机械力化学法制备活性炭的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以杉木屑为原料,分别采用机械力化学磷酸法、氯化锌法和助活化剂(磷酸-硝酸钾)法制备了高吸附性能的活性炭。依据响应面法原理,使用Design-Expert软件的筛选重要因子设计(Plackett-Burman Design) (PBD)模式和中心组合设计(Box-Behnken Design) (BBD)模式、中心复合设计(Central Composite Design) (CCD)模式和建立试验数学模型,对机械力化学法制备活性炭的有关影响因素进行试验优化设计,并进行试验验证分析,探讨了影响机械力化学法活性炭孔隙结构和碘吸附值、亚甲基蓝吸附值等各种制备因素,确定了制备活性炭的最佳工艺条件。
     对于机械力化学技术磷酸法制备活性炭,对碘吸附值模型的预测值与试验真实值之间的相关性为98.66%,该模型能够解释97.31%的响应值变化,说明模型拟合程度良好;得出的最佳制备工艺参数为:酸屑比2.00,研磨时间22.00 min,活化温度406.00℃,磷酸浓度20.00%,活性炭的碘吸附值达到1331.23mg/g。对于亚甲基蓝模型的决定系数为0.9910,调整系数为0.9820,最佳制备工艺条件为:酸屑比2.60,研磨时间29.00 min,活化温度390.00℃,磷酸浓度22.50%,制得的活性炭样品的亚甲基蓝吸附值为21.50ml/0.1g。
     机械力化学技术氯化锌法制备活性炭,碘吸附值模型的预测值与试验真实值之间的相关性为99.38%,该模型解释了98.79%的响应值变化,表明该模型有良好的拟合程度;最佳制备工艺条件为:锌屑比2.70,研磨时间34.00min,活化温度593.00℃,活化时间1.90 h,活性炭的碘吸附值为1189.23mg/g。对于亚甲基蓝模型的决定系数为0.9927,调整系数为0.9858,最佳制备工艺条件是:锌屑比1.80,研磨时间22.00 min,活化温度672.00℃,活化时间1.22 h,活性炭的亚甲基蓝吸附值为24.30ml/0.1g。
     机械力化学技术助活化剂(磷酸-硝酸钾)法制备活性炭,碘吸附值模型的预测值与试验真实值之间的相关性达97.99%,该模型能解释96.12%响应值的变化,说明模型拟合较好;酸屑比为2.60,助剂用量为14.00%,研磨时间为19.00min,磷酸浓度为15.00%,活化温度400.00℃,活化时间60.00 min时,活性炭的碘吸附值达到1007.86mg/g。亚甲基蓝吸附值模型的预测值与试验真实值之间的相关性为98.65%,该模型解释了97.40%的响应值变化,该模型有良好的拟合程度;在酸屑比为2.60,助剂用量为9.00%,研磨时间为40.00min,磷酸浓度为23.00%,活化温度400.00℃,活化时间60.00min时时活性炭的亚甲基蓝吸附值为23.00ml/0.1g。
     通过对三种活性炭制备方法最优条件下碘值和亚甲基蓝的吸附值的对比发现,采用机械力化学技术磷酸法制备活性炭时,活性炭的碘吸附值最大,为1331.23mg/g;机械力化学技术助活化剂(磷酸-硝酸钾)法制备活性炭时,活性炭的亚甲基蓝吸附值最大,为24.30ml/0.1g。
     另一方面,对上述制备的活性炭用比表面积及孔隙分析仪、扫描电子显微镜(SEM)、傅立叶红外光谱仪(FT-IR)等作进一步表征,为机械力化学法制备高性能活性炭提供了理论依据。
In this thesis,we developed novel activated carbon with high performance by introducing mechanochemical process (MCP) into traditional ways for activated carbon preparation include phosphoric acid activation, zinc chloride activation and phosphoric acid-potassium nitrate activation. Plackett-Burman design (PBD), Box-Behnken design (BBD) and central composite design (CCD) were applied using Desgn-Expert software to optimize the conditions of preparation according RSM.
     Fitting of the data to various models (linear, two factorial, quadratic and cubic) and their subsequent ANOVA showed that iodine adsorption for MCP/phosphoric acid preparation was most suitably described with a quadratic polynomial model. A suitable coefficient of determination (R2= 0.9866) and similar adjusted R2 (adj-R2=0.9731) also showed that the quadratic polynomial model was highly significant and sufficient to represent the actual relationship between the response and the significant variables. Results showed that highest iodine adsorption (1331.23 mg/g) could be got under the following conditions:ratio of acid/sawdust 2.00, milling time 22.00 min, activation temperature 406.00℃, and concentration of phosphoric acid 20%. The same analysis also been done for methylene blue adsorption. A suitable coefficient of determination (R2= 0.9910) and similar adjusted R2 (adj-R2=0.9820) showed a good fit of the quadratic polynomial models with experimental data. Results showed that highest methylene blue adsorption (21.50 ml/0.1g) could be got under the following conditions:ratio of acid/sawdust 2.60, milling time 29.00 min, activation temperature 390.00℃, and concentration of phosphoric acid 22.5%.
     We also used the same analysis to work out the best mathematic model for MCP/zinc chloride preparation and MCP/phosphoric acid-potassium nitrate activation. These results also indicated that quadratic polynomial models sufficient to represent the actual relationship between the response and the significant variables. The optimum conditions of iodine adsorption for both activations were (1) ratio of zinc chloride/sawdust 2.7, milling time 34.00 min, activation temperature 593.00℃, activation time 1.90 h; and (2) ratio off activation reagent/sawdust 2.6, dosage of activation regent 14.00%, milling time 19.00 min, concentration of phosphoric acid 15.00%, activation temperature 400.00℃, activation time 60 min respectively. For methylene blue adsorption, the optimum conditions were (1) ratio of zinc chloride/sawdust 1.8, milling time 22.00 min, activation temperature 672.00℃, activation time 1.22 h; and (2) ratio off activation reagent/sawdust 2.6, dosage of activation regent 9.00%, milling time 40.00 min, concentration of phosphoric acid 23.00%, activation temperature 400.00℃, activation time 60 min respectively for MCP/zinc chloride preparation and MCP/phosphoric acid-potassium nitrate activation. Compare with MCP/zinc chloride preparation and MCP/phosphoric acid-potassium nitrate activation, MCP/phosphoric acid preparation showed highest iodine adsorption; and the MCP/zinc chloride preparation showed highest methylene blue adsorption.
     Furthermore, the activated carbons regenerated under the optimum condition for MCP/phosphoric acid preparation, MCP/zinc chloride preparation, and MCP/phosphoric acid-p otassium nitrate activation preparation were characterized by BET, SEM and FTIR.
引文
[1]徐泽龙,荣农业废弃物制备活性炭及其应用进展[J].广西轻工业,2010,3:65-67
    [2]司崇殿,郭庆杰.活性炭活化机理与再生研究进展[J].中国粉体技术,2008,14(5):48-52.
    [3]Jin HK, Lee YS, Hong 1. Hydrogen adsorption characteristics of activated carbon[J]. Catalysis Today,2007,120(3-4): 399-406.
    [4]S. J Gregg and K. S. W. Sing. Adsorptions surface area and porosity[J]. New York:academic Press,1982:25-26.
    [5]Tzong-Horng Liou. Development of mesoporous structure and high adsorption capacity of biomass-based activated carbon by phosphoric acid and zinc chloride activation[J]. Chemical Engineering Journal,2010:129-142.
    [6]S. J. Gregg and K.S. W. Sing. Adsorption surface area and porosity [J]. Suffolk:St Edmunds bury Press,1982,25.
    [7]黄律先.木材热解工艺学[M].中国林业出版社,北京:70-83.
    [8]攀希安.微波辐射农林废物制备活性炭新技术研究[D].昆明理工大学,2004.
    [9]Pei-Jen Lu, Hsin-Chieh Lin, Wen-Te Yu, et al. Chemical regeneration of activated carbon used for dye adsorption[J]. Journal of the Taiwan Institute of Chemical Engineers,2011:305-311.
    [10]ZHANG Chuan-xiang, ZHANG Rui, XING Bao-lin, et al. Effect of pore structure on the electrochemical perform-ance of coal-based activated carbons in non-aqueous electrolyte[J]. New carbon materials,2010:129-133.
    [1l]吴新华.活性炭生产工艺原理与设计[M].北京:中国林业出版社,1997:3-10.
    [12]李永锋,凌军刘,燕珍,等.高比表面积活性炭研究进展[J].2008,29(3):396-402
    [13]Ahmadpour A, Do D. The preparation of activated carbon from macadamia nutshell by chemical activation[J]. Carbon,1997, 35:1723-1732.
    [14]陈丛瑾,黎跃,赵兰线.微波氯化锌法马占相思木材剩余物制备活性炭[J].林产化学与工业,2007,(1,27):101-103.
    [15]张利波,彭金辉,张世敏,等.微波辐射烟杆氯化锌法制造活性炭工艺[J].安全与环境学报,2004,(2,4):51-53.[17]MacDonald JAF, Quinn DF. Adsorbents for methane storage made by phosphoric acid activation of peach pits[J]. Carbon, 1996,34(9):1103-1108.
    [16]黄律先.木材热解工艺学[M].中国林业出版社,北京:70-83.
    [17]孙利娜,李登新,高国龙.磷酸活化纺织固体废弃物制备活性炭及表征[J].环境科学与技术,2010,(7,33):161-164.
    [18]左宋林,江小华.磷酸催化竹材炭化的FT-IR分析[J].林产化学与工业,2005,(4,25):21-25.
    [19]张辉,刘艳华,周兵NaOH为活化剂制备稻壳基高比表面积多孔炭[J].吉林大学学报,2005,43(6):835-838.
    [20]J. A. Macia.-Agullo, B. C. Moore, D. Cazorla-Anloro, et al. Influence of carbon fibers crystallinities on their chemical activation by KOH and NaOH[J]. Microporous and Mesoporous Materials,2007,101:397-405.
    [21]M. A. Lillo-Rodenas, J. P. Marco-Lozar, D. Cazoria-Amoros, et al. Activated carbons prepared by pyrolysis of mixtures of carbon Precursor/alkaline hydroxide[J]. J.Anal. Appl. Pyrolysis,2007,80:166-174.
    [22]B. J. Kim, Y. S. Lee, S. J. Park. A study on pore-opening behaviors of graphite nanofibers by a chemical activation process[J]. J. Colloid and Interface Science,2007,306:454.-458.
    [23]Lillo-Rodenas M. A., Cazorla-Amoros D., Linacre's-Solano A. Understanding chemical reactions between carbons and NaOH and KOH:An insight into the chemical activation mechanism[J]. Carbon,2003,41:267-275.
    [24]苏伟,周理.高比表面积活性炭制备技术的研究进展[J].化学工程,2005,33(2):44-47.
    [25]K.Kierzek. E. Frackowiak, G Lota.et al. Electrochemical capacitors based on highly Porous carbons prepared by KOH activation[J]. Electrochemical Acta,2004,49:515-523.
    [26]邢宝林,谌伦建,张传祥,等NaOH活化法制备煤基活性炭的研究[J].煤炭转化,2010,01(33):69-73
    [27]潘能婷,苏展军,家乐,等.新型微波适应型复合活性炭的研制及其微波再生性能[J].化工学报,2011,01(62):111-118
    [28]徐红梅,陈清,蔡建国,等.机械力化学的原理及应用[J].长沙航空职业技术学院学报,2003,3(2):47-50.
    [29]蔡艳华,彭汝芳,马冬梅,等.机械力化学应用研究进展[J].无机盐工业,2008,40(8):7-l0.
    [30]许红娅,王芬,解宇星.机械力化学法合成无机材料的研究进展[J].化工新型材料,2009,6(37,6):7-8.
    [31]V. V. Boldyre, K.Tka ova. Mechanochemistry of Solids:Past, Present, and Prospects[J]. Journal of Material Synthesis and Processing,2000,8 (3-4):121-132.
    [32]胡飞.马铃薯淀粉微细化及机械力化学改性的研究[D].广州:华南理工大学,2001.
    [33]Aaron Dodd, Allan McKinley. Mechanochemical synthesis of nanoparticulate ZnO-ZnWO4 powders and their photocatalytic activity[J]. Journal of the European Ceramic Society,2009,29(1):139-144.
    [34]吴其胜.无机材料机械力化学[M].北京:化学工业出版社,2008,14-19.
    [35]Takahashi H.Effect of dry grinding on kaolin minerals:I Koalinite.Bull Chem Soc Jpn,1959,32(3):235-245.
    [36]Obrovac M N, Mao O, Dahn J R. Structure and electrochemistry of LiM02(M= Ti, Mn, Fe, Co, Ni)prepared by mechanochemical synthesis[J]. Solid State Ionics.1998,112(2):9-19.
    [37]史俊丽,荣建华,张正茂,等.超微细化大米淀粉的理化性质团[N].华中农业大学学报,2006,25(6):672-675.
    [38]骆苏芳,翁甲丰,冼显秀,等.浅谈超微细中药粉体[J].中药材,1999,22(4):209-211.
    [39]朱莉,隆泉,郑保忠.超微粉碎技术及其在中药加工中的应用田[N].云南大学学报(自然科学版),2004,26:128-131.
    [40]方智利,陈木梁,章江洪,等.国内外活性炭制备发展动态[J].云南化工,2001,10(28,5):23-26.
    [4l]陈鼎,陈振华.机械力化学[M].北京:化学工业出版社,2008.
    [42]Zory Vlad Todres. Organic Mechanochemistry and Its Practical Applications [M]. Taylor & Francis Group,2006.
    [43]李云雁,胡传荣.实验设计与数据处理[M].北京:化学工业出版社,2005:79-136.
    [44]Majumder A, Singh A, Goyal A. Application of response surface methodology for glucan production from Leuconostoc dextranicum and its structural characterization[J]. Carbohydrate Polymers,2009,75 (1):150-156.
    [45]杨昆,詹晓北,陈蕴等.响应面法优化产琥珀酸发酵培养基[J].安徽农业科学,2008,36(16):6611-6614.
    [46]Bezerra M A, Santelli R E, Oliveira E P, et al. Response surface methodology (RSM) as a tool for optimization in analytical chemistry[J]. Talanta,2008,76 (5):965-977.
    [47]Tarley C R T, Silveira G, dos Santos W N L, et al. Chemometric tools in electroanalytical chemistry:Methods for optimization based on factorial design and response surface methodology[J]. Microchemical Journal,2009,92 (1):58-67.
    [48]王亮,赫明明.高品质杏核活性炭制备工艺[J].食品与生物技术学报,2010,3(29,2):244-248.
    [49]韩健,刘朝辉,齐崴,等.β-甘露聚糖酶发酵液絮凝条件的统计学筛选与响应面优化[J].生物加工过程,2007,5(2):29-35.
    [50]韩健.衣芽孢杆菌产β-甘露聚糖酶发酵和纯化工艺的响应面法优化[D].天津大学,2007.
    [51]幸让新,刘娅,田成,等.响应面法优化新疆薄皮核桃壳活性炭制备技术的研究[J].食品工业科技,2010,31(6):226-231.
    [52]唐丽荣.纳米纤维素晶体的制备、表征及应用研究[D].福建农林大学,2010.
    [53]冯国栋,周永红,郭晓听,等.响应面分析法优化木材微波液化的工艺研究[J].纤维素科学与技术,2009,17(12):21-30.
    [54]付娟妮,刘兴华,蔡福带,等.真姬菇菌丝体多糖碱提取工艺优化[J].农业机械学报,2008,6(6):98-101
    [55]李璐,杨朝晖,孙佩石,等.基于响应面优化条件下柚皮对Pb2+的吸附[J].环境科学学报2009,7(7):1426-1433.
    [56]周丕严.H3PO4、KOH活化法桐壳基活性炭的制备及其吸附性能的研究(D).福建师范大学,2007.
    [57]邹勇.废旧有机纤维布制备活性炭纤维布的工艺研究(D).西安科技大学,2010.
    [58]曾巧玲.磷酸法颗粒活性炭的制备与性能研究(D).福建农林大学,2010.
    [59]徐长江.引信侧进气涡轮发电机气动优化研究[D].南京理工大学博士论文.2007.
    [60]Montgomery D C.实验设计与分析[M].北京:中国统计出版社,1998.
    [61]李响,李为吉,彭程远.基于均匀试验设计的响应面方法及其在无人机一体化设计中的应用[J].机械科学与技术,2005,24(5):575-577.
    [621穆雪峰.多学科设计优化代理模型技术的研究和应用[D].南京航空航天大学硕士学位论文,2004.
    [63]徐长江.引信侧进气涡轮发电机气动优化研究[D].南京理工大学硕士学位论文,2007.
    [64]涂久洁,江海ZnC12活化法酒糟壳制取糖用活性炭[J].南昌大学学报(理科版),1997,21(3):293-298.
    [65]左秀凤,朱永义.氯化锌活化稻壳制备活性炭的研究[J]..粮食与饲料工业,2005,12:5-7.
    [66]李玥,陈正行.稻壳制备活性炭研究[J].粮食与油脂,2004,7:24-27.
    [67]周志平,张际亮,等.新型功能性介孔吸附材料的表征与吸附性能[J].江苏大学学报(自然科学版),2010,1:45-48.
    [68]谢志刚,吉芳英,等.柑橘皮中孔活性炭的制备及性能表征[J].功能材料,2009(4):645-649.
    [69]Harry Marsh and D. S. Yan. Formation of Activation Carbons from Cokes Using Potassium Hydroxides. Carbon,1984, 22(6):608-611.
    [70]Pierre Ehrburger et al. Carbonization of Coals in the Pressence of Alkalin Hydroxides and Carbonates:Formation of Activation Carbons. Fuel,1986,65:1447-1449.
    [71]刘欣梅,代晓东,张建,等.辅助活化法制备超级活性炭的机理.新型炭材料,2008,23(2):133-138.
    [72]王玉新.毛竹活性炭的制备及其应用研究[D].天津大学博士论文,2007.
    [73]刘佳.玉米芯中孔炭的制备及应用研究[D].天津大学硕士论文,2008.
    [74]杨焕丽.吸附法脱除天然气中重烃的研究[D].天津大学硕士论文,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700