,毕强,杀虫剂作用的分子行为,上海远东出版社2003.
    13. Feyereisen R. Insect P450 enzymes, Annu. Rev. Entomol.,1999,44:507-533.
    14. Enayati A, Ranson H, Hemingway J. Insect glutathione transferases and insecticide resistance, Insect Mol. Biol.,2005,14:3-8.
    15. Coppin CW, Jackson CJ, Sutherland T, Hart PJ, Devonshire AL, Russell RJ, Oakeshott JG. Testing the evolvability of an insect carboxylesterase for the detoxification of synthetic pyrethroid insecticides, Insect Biochem. Mol. Biol.,2012,42:343-352.
    16. Li X, Schuler MA, Berenbaum MR. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics, Annu. Rev. Entomol.,2007,52:231-253.
    17. Fergusson-Kolmes LA, Scott JG, Dennehy TJ. Dicofol resistance in Tetranychus urticae (Acari: Tetranychidae):cross-resistance and pharmacokinetics, J. Econ. Entomol.,1991,84:41-48.
    18.孟和生,王开运.桔全爪螨对哒螨灵抗性的选育及其生化机理,农药学学报,2000,2:30-34.
    19. Tsagkarakou A, Pasteur N, Cuany A, Chevillon C, Navajas M. Mechanisms of resistance to organophosphates in Tetranychus urticae (Acari:Tetranychidae) from Greece, Insect Biochem. Mol. Biol.,2002,32:417-424.
    20.赵卫东,王开运,姜兴印,仪美芹.二斑叶螨对阿维菌素,哒螨灵和甲氰菊酯的抗性选育及其解毒酶活力变化,昆虫学报,2003,46:788-792.
    21. He L, Xue CH, Wang JJ, Li M, Li WC, Zhao ZM. Resistance selection and biochemical mechanism of resistance to two Acaricides in Tetranychus cinnabarinus (Boiduval), Pestic. Biochem. Physiol.,2009,93:47-52.
    22.高新菊,沈慧敏.二斑叶螨对甲氰菊酯的抗性选育及解毒酶活力变化,昆虫学报,2011,54:64-69.
    23. Feyereisen R. Insect Cytochrome P450, Comprehensive Molecular Insect Science.,2005,1-77.
    24.唐振华,毕强,P450单加氧酶系及其在杀虫剂代谢中的作用,杀虫剂作用的分子行为,上海远东出版社,上海,2003,pp.161-165.
    25. Scott JG Cytochromes P450 and insecticide resistance, Insect Biochem. Mol. Biol.,1999,29: 757-777.
    26. Feyereisen R, Insect CYP Genes and P450 Enzymes, Insect molecular biology and biochemistry 2012, pp.236-316.
    27. Mansuy D. The great diversity of reactions catalyzed by cytochromes P450, Comparative Biochemistry and Physiology Part C:Pharmacology, Toxicology and Endocrinology,1998,121: 5-14.
    28. Nelson DR. Metazoan cytochrome P450 evolution, Comparative Biochemistry and Physiology Part C:Pharmacology, Toxicology and Endocrinology,1998,121:15-22.
    29. Feyereisen R. Evolution of insect P450, Biochem. Soc. Trans.,2006,34:1252-1255.
    30. Bogwitz MR, Chung H, Magoc L, Rigby S, Wong W, O'Keefe M, McKenzie JA, Batterham P, Daborn PJ. Cyp12a4 confers lufenuron resistance in a natural population of Drosophila melanogaster, Proc. Natl. Acad. Sci. U. S. A.,2005,102:12807-12812.
    31. Grbic M, Van Leeuwen T, Clark RM, Rombauts S, Rouze P, Grbic V, Osborne EJ, Dermauw W, Ngoc PCT, Ortego F. The genome of Tetranychus urticae reveals herbivorous pest adaptations, Nature,2011,479:487-492.
    32.刘小宁.植物次生物质对棉铃虫细胞色素P450s的诱导及CYP6B6基因的克隆与表达,博士学位论文,北京:中国农业大学,2005.
    33. Maitra S, Dombrowski SM, Basu M, Raustol O, Waters LC, Ganguly R. Factors on the third chromosome affect the level of Cyp6a2 and Cyp6a8 expression in Drosophila melanogaster, Gene,2000,248:147-156.
    34. Festucci-Buselli R, Carvalho-Dias A, Oliveira-Andrade D, Caixeta-Nunes C, Li H-M, Stuart J, Muir W, Scharf M, Pittendrigh B. Expression of Cyp6gl and Cyp12dl in DDT resistant and susceptible strains of Drosophila melanogaster, Insect Mol. Biol.,2005,14:69-77.
    35. Vontas J, Blass C, Koutsos A, David JP, Kafatos F, Louis C, Hemingway J, Christophides G, Ranson H. Gene expression in insecticide resistant and susceptible Anopheles gambiae strains constitutively or after insecticide exposure, Insect Mol. Biol.,2005,14:509-521.
    36. David J-P, Strode C, Vontas J, Nikou D, Vaughan A, Pignatelli PM, Louis C, Hemingway J, Ranson H. The Anopheles gambiae detoxification chip:a highly specific microarray to study metabolic-based insecticide resistance in malaria vectors, Proc. Natl. Acad. Sci. U. S. A.,2005, 102:4080-4084.
    37. Feyereisen R, Koener JF, Farnsworth DE, Nebert DW. Isolation and sequence of cDNA encoding a cytochrome P-450 from an insecticide-resistant strain of the house fly, Musca domestica, Proc. Natl. Acad. Sci. U. S. A.,1989,86:1465-1469.
    38. Le Goff G, Boundy S, Daborn P, Yen J, Sofer L, Lind R, Sabourault C, Madi-Ravazzi L. Microarray analysis of cytochrome P450 mediated insecticide resistance in Drosophila, Insect Biochem. Mol. Biol.,2003,33:701-708.
    39. Rose RL, Goh D, Thompson DM, Verma KD, Heckel DG, Gahan LJ, Roe RM, Hodgson E. Cytochrome P450 (CYP) 9A1 in Heliothis virescens:the first member of a new CYP family, Insect Biochem. Mol. Biol.,1997,27:605-615.
    40. Brun-Barale A, H6ma O, Martin T, Suraporn S, Audant P, Sezutsu H, Feyereisen R. Multiple P450 genes overexpressed in deltamethrin-resistant strains of Helicoverpa armigera, Pest Manag. Sci.,2010,66:900-909.
    41. Strode C, Wondji CS, David JP, Hawkes NJ, Lumjuan N, Nelson DR, Drane DR, Karunaratne S, Hemingway J, Black IV WC. Genomic analysis of detoxification genes in the mosquito Aedes aegypti, Insect Biochem. Mol. Biol.,2008,38:113-123.
    42. Riveron JM, Irving H, Ndula M, Barnes KG, Ibrahim SS, Paine MJI, Wondji CS. Directionally selected cytochrome P450 alleles are driving the spread of pyrethroid resistance in the major malaria vector Anopheles funestus, Proc. Natl. Acad. Sci. U. S. A.,2013,110:252-257.
    43. Karunker I, Morou E, Nikou D, Nauen R, Sertchook R, Stevenson BJ, Paine MJ, Morin S, Vontas J. Structural model and functional characterization of the Bemisia tabaci CYP6CM1vQ, a cytochrome P450 associated with high levels of imidacloprid resistance, Insect Biochem. Mol. Biol.,2009,39:697-706.
    44. Puinean AM, Foster SP, Oliphant L, Denholm I, Field LM, Millar NS, Williamson MS, Bass C. Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzuspersicae, PLoS Genet.,2010,6:e1000999.
    45. Van Leeuwen T, Van Pottelberge S, Tirry L. Comparative acaricide susceptibility and detoxifying enzyme activities in field-collected resistant and susceptible strains of Tetranychus urticae, Pest Manag. Sci.,2005,61:499-507.
    46. Tsagkarakou A, Van Leeuwen T, Khajehali J, Ilias A, Grispou M, Williamson M, Tirry L, Vontas J. Identification of pyrethroid resistance associated mutations in the para sodium channel of the two-spotted spider mite Tetranychus urticae (Acari:Tetranychidae), Insect Mol. Biol.,2009,18: 583-593.
    47. Stumpf N, Nauen R. Cross-resistance, inheritance, and biochemistry of mitochondrial electron transport inhibitor-acaricide resistance in Tetranychus urticae (Acari:Tetranychidae), J. Econ. Entomol.,2001,94:1577-1583.
    48. Van Pottelberge S, Van Leeuwen T, Khajehali J, Tirry L. Genetic and biochemical analysis of a laboratory selected spirodiclofen resistant strain of Tetranychus urticae Koch (Acari: Tetranychidae), Pest Manag. Sci.,2009,65:358-366.
    49. Miller RJ, Davey RB, George JE. Characterization of pyrethroid resistance and susceptibility to coumaphos in Mexican Boophilus microplus (Acari:Ixodidae), J. Med. Entomol.,1999,36: 533-538.
    50. Pasay C, Arlian L, Morgan M, Gunning R, Rossiter L, Holt D, Walton S, Beckham S, McCarthy J. The effect of insecticide synergists on the response of scabies mites to pyrethroid acaricides, PLoS Negl. Trop. Dis.,2009,3:e354.
    51. Chevillon C, Ducornez S, De Meeus T, Koffi BB, Gara H, Delathiere JM, Barre N. Accumulation of acaricide resistance mechanisms in Rhipicephalus(Boophilus) microplus (Acari:Ixodidae) populations from New Caledonia Island, Vet. Parasitol.,2007,147:276-288.
    52.陈志永,冉春,张玲,王进军.桔全爪螨抗辛硫磷品系的选育及多功能氧化酶的特性研究,中国农学通报,2007,23:258-261.
    53.何恒果.桔全爪螨对甲氰菊酯和阿维菌素的抗性及其酯酶基因的克隆与表达研究,博士学位论文,重庆:西南大学,2010.
    54.冉春,江高飞,刘斌,刘浩强,李鸿筠,王进军.橘全爪螨对双甲脒的抗性选育及其P450基因的表达差异分析,昆虫学报,2012,55:703-709.
    55. Zhu F, Li T, Zhang L, Liu N. Co-up-regulation of three P450 genes in response to permethrin exposure in permethrin resistant house flies, Musca domestica, BMC Physiol.,2008,8:18.
    56. Van Pottelberge S, Van Leeuwen T, Van Amermaet K, Tirry L. Induction of cytochrome P450 monooxygenase activity in the two-spotted spider mite Tetranychus urticae and its influence on acaricide toxicity, Pestic. Biochem. Physiol.,2008,91:128-133.
    57. Bhaskara S, Dean ED, Lam V, Ganguly R. Induction of two cytochrome P450 genes, Cyp6a2 and Cyp6a8, of Drosophila melanogaster by caffeine in adult flies and in cell culture, Gene, 2006,377:56-64.
    58. Sun W, Margam V, Sun L, Buczkowski G, Bennett G, Schemerhorn B, Muir W, Pittendrigh B. Genome-wide analysis of phenobarbital-inducible genes in Drosophila melanogaster, Insect Mol. Biol.,2006,15:455-464.
    59. Kasai S, Scott JG Expression and regulation of CYP6D3 in the house fly, Musca domestica (L.), Insect Biochem. Mol. Biol.,2001,32:1-8.
    60.郑明奇.棉铃虫细胞色素P450的诱导、纯化及其性质研究,博士学位论文,北京:中国农业大学,2003.
    61. Zhao GD, Zhao SS, Gao RN, Wang RX, Zhang T, Ding H, Li B, Lu CD, Shen WD, Wei ZG Transcription profiling of eight cytochrome P450s potentially involved in xenobiotic metabolism in the silkworm, Bombyx mori, Pestic. Biochem. Physiol.,2011,100:251-255.
    62. Poupardin R, Riaz M, Vontas J, David J, Reynaud S. Transcription profiling of eleven cytochrome P450s potentially involved in xenobiotic metabolism in the mosquito Aedes aegypti, Insect Mol.Biol.,2010,19:185-193.
    63.周海波,陈巨莲,程登发,孙京瑞,刘勇,陈林.植物挥发性次生物质在害虫生态调控中的机理及应用,植物保护科技创新与发展,2008.
    64. Zhang YE, Ma HJ, Feng DD, Lai XF, Chen ZM, Xu MY, Yu QY, Zhang Z. Induction of detoxification enzymes by quercetin in the silkworm, J. Econ. Entomol.,2012,105:1034-1042.
    65. Snyder MJ, Walding JK, Feyereisen R. Metabolic fate of the allelochemical nicotine in the tobacco hornworm Manduca sexta, Insect Biochem. Mol. Biol.,1994,24:837-846.
    66. Snyder M, Glendinning J. Causal connection between detoxification enzyme activity and consumption of a toxic plant compound, J. Comp. Physiol. A,1996,179:255-261.
    67. Gong Y, Li T, Zhang L, Gao X, Liu N. Permethrin induction of multiple cytochrome P450 genes in insecticide resistant mosquitoes, Culex quinquefasciatus, Int. J. Biol. Sci.,2013,9:863.
    68. Baek JH, Clark JM, Lee SH. Cross-strain comparison of cypermethrin-induced cytochrome P450 transcription under different induction conditions in diamondback moth, Pestic. Biochem. Physiol.,2010,96:43-50.
    69.蒋红波.嗜卷书虱P450基因的分子生物学特性及其异源表达研究,博士学位论文,重庆:西南大学,2010.
    70.汪丹.棉铃虫NADPH-细胞色素P450还原酶基因的克隆、时空表达及RNA干扰,硕士学位论文,南京:南京农业大学,2011.
    71. Vincent B, Morellet N, Fatemi F, Aigrain L, Truan G, Guittet E, Lescop E. The closed and compact domain organization of the 70-kDa human cytochrome P450 reductase in its oxidized state as revealed by NMR, J. Mol. Biol.,2012,420:296-309.
    72. Murataliev MB, Feyereisen R, Walker F. Electron transfer by diflavin reductases, BBA-Proteins Proteomi.,2004,1698:1-26.
    73. Cheng J, Wan DF, Gu JR, Gong Y, Yang SL, Hao DC, Yang L. Establishment of a yeast system that stably expresses human cytochrome P450 reductase:application for the study of drug metabolism of cytochrome P450s in vitro, Protein Expr. Purif.,2006,47:467-476.
    74. Wang J, de Montellano PRO. The binding sites on human heme oxygenase-1 for cytochrome P450 reductase and biliverdin reductase, J. Biol. Chem.,2003,278:20069-20076.
    75. Schenkman JB, Jansson I. The many roles of cytochrome b5, Pharmacol. Ther.,2003,97: 139-152.
    76. Qiu Y, Tittiger C, Wicker-Thomas C, Le Goff G, Young S, Wajnberg E, Fricaux T, Taquet N, Blomquist GJ, Feyereisen R. An insect-specific P450 oxidative decarbonylase for cuticular hydrocarbon biosynthesis, Proc. Natl. Acad. Sci. U. S. A.,2012,109:14858-14863.
    77. Liu S, Liang QM, Huang YJ, Yuan X, Zhou WW, Qiao F, Cheng J, Gurr GM, Zhu ZR. Cloning, functional characterization, and expression profiles of NADPH-cytochrome P450 reductase gene from the Asiatic rice striped stem borer, Chilo suppressalis (Lepidoptera:Pyralidae), Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2013, 166:225-231.
    78. Murataliev MB, Guzov VM, Walker F, Feyereisen R. P450 reductase and cytochrome b5 interactions with cytochrome P450:Effects on house fly CYP6A1 catalysis, Insect Biochem. Mol. Biol.,2008,38:1008-1015.
    79. Zhu F, Sams S, Moural T, Haynes KF, Potter MF, Palli SR. RNA interference of NADPH-cytochrome P450 reductase results in reduced insecticide resistance in the bed bug, Cimex lectularius, PLoS One,2012,7:e31037.
    80. Lycett G, McLaughlin L, Ranson H, Hemingway J, Kafatos F, Loukeris T, Paine M. Anopheles gambiae P450 reductase is highly expressed in oenocytes and in vivo knockdown increases permethrin susceptibility, Insect Mol. Biol.,2006,15:321-327.
    81. Ranasinghe C, Hobbs AA. Isolation and characterisation of a cytochrome b5 cDNA clone from Helicoverpa armigera (Hubner):possible involvement of cytochrome b5 in cytochrome P450 CYP6B7 activity towards pyrethroids, Insect Biochem. Mol. Biol.,1999,29:145-151.
    82. Pompon D, Coon MJ. On the mechanism of action of cytochrome P-450. Oxidation and reduction of the ferrous dioxygen complex of liver microsomal cytochrome P-450 by cytochrome b5, J. Biol. Chem.,1984,259:15377-15385.
    83. Hildebrandt A, Estabrook RW. Evidence for the participation of cytochrome b5 in hepatic microsomal mixed-function oxidation reactions, Arch. Biochem. Biophys.,1971,143:66-79.
    84. Pompon D. Rabbit liver cytochrome P-450 LM2:roles of substrates, inhibitors, and cytochrome b5 in modulating the partition between productive and abortive mechanisms, Biochemistry, 1987,26:6429-6435.
    85. Shinzawa K, Kominami S, Takemori S. Studies on cytochrome P-450 (P-450 17 alpha, lyase) from guinea pig adrenal microsomes. Dual function of a single enzyme and effect of cytochrome b5, Biochim. Biophys. Acta,1985,833:151-160.
    86. Yamazaki H, Nakano M, Imai Y, Ueng YF, Guengerich FP, Shimada T. Roles of cytochrome b5 in the oxidation of testosterone and nifedipine by recombinant cytochrome P450 3A4 and by human liver microsomes, Arch. Biochem. Biophys.,1996,325:174-182.
    87.张棋膦,袁明龙.基于新一代测序技术的昆虫转录组学研究进展,应用昆虫学报,2013,56:1489-1508.
    88. He HL, Bin SY, Wu ZZ, Lin JT. Transcriptome characteristics of Phyllotreta striolata (Fabricius)(Coleoptera:Chrysomelidae) analyzed by using Ⅲumina's Solexa sequencing technology, Acta Entomol. Sin.,2012,55:1-11.
    89. Li SW, Yang H, Liu YF, Liao QR, Du J, Jin DC. Transcriptome and gene expression analysis of the rice leaf folder, Cnaphalocrosis medinalis, PLoS One,2012,7:e47401.
    90. Li J, Li X, Chen Y, Yang Z, Guo S. Solexa sequencing based transcriptome analysis of Helicoverpa armigera larvae, Mol. Biol. Rep.,2012,39:11051-11059.
    91. Shen G, Dou W, Huang Y, Jiang X, Smagghe Q Wang J. In silico cloning and annotation of genes involved in the digestion, detoxification and RNA interference mechanism in the midgut of Bactrocera dorsalis [Hendel (Diptera:Tephritidae)], Insect Mol. Biol.,2013.
    92. Pavlidi N, Dermauw W, Rombauts S, Chrisargiris A, Van Leeuwen T, Vontas J. Analysis of the olive fruit fly Bactrocera oleae transcriptome and phylogenetic classification of the major detoxification gene families, PLoS One,2013,8:e66533.
    93. Yang N, Xie W, Jones C, Bass C, Jiao X, Yang X, Liu B, Li R, Zhang Y. Transcriptome profiling of the whitefly Bemisia tabaci reveals stage-specific gene expression signatures for thiamethoxam resistance, Insect Mol. Biol.,2013,22:485-496.
    94. Carvalho RA, Omoto C, Field LM, Williamson MS, Bass C. Investigating the molecular mechanisms of organophosphate and pyrethroid resistance in the fall armyworm Spodoptera frugiperda, PLoS One,2013,8:e62268.
    95. Francischetti I, My Pham V, Mans BJ, Andersen JF, Mather TN, Lane RS, Ribeiro J. The transcriptome of the salivary glands of the female western black-legged tick Ixodes pacificus (Acari:Ixodidae), Insect Biochem. Mol. Biol.,2005,35:1142-1161.
    96. Bissinger B, Donohue K, Khalil S, Grozinger C, Sonenshine D, Zhu J, Roe R. Synganglion transcriptome and developmental global gene expression in adult females of the American dog tick, Dermacentor variabilis (Acari:Ixodidae), Insect Mol. Biol.,2011,20:465-491.
    97. Lees K, Woods D, Bowman A. Transcriptome analysis of the synganglion from the brown dog tick, Rhipicephalus sanguineus, Insect Mol. Biol.,2010,19:273-282.
    98. Cabrera AR, Donohue KV, Khalil S, Scholl E, Opperman C, Sonenshine DE, Roe RM. New approach for the study of mite reproduction:The first transcriptome analysis of a mite, Phytoseiuluspersimilis (Acari:Phytoseiidae), J. Insect Physiol.,2011,57:52-61.
    99. Hoy MA, Yu F, Meyer JM, Tarazona OA, Jeyaprakash A, Wu K. Transcriptome sequencing and annotation of the predatory mite Metaseiulus occidentalis (Acari:Phytoseiidae):a cautionary tale about possible contamination by prey sequences, Exp. Appl. Acarol.,2013,59:283-296.
    100. Liu B, Jiang G, Zhang Y, Li J, Li X, Yue J, Chen F, Liu H, Li H, Zhu S. Analysis of transcriptome differences between resistant and susceptible strains of the citrus red mite Panonychus citri (Acari:Tetranychidae), PLoS One,2011,6:e28516.
    101.路珂,曾苏,姚形炜.利用细菌/杆状病毒系统在昆虫细胞中表达人CYP2E1,浙江大学学报:医学版,2008,37:118-125.
    102.刘高强,章克昌,王晓玲,魏美才.昆虫杆状病毒表达系统的研究与应用进展,中国生物工程杂志,2004,24:40-44.
    103.刘永平,王方海,苏志坚,李广宏,庞义.昆虫杆状病毒表达载体系统的研究及应用,昆虫知识,2006,43:1-5.
    104. Dunkov BC, Guzov VM, Mocelin G, Shotkoski F, Brun A, Amichot M, Ffrench-Constant RH, Feyereisen R. The Drosophila cytochrome P450 gene Cyp6a2:structure, localization, heterologous expression, and induction by phenobarbital, DNA Cell Biol.,1997,16: 1345-1356.
    105. Keeling CI, Henderson H, Li M, Dullat HK, Ohnishi T, Bohlmann J. CYP345E2, an antenna-specific cytochrome P450 from the mountain pine beetle, Dendroctonus ponderosae Hopkins, catalyses the oxidation of pine host monoterpene volatiles, Insect Biochem. Mol. Biol., 2013.
    106.徐生才.家蚕和野桑蚕解毒酶活性的比较及野桑蚕CYP9A20V1基因的克隆与表达,硕士学位论文,苏州:苏州大学,2009.
    107. Hung CF, Berenbaum MR, Schuler MA. Isolation and characterization of CYP6B4, a furanocoumarin-inducible cytochrome P450 from a polyphagous caterpillar (Lepidoptera: Papilionidae), Insect Biochem. Mol. Biol.,1997,27:377-385.
    108. Yang LH, Huang H, Wang JJ. Antioxidant responses of citrus red mite, Panonychus citri (McGregor)(Acari:Tetranychidae), exposed to thermal stress, J. Insect Physiol.,2010,56: 1871-1876.
    109.杨丽红.柑橘全爪螨Panonychus citri (McGregor)对热胁迫的响应机制研究,博士学位论文,重庆:西南大学,2011.
    110. Van Leeuwen T, Van Nieuwenhuyse P, Vanholme B, Dermauw W, Nauen R, Tirry L. Parallel evolution of cytochrome b mediated bifenazate resistance in the citrus red mite Panonychus citri, Insect Mol. Biol,2011,20:135-140.
    111. Ding TB, Zhong R, Jiang XZ, Liao CY, Xia WK, Liu B, Dou W, Wang JJ. Molecular characterization of a sodium channel gene and identification of a Phe1538 to (?)e mutation in citrus red mite, Panonychus citri, Pest Manag. Sci.,2014.
    112. Liao CY, Zhang K, Niu JZ, Ding TB, Zhong R, Xia WK, Dou W, Wang JJ. Identification and Characterization of Seven Glutathione S-Transferase Genes from Citrus Red Mite, Panonychus citri (McGregor), Int. J. Mol. Sci.,2013,14:24255-24270.
    113. Zhang K, Niu JZ, Ding TB, Dou W, Wang JJ. Molecular characterization of two carboxylesterase genes of the citrus red mite, Panonychus citri (Acari:Tetranychidae), Arch. Insect Biochem. Physiol.,2013,82:213-226.
    114.徐南昌,郎国良,刘立峰.柑橘全爪螨发生规律及防治措施,植保技术与推广,2003,23:22-23.
    115. Yamamoto A, Yoneda H, Hatano R, Asada M. Genetic analysis of hexythiazox resistance in the citrus red mite, Panonychus citri (McGregor), J. Pestic. Sci.,1995,20:513-519.
    116. Brogdon W, McAllister J, Vulule J. Heme peroxidase activity measured in single mosquitoes identifies individuals expressing an elevated oxidase for insecticide resistance, J. Am. Mosq. Control Assoc.,1997,13:233.
    117. Tiwari S, Pelz-Stelinski K, Mann RS, Stelinski LL. Glutathione Transferase and Cytochrome P450 (General Oxidase) Activity Levels in Candidatus Liberibacter Asiaticus-Infected and Uninfected Asian Citrus Psyllid (Hemiptera:Psyllidae), Ann. Entomol. Soc. Am.,2011,104: 297-305.
    118. Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases, J. Biol. Chem.,1974,249:7130.
    119. Van Asperen K. A study of housefly esterases by means of a sensitive colorimetric method, J. Insect Physiol.,1962,8:401-414, IN403,415-416.
    120. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem.,1976,72:248-254.
    121.陈年春,彭云良.柑桔全爪螨抗药性监测及主导抗性机制的初步研究,农药,1996,35:15-18.
    122.邱星辉,李薇,冷欣夫.棉铃虫不同发育阶段微粒体P450酶系组成和活性的比较,昆虫学报,2001,44:142-147.
    123.黄剑.小菜蛾抗阿维菌素品系细胞色素P450的研究,博士学位论文,杨凌:西北农林科技大学,2005.
    124. Wilkinson C, Brattsten L. Microsomal drug metabolizing enzymes in insects, Drug Metab. Rev., 1972,1:153-227.
    125. Hodgson E, Mierosomal monooxygenases, Comprehensive Insect Physiology Biochemistry and Pharmacology, Kerkut GA and Gilberet LC, Oxiford:Pergamon Press,1985, pp. 225-231/647-713.
    126.胡飞.桔小实蝇GSTs生化及分子毒理学特性研究,博士学位论文,重庆:西南大学,2012.
    127.李秋红,钱坤,周小洁,曾晓芃,高希武.德国小蠊谷胱甘肽S-转移酶在不同发育阶段活性变化及其在野外种群中的水平,中国媒介生物学及控制杂志,2011,22:429-432.
    128. Chen EH, Dou W, Hu F, Tang S, Zhao ZM, Wang JJ. Purification and biochemical characterization of glutathione S-transferases in Bactrocera minax (diptera:tephritidae), Fla. Entomol.,2012,95:593-601.
    129. Campbell P, Robin DQ, Court L, Dorrian S, Russell R, Oakeshott J. Developmental expression and gene/enzyme identifications in the alpha esterase gene cluster of Drosophila melanogaster, Insect Mol. Biol.,2003,12:459-471.
    130.唐培安.3种书虱酯酶基因的克隆及其mRNA表达水平研究,博士学位论文,重庆:西南大学,2009.
    131. Wilczek G, Kramarz P, Babczynska A. Activity of carboxylesterase and glutathione S-transferase in different life-stages of carabid beetle (Poecilus cupreus) exposed to toxic metal concentrations, Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology, 2003,134:501-512.
    132. Zhang Y, Song D, Wu H, Yang H, Zhang J, Li L, Ma E, Guo Y. Effect of dietary cadmium on the activity of glutathione S-transferase and carboxylesterase in different developmental stages of the Oxya chinensis (Orthoptera:Acridoidea), Environ. Entomol.,2014,43:171-177.
    133. Cui F, Lin Z, Wang H, Liu S, Chang H, Reeck G, Qiao C, Raymond M, Kang L. Two single mutations commonly cause qualitative change of nonspecific carboxylesterases in insects, Insect Biochem. Mol. Biol.,2011,41:1-8.
    134. Amichot M, Tares S, Brun-Barale A, Arthaud L, Bride JM, Berge JB. Point mutations associated with insecticide resistance in the Drosophila cytochrome P450 Cyp6a2 enable DDT metabolism, Eur. J. Biochem.,2004,271:1250-1257.
    135. Fritz LC, Wang CC, Gorio A. Avermectin B la irreversibly blocks postsynaptic potentials at the lobster neuromuscular junction by reducing muscle membrane resistance, Proc. Natl. Acad. Sci. U. S. A.,1979,76:2062-2066.
    136. Clark J, Scott J, Campos F, Bloomquist J. Resistance to avermectins:extent, mechanisms, and management implications, Annu. Rev. Entomol.,1995,40:1-30.
    137. Stumpf N, Nauen R. Biochemical markers linked to abamectin resistance in Tetranychus urticae(Acari:Tetranychidae), Pestic. Biochem. Physiol.,2002,72:111-121.
    138. Van Leeuwen T, Vontas J, Tsagkarakou A, Dermauw W, Tirry L. Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari:a review, Insect Biochem. Mol. Biol.,2010,40:563-572.
    139. Khajehali J, Van Nieuwenhuyse P, Demaeght P, Tirry L, Van Leeuwen T. Acaricide resistance and resistance mechanisms in Tetranychus urticae populations from rose greenhouses in the Netherlands, Pest Manag. Sci.,2011,67:1424-1433.
    140.陈飞,张云飞,刘浩强,李鸿筠,冉春.几种代谢酶基因与柑橘全爪螨对双甲脒抗性的关系,植物保护学报,2013,40:165-170.
    141. Dong K. Insect sodium channels and insecticide resistance, Invertebr. Neurosci.,2007,7: 17-30.
    142. Khambay B, Jewess P. Pyrethroids, Comprehensive molecular insect science,2005,6:1-29.
    143. Mueller P, Chouaibou M, Pignatelli P, Etang J, Walker ED, Donnelly MJ, Simard F, Ranson H. Pyrethroid tolerance is associated with elevated expression of antioxidants and agricultural practice in Anopheles arabiensis sampled from an area of cotton fields in Northern Cameroon, Mol. Ecol.,2008,17:1145-1155.
    144. Feng YN, Zhao S, Sun W, Li M, Lu W, He L. The sodium channel gene in Tetranychus cinnabarinus (Boisduval):identification and expression analysis of a mutation associated with pyrethroid resistance, Pest Manag. Sci.,2011,67:904-912.
    145. Gerson U. Enzyme levels used to monitor pesticide resistance in Varroa jacobsoni, J. Apicult. Res.,30:17-20.
    146. Hillesheim E, Ritter W, Bassand D. First data on resistance mechanisms of Varroa jacobsoni (Oud.) against tau-fluvalinate, Exp. Appl. Acarol.,1996,20:283-296.
    147. Hollingworth R, Ahammadsahib K. Inhibitors of respiratory complex Ⅰ. Mechanisms, pesticidal actions and toxicology, Reviews in pesticide toxicology (USA),1995.
    148. Lummen P, Mitochondrial electron transport complexes as biochemical target sites for insecticides and acaricids, Insecticides Design Using Advanced Technologies, Springer2007, pp.197-215.
    149. Ouyang Y, Montez GH, Liu L, Grafton-Cardwell EE. Spirodiclofen and spirotetramat bioassays for monitoring resistance in citrus red mite, Panonychus citri (Acari:Tetranychidae), Pest Manag. Sci.,2012,68:781-787.
    150. Demaeght P, Dermauw W, Tsakireli D, Khajehali J, Nauen R, Tiny L, Vontas J, Lummen P, Van Leeuwen T. Molecular analysis of resistance to acaricidal spirocyclic tetronic acids in Tetranychus urticae:CYP392E10 metabolizes spirodiclofen, but not its corresponding enol, Insect Biochem. Mol. Biol.,2013.
    151. Brattsten L. Biochemical defense mechanisms in herbivores against plant allelochemicals, Herbivores:their interaction with secondary plant metabolites. Academic Press, New York, 1979,199-270.
    152.王琛柱.棉酚和单宁酸对棉铃虫幼虫生长和消化生理的影响,植物保护学报,1997,24:13-18.
    153. Dombrowski SM, Krishnan R, Witte M, Maitra S, Diesing C, Waters LC, Ganguly R. Constitutive and barbital-induced expression of the Cyp6a2 allele of a high producer strain of CYP6A2 in the genetic background of a low producer strain, Gene,1998,221:69-77.
    154. Le Goff G, Hilliou F, Siegfried BD, Boundy S, Wajnberg E, Sofer L, Audant P, Feyereisen R. Xenobiotic response in Drosophila melanogaster. sex dependence of P450 and GST gene induction, Insect Biochem. Mol. Biol.,2006,36:674-682.
    155. Dong Y, Xie M, Jiang Y, Xiao N, Du X, Zhang W, Tosser-Klopp G, Wang J, Yang S, Liang J. Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus),Nat. Biotechnol.,2013,31:135-141.
    156. Xia Q, Guo Y, Zhang Z, Li D, Xuan Z, Li Z, Dai F, Li Y, Cheng D, Li R. Complete resequencing of 40 genomes reveals domestication events and genes in silkworm (Bombyx), Science,2009,326:433-436.
    157. Mercer TR, Neph S, Dinger ME, Crawford J, Smith MA, Shearwood AMJ, Haugen E, Bracken CP, Rackham 0, Stamatoyannopoulos JA. The human mitochondrial transcriptome, Cell,2011, 146:645-658.
    158. Liu B, Dou W, Ding TB, Zhong R, Liao CY, Xia WK, Wang JJ. An analysis of the small RNA transcriptome of four developmental stages of the cirus red mite (Panonychus citri), Insect Mol. Biol.,2014.
    159. Vera JC, Wheat CW, Fescemyer HW, Frilander MJ, Crawford DL, Hanski Ⅰ, Marden JH. Rapid transcriptome characterization for a nonmodel organism using 454 pyrosequencing, Mol. Ecol., 2008,17:1636-1647.
    160. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, Adiconis X, Fan L, Raychowdhury R, Zeng Q. Full-length transcriptome assembly from RNA-Seq data without a reference genome, Nat. Biotechnol.,2011,29:644-652.
    161. Iseli C, Jongeneel CV, Bucher P, ESTScan:a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences, ISMB,1999, pp.138-147.
    162. Conesa A, Gotz S, Garcia-Gomez JM, Terol J, Talon M, Robles M. Blast2GO:a universal tool for annotation, visualization and analysis in functional genomics research, Bioinformatics,2005, 21:3674-3676.
    163. Ye J, Fang L, Zheng H, Zhang Y, Chen J, Zhang Z, Wang J, Li S, Li R, Bolund L. WEGO:a web tool for plotting GO annotations, Nucleic Acids Res.,2006,34:W293-W297.
    164. Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J. SOAP2:an improved ultrafast tool for short read alignment, Bioinformatics,2009,25:1966-1967.
    165. Zhao QY, Wang Y, Kong YM, Luo D, Li X, Hao P. Optimizing de novo transcriptome assembly from short-read RNA-Seq data:a comparative study, BMC Bioinformatics,2011,12:S2.
    166. Xue J, Bao YY, Li BL, Cheng YB, Peng ZY, Liu H, Xu HJ, Zhu ZR, Lou YG, Cheng JA. Transcriptome analysis of the brown planthopper Nilaparvata lugens, PLoS One,2010,5: e14233.
    167. Margam VM, Coates BS, Bayles DO, Hellmich RL, Agunbiade T, Seufferheld MJ, Sun W, Kroemer JA, Ba MN, Binso-Dabire CL. Transcriptome sequencing, and rapid development and application of SNP markers for the legume pod borer Maruca vitrata (Lepidoptera:Crambidae), PLoS One,2011,6:e21388.
    168.申光茂.桔小实蝇消化和解毒代谢相关基因鉴定及其对药剂胁迫的应激反应,博士学位论文,重庆:西南大学,2013.
    169. Grbic M, Khila A, Lee KZ, Bjelica A, Grbic V, Whistlecraft J, Verdon L, Navajas M, Nagy L. Mity model:Tetranychus urticae, a candidate for chelicerate model organism, BioEssays,2007, 29:489-496.
    170. Scott JG, Liu N, Wen Z. Insect cytochromes P450:diversity, insecticide resistance and tolerance to plant toxins, Comparative Biochemistry and Physiology Part C:Pharmacology, Toxicology and Endocrinology,1998,121:147-155.
    171. Yang X, Margolies DC, Zhu KY, Buschman LL. Host plant-induced changes in detoxification enzymes and susceptibility to pesticides in the twospotted spider mite (Acari:Tetranychidae), J. Econ. Entomol.,2001,94:381-387.
    172. Takeyama K, Mori N, Osakabe M. Effect of cytochrome P450 inhibitor, piperonyl butoxide, on survival of Panonychus citri (McGregor)(Acari:Tetranychidae) on citrus leaves, Appl. Entomol. Zool.,2006,41:487.
    173. Chen L, Hall PR, Zhou XE, Ranson H, Hemingway J, Meehan EJ. Structure of an insect-class glutathione S-transferase from a DDT-resistant strain of the malaria vector Anopheles gambiae, Acta Crystallographica Section D:Biological Crystallography,2003,59:2211-2217.
    174. Sogorb MA, Vilanova E. Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis, Toxicol. Lett.,2002,128:215-228.
    175. Baffi MA, de Souza GRL, Vieira CU, de Sousa CS, Gourlart LR, Bonetti AM. Identification of point mutations in a putative carboxylesterase and their association with acaricide resistance in Rhipicephalus (Boophilus) microplus(Acari:Ixodidae), Vet. Parasitol.,2007,148:301-309.
    176. Kwon DH, Choi BR, Lee SW, Clark JM, Lee SH. Characterization of carboxylesterase-mediated pirimicarb resistance in Myzus persicae, Pestic. Biochem. Physiol., 2009,93:120-126.
    177. Tijet N, Helvig C, Feyereisen R. The cytochrome P450 gene superfamily in Drosophila melanogaster. Annotation, intron-exon organization and phylogeny, Gene,2001,262:189-198.
    178., Richards S, Gibbs RA, Weinstock GM, Brown SJ, Denell R, Beeman RW, Gibbs R, Bucher G, Friedrich M, Grimmelikhuijzen CJ. The genome of the model beetle and pest Tribolium castaneum, Nature,2008,452:949-955.
    179. Nene V, Wortman JR, Lawson D, Haas B, Kodira C, Tu ZJ, Loftus B, Xi Z, Megy K, Grabherr M. Genome sequence of Aedes aegypti, a major arbovirus vector, Science,2007,316: 1718-1723.
    180. Lee SH, Kang JS, Min JS, Yoon KS, Strycharz JP, Johnson R, Mittapalli O, Margam VM, Sun W, Li HM. Decreased detoxification genes and genome size make the human body louse an efficient model to study xenobiotic metabolism, Insect Mol. Biol.,2010,19:599-615.
    181. Consortium IAG. Genome sequence of the pea aphid Acyrthosiphon pisum, PLoS Biol.,2010,8: e1000313.
    182. Nelson DR. Cytochrome P450 stats,2013.
    183. Paine MJ, Scrutton NS, Munro AW, Gutierrez A, Roberts GC, Wolf CR, Electron transfer partners of cytochrome P450, Cytochrome P450, Springer2005, pp.115-148.
    184. Larkin M, Blackshields G, Brown N, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace M, Wilm A, Lopez R. Clustal W and Clustal X version 2.0, Bioinformatics,2007,23: 2947-2948.
    185. Claudianos C, Ranson H, Johnson R, Biswas S, Schuler M, Berenbaum M, Feyereisen R, Oakeshott J. A deficit of detoxification enzymes:pesticide sensitivity and environmental response in the honeybee, Insect Mol. Biol.,2006,15:615-636.
    186. Baldwin WS, Marko PB, Nelson DR. The cytochrome P450 (CYP) gene superfamily in Daphnia pulex, BMC Genomics,2009,10:169.
    187. Yang CQ, Lu S, Mao YB, Wang LJ, Chen XY. Characterization of two NADPH:Cytochrome P450 reductases from cotton (Gossypium hirsutum), Phytochemistry,2010,71:27-35.
    188. Park S, Kim YS, Rupasinghe SG, Schuler MA, Back K. Rice P450 reductases differentially affect P450-mediated metabolism in bacterial expression systems, Bioprocess Biosyst. Eng., 2013,36:325-331.
    189. Wang M, Roberts DL, Paschke R, Shea TM, Masters BSS, Kim JJP. Three-dimensional structure of NADPH-cytochrome P450 reductase:prototype for FMN-and FAD-containing enzymes, Proc. Natl. Acad. Sci. U. S. A.,1997,94:8411-8416.
    190. Liu S, Liang QM, Zhou WW, Jiang YD, Zhu QZ, Yu H, Zhang CX, Gurr GM, Zhu ZR. RNA interference of NADPH-cytochrome P450 reductase of the rice brown planthopper, Nilaparvata lugens, increases susceptibility to insecticides, Pest Manag. Sci.,2014.
    191. Sandstrom P, Welch WH, Blomquist GJ, Tittiger C. Functional expression of a bark beetle cytochrome P450 that hydroxylates myrcene to ipsdienol, Insect Biochem. Mol. Biol.,2006,36: 835-845.
    192. Guzov VM, Houston HL, Murataliev MB, Walker FA, Feyereisen R. Molecular cloning, overexpression in Escherichia coli, structural and functional characterization of house fly cytochrome b5, J. Biol. Chem.,1996,271:26637-26645.
    193. Chung H, Sztal T, Pasricha S, Sridhar M, Batterham P, Daborn PJ. Characterization of Drosophila melanogaster cytochrome P450 genes, Proc. Natl. Acad. Sci. U. S. A.,2009,106: 5731-5736.
    194. Strode C, Steen K, Ortelli F, Ranson H. Differential expression of the detoxification genes in the different life stages of the malaria vector Anopheles gambiae, Insect Mol. Biol.,2006,15: 523-530.
    195. Cohen MB, Schuler MA, Berenbaum MR. A host-inducible cytochrome P-450 from a host-specific caterpillar:molecular cloning and evolution, Proc. Natl. Acad. Sci. U. S. A.,1992, 89:10920-10924.
    196. Dermauw W, Wybouw N, Rombauts S, Menten B, Vontas J, Grbic M, Clark RM, Feyereisen R, Van Leeuwen T. A link between host plant adaptation and pesticide resistance in the polyphagous spider mite Tetranychus urticae, Proc. Natl. Acad. Sci. U. S. A.,2013,110: E113-E122.
    197. Niu JZ, Dou W, Ding TB, Yang LH, Shen GM, Wang JJ. Evaluation of suitable reference genes for quantitative RT-PCR during development and abiotic stress in Panonychus citri (McGregor) (Acari:Tetranychidae), Mol. Biol. Rep.,2012,39:5841-5849.
    198. Pfaffl MW, Tichopad A, Prgomet C, Neuvians TP. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity:BestKeeper-Excel-based tool using pair-wise correlations, Biotechnol. Lett.,2004,26:509-515.
    199. Andersen CL, Jensen JL,(?)rntoft TF. Normalization of real-time quantitative reverse transcription-PCR data:a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets, Cancer Res.,2004,64:5245-5250.
    200. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes, Genome Biol.,2002,3:research0034.
    201. Silver N, Best S, Jiang J, Thein SL. Selection of housekeeping genes for gene expression studies in human reticulocytes using real-time PCR, BMC Mol. Biol.,2006,7:33.
    202. Pfaffl MW. A new mathematical model for relative quantification in real-time RT-PCR, Nucleic Acids Res.,2001,29:e45-e45.
    203. Ranasinghe C, Headlam M, Hobbs AA. Induction of the mRNA for CYP6B2, a pyrethroid inducible cytochrome P450, in Helicoverpa armigera (Hubner) by dietary monoterpenes, Arch. Insect Biochem. Physiol.,1997,34:99-109.
    204. Nikou D, Ranson H, Hemingway J. An adult-specific CYP6 P450 gene is overexpressed in a pyrethroid-resistant strain of the malaria vector, Anopheles gambiae, Gene,2003,318:91-102.
    205. Huang Y, Jiang HB, Shen GM, Dou W, Wang JJ. Molecular characterizations of two cytochrome P450 genes encoding CYP6A41 and CYP6EK1 from the oriental fruit fly, Bactrocera dorsalis (Diptera:Tephritidae), Arch. Insect Biochem. Physiol.,2012,79:31-46.
    206. Snyder MJ, Stevens JL, Andersen JF, Feyereisen R. Expression of cytochrome P450 genes of the CYP4 family in midgut and fat body of the tobacco hornworm, Manduca sexta, Arch. Biochem. Biophys.,1995,321:13-20.
    207. Tiwari S, Gondhalekar A, Mann R, Scharf M, Stelinski L. Characterization of five CYP4 genes from Asian citrus psyllid and their expression levels in Candidatus Liberibacter asiaticus-infected and uninfected psyllids, Insect Mol. Biol.,2011,20:733-744.
    208. Zhang X, Yuan D, Ding L, Li P, Li F, Liu X. Expression of cytochrome P450 CYP6B6 in the different developmental stages of the insect Helicoverpa armigera (Lepidoptera:Noctuidae), Eur. J. Entomol.,2013,110.
    209. Markussen MDK, Heiberg AC, Fredholm M, Kristensen M. Identification of cytochrome P450 differentiated expression related to developmental stages in bromadiolone resistance in rats (Rattus norvegicus), Pestic. Biochem. Physiol.,2008,91:147-152.
    210. Wen Z, Scott JG Cytochrome P450 CYP6L1 is specifically expressed in the reproductive tissues of adult male German cockroaches, Blattella germanica (L.), Insect Biochem. Mol. Biol., 2001,31:179-187.
    211. Fujii S, Amrein H. Genes expressed in the Drosophila head reveal a role for fat cells in sex-specific physiology, The EMBO journal,2002,21:5353-5363.
    212. Kasai S, Tomita T. Male specific expression of a cytochrome P450 (Cyp312a1) in Drosophila melanogaster, Biochem. Biophys. Res. Commun.,2003,300:894-900.
    213. Ding TB, Niu JZ, Yang LH, Zhang K, Dou W, Wang JJ. Transcription profiling of two cytochrome P450 genes potentially involved in acaricide metabolism in citrus red mite Panonychus citri, Pestic. Biochem. Physiol.,2013,106:28-37.
    214. Huang Y, Shen GM, Jiang HB, Jiang XZ, Dou W, Wang JJ. Multiple P450 genes:Identification, tissue-specific expression and their responses to insecticide treatments in the oriental fruit fly, Bactrocera dorsalis (Hendel)(Diptera:Tephritidea), Pestic. Biochem. Physiol.,2013.
    215. Neira Oviedo M, Vanekeris L, Corena-Mcleod M, Linser P. A microarray-based analysis of transcriptional compartmentalization in the alimentary canal of Anopheles gambiae (Diptera: Culicidae) larvae, Insect Mol. Biol.,2008,17:61-72.
    216. Chung H, Bogwitz MR, McCart C, Andrianopoulos A, Batterham P, Daborn PJ. Cis-regulatory elements in the Accord retrotransposon result in tissue-specific expression of the Drosophila melanogaster insecticide resistance gene Cyp6gl, Genetics,2007,175:1071-1077.
    217. Yang J, McCart C, Woods DJ, Terhzaz S, Greenwood KG, Dow JA. A Drosophila systems approach to xenobiotic metabolism, Physiol. Genomics,2007,30:223-231.
    218. Helvig C, Koener J, Unnithan G, Feyereisen R. CYP15A1, the cytochrome P450 that catalyzes epoxidation of methyl farnesoate to juvenile hormone III in cockroach corpora allata, Proc. Natl. Acad. Sci. U. S. A.,2004,101:4024-4029.
    219. Shen B, Dong HQ, Tian HS, Ma L, Li XL, Wu GL, Zhu CL. Cytochrome P450 genes expressed in the deltamethrin-susceptible andresistant strains of Culex pipiens pallens, Pestic. Biochem. Physiol.,2003,75:19-26.
    220. Kasai S, Weerashinghe IS, Shono T, Yamakawa M. Molecular cloning, nucleotide sequence and gene expression of a cytochrome P450 (CYP6F1) from the pyrethroid-resistant mosquito, Culex quinquefaseiatus Say, Insect Biochem. Mol. Biol.,2000,30:163-171.
    221. Komagata O, Kasai S, Tomita T. Overexpression of cytochrome P450 genes in pyrethroid-resistant Culex quinquefaseiatus, Insect Biochem. Mol. Biol.,2010,40:146-152.
    222. Bass C, Carvalho R, Oliphant L, Puinean A, Field L, Nauen R, Williamson M, Moores Q Gorman K. Overexpression of a cytochrome P450 monooxygenase, CYP6ER1, is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens, Insect Mol. Biol., 2011,20:763-773.
    223. Terriere LC. Induction of detoxication enzymes in insects, Annu. Rev. Entomol.,1984,29: 71-88.
    224. Jiang HB, Tang PA, Xu YQ, An FM, Wang JJ. Molecular characterization of two novel deltamethrin-inducible P450 genes from Liposcelis bostrychophila Badonnel (Psocoptera: Liposcelididae), Arch. Insect Biochem. Physiol.,2010,74:17-37.
    225. Willoughby L, Chung H, Lumb C, Robin C, Batterham P, Daborn PJ. A comparison of Drosophila melanogaster detoxification gene induction responses for six insecticides, caffeine and phenobarbital, Insect Biochem. Mol. Biol.,2006,36:934-942.
    226. Brandt A, Scharf M, Pedra J, Holmes G, Dean A, Kreitman M, Pittendrigh BR. Differential expression and induction of two Drosophila cytochrome P450 genes near the Rst (2) DDT locus, Insect Mol. Biol.,2002,11:337-341.
    227. Kwon DH, Seong GM, Kang TJ, Lee SH. Multiple resistance mechanisms to abamectin in the two-spotted spider mite, J. Asia Pac. Entomol.,2010,13:229-232.
    228. Liu N, Li T, Reid WR, Yang T, Zhang L. Multiple Cytochrome P450 Genes:Their Constitutive Overexpression and Permethrin Induction in Insecticide Resistant Mosquitoes, Culex quinquefasciatus, PLoS One,2011,6:e23403.
    229. Kim Y, Park H, Cho J, Ahn Y. Multiple resistance and biochemical mechanisms of pyridaben resistance in Tetranychus urticae (Acari:Tetranychidae), J. Econ. Entomol.,2006,99:954-958.
    230. Song M, Kim AC, Gorzalski AJ, MacLean M, Young S, Ginzel MD, Blomquist GJ, Tittiger C. Functional characterization of myrcene hydroxylases from two geographically distinc Ips pini populations, Insect Biochem. Mol. Biol.,2013,43:336-343.
    231. Ma R, Cohen MB, Berenbaum MR, Schuler MA. Black swallowtail (Papilio polyxenes) alleles encode cytochrome P450S that selectively metabolize linear furanocoumarins, Arch. Biochem. Biophys.,1994,310:332-340.
    232. Wen Z, Pan L, Berenbaum MR, Schuler MA. Metabolism of linear and angular furanocoumarins by Papilio polyxenes CYP6B1 co-expressed with NADPH cytochrome P450 reductase, Insect Biochem. Mol. Biol.,2003,33:937-947.
    233. Wen Z, Rupasinghe S, Niu G, Berenbaum MR, Schuler MA. CYP6B1 and CYP6B3 of the black swallowtail(Papilio polyxenes):adaptive evolution through subfunctionalization, Mol. Biol. Evol.,2006,23:2434-2443.
    234. Stevens JL, Snyder MJ, Koener JF, Feyereisen R. Inducible P450s of the CYP9 family from larval Manduca sexta midgut, Insect Biochem. Mol. Biol.,2000,30:559-568.
    235. Snyder M, Glendinning J. Causal connection between detoxification enzyme activity and consumption of a toxic plant compound, Journal of Comparative Physiology A:Neuroethology, Sensory, Neural, and Behavioral Physiology,1996,179:255-261.
    236. Maibeche-Coisne M, Merlin C, Francois MC, Porcheron P, Jacquin-Joly E. P450 and P450 reductase cDNAs from the moth Mamestra brassicae:cloning and expression patterns in male antennae, Gene,2005,346:195-203.
    237. Shephard EA, Phillips IR, Bayney RM, Pike SF, Rabin BR. Quantification of NADPH: cytochrome P-450 reductase in liver microsomes by a specific radioimmunoassay technique, Biochem. J,1983,211:333-340.
    238. Kumagai Y, Tsurutani Y, Shinyashiki M, Homma-Takeda S, Nakai Y, Yoshikawa T, Shimojo N. Bioactivation of lapachol responsible for DNA scission by NADPH-cytochrome P450 reductase, Environ. Toxicol. Pharmacol.,1997,3:245-250.
    239. Zhou X, Sheng C, Li M, Wan H, Liu D, Qiu X. Expression responses of nine cytochrome P450 genes to xenobiotics in the cotton bollworm Helicoverpa armigera, Pestic. Biochem. Physiol., 2010,97:209-213.
    240. Zhao C, Tang T, Feng X, Qiu L. Cloning and characterisation of NADPH-dependent cytochrome P450 reductase gene in the cotton bollworm, Helicoverpa armigera, Pest Manag. Sci.,2014,70:130-139.
    241. Zhang M, Scott JG. Cytochrome b5 is essential for cytochrome P450-6D1-mediated cypermethrin resistance in LPR house flies, Pestic. Biochem. Physiol.,1996,55:150-156.
    242. Andersen JF, Utermohlen JG, Feyereisen R. Expression of housefly CYP6A1 and NADPH-cytochrome P450 reductase in Escherichia coli and reconstitution of an insecticide-metabolizing P450 system, Biochemistry,1994,33:2171-2177.
    243. Cheesman MJ, Traylor MJ, Hilton ME, Richards KE, Taylor MC, Daborn PJ, Russell RJ, Gillam EM, Oakeshott JG. Soluble and membrane-bound Drosophila melanogaster CYP6G1 expressed in E. coli:purification, activity, and binding properties toward multiple pesticides, Insect Biochem. Mol. Biol.,2013.
    244. Nauen R, Vontas J, Kaussmann M, Wolfel K. Pymetrozine is hydroxylated by CYP6CM1, a cytochrome P450 conferring neonicotinoid resistance in Bemisia tabaci, Pest Manag. Sci., 2013.
    245. Li X, Baudry J, Berenbaum MR, Schuler MA. Structural and functional divergence of insect CYP6B proteins:From specialist to generalist cytochrome P450, Proc. Natl. Acad. Sci. U. S. A., 2004,101:2939-2944.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700