纳米纤维素晶须/壳聚糖可降解包装复合膜的制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以天然可再生生物材料为原料,制备各种石油基塑料取代品越来越成为人们研究的重点。壳聚糖作为这类生物材料之一,无毒、可降解、具有良好的生物相容性、抑菌抗菌性,拥有广泛的应用前景。但是由于生物材料自身的一些不足,如机械性能差、耐水性能差等,其实际应用受到了一定的限制。可以通过各种改性方法提高相关性能,目前共混复合改性研究较多。本文选取高结晶性的纳米纤维素晶须为增强体,不仅能够有效地改善了壳聚糖的机械性能和耐水性,同时还能够保持壳聚糖材料可降解等特性。
     本文通过硫酸水解微晶纤维素制得纳米纤维素晶须,继而通过流延法制备纳米纤维素晶须/壳聚糖复合膜。通过扫描电镜、红外光谱和X射线衍射等测试分析了复合膜的截面形貌、分子基团及结晶情况,探讨了两者存在的分子间作用力。另外通过各种性能测试,分析复合膜的性能变化,探讨宏观性能与微观结构之间的关系。主要研究内容和结果如下:
     1.通过原子力显微镜观察和分析,纳米纤维素晶须的直径尺寸分布为5~20nm,长度尺寸分布为100~500nm,长径比为30左右;通过X射线衍射分析,酸水解处理部分破坏了纤维素的非晶区,结晶度由63%提高到了68%;通过红外光谱分析,纳米纤维素晶须基本维持了纤维素的骨架结构及纯度。
     2.复合膜截面电镜照片表明,纳米纤维素晶须在壳聚糖基体中具有良好的分散性;通过红外光谱分析两者分子基团的变化,表明复合膜中存在较强的静电力和氢键作用;通过X射线衍射分析,纳米纤维素晶须的加入使得壳聚糖在成膜时发生了结晶情况的变化。
     3.通过拉伸测试,分析了复合膜在干态下、湿态下以及增塑后,纳米纤维素晶须对复合膜的拉伸强度、拉伸模量及断裂伸长率的影响。纳米纤维素晶须的加入,使得干态下、湿态下、增塑后复合膜的拉伸强度分别由51.4MPa提高到80MPa、15.5MPa提高到25.1MPa、29.4 MPa提高到62.8MPa,同时复合膜的拉伸模量出现了线性增长,纳米纤维素晶须表现出良好的增强效应。另外,增塑剂聚乙二醇显著改善了膜的塑性,在断裂伸长率达到25%以上时,拉伸强度仍维持在较高的水平上。
     4.动态力学性能测试结果表明,采用纳米纤维素晶须增强的壳聚糖复合膜,储能模量出现了倍数的增长、玻璃化温度有所提高;吸湿性能测试结果表明,纳米纤维素晶须的加入使得壳聚糖膜的吸湿率明显降低,提高了耐水性;纳米纤维素晶须/壳聚糖复合膜对水蒸气的阻隔性能与热稳定性均明显提高、膜透光率维持在原先较高的水平上。
There is a growing interest in making plastics that are based on natural renewable materials. As one of those, Chitosan(CS) has been found to be non-toxic, biodegradable, biocompatible and was reported by several researchers to have strong antimicrobial and antifungal activities. However, the use of CS has been limited because of its inherent poor mechanical and water-resistant properties. Polymer blending is one of the effective methods for providing CS for a variety of applications. In this paper, we choose highly crystalline cellulose particles called nanocellulose whiskers (NCW) as the reinforcement. NCW has advantages over other organic or inorganic fillers, not only due to improving drawbacks of CS, but also remaining its biodegradability and other good advantages.
     Firstly, NCW were isolated from microcrystalline cellulose (MCC) via acid hydrolysis, and then composite films were prepared via solution casting technique. Films were all characterized by SEM, FTIR, and XRD to determine their cross section surfaces, molecular groups and crystallizations in the following. A series of tests were performed at last for trying to find the relations between micro-structure and macro-properties. The main contents and conclusions of this paper were as follows:
     1. The diameter of NCW determined based on AFM was 5~20nm and the length was 100~500nm with aspect ratio about 30. XRD patterns of NCW indicated that the crystal integrity of cellulose had been maintained during the hydrolysis process. The degree of crystallinity of NCW increased from 63% to 68% showed that the hydrolysis occurred in the amorphous regions. FT-IR spectra also showed the molecule of NCW had all typical peaks of cellulosic structure.
     2. SEM images of cross sections exhibited a good dispersion at less percentage of NCW. The electrostatic and hydrogen bonds can be found to form a rigid reinforced cross-linking network through FT-IR. From the XRD patterns of composite films, the addition of NCW influences the crystallinity of CS when solution casting.
     3. Composite films under dry, wet and plasticized conditons were tested for their mechanical performance. With increasing NCW content, the tensile strength significantly increased from 51.4 to 80MPa, 15.5 to 25.1MPa and 29.4 to 62.8MPa respectively. Meanwhile, tensile modulus of films grew linearly. Polyethlene-glycol (PEG) 400 dramatically improved plasticity. The breaking elongation reached above 25%, while strength maintained at a highest level.
     4. DMA revealed multiple increasement on storage modulus in all temperature range and glass transition temperature shifted to higher. Water uptake decreased dramaticly at equilibrium in the presence of NCW which showed an improved water resistance. Besides NCW had helped to improve barrier and thermal properties of CS films, the composite films kept a high degree of transparency.
引文
[1]张钟宪.环境与绿色化学[M].北京:清华大学出版社, 2005.
    [2]何强,井文涌,王翊亭.环境学导论[M].北京:清华大学出版社, 2004.
    [3]孙秋菊,郭兴宽.环境保护与物流[M].北京:清华大学出版社, 2005.
    [4] Davis G, Song J H. Biodegradable packaging based on raw materials from crops and their impact on waste management [J]. Industrial Crops and Products, 2006, 23(2): 147-164.
    [5]王火喜.国内外降解塑料的现状及发展方向[J].现代塑料加工应用, 2002, 14(4): 61-65.
    [6]俞文灿.可降解塑料的应用、研究现状及其发展方向[J].中山大学研究生学刊(自然科学、医学版), 2007, 28(1): 22-32.
    [7]陈嘉川,谢益民等.天然高分子科学[M].北京:科学出版社, 2007.
    [8]王身国.可生物降解的高分子类型、合成和应用[J].化学通报, 1997, 2: 45-48.
    [9]周挺.壳聚糖的膜性质及其在果蔬保鲜方面的应用研究进展[J].食品工业科技, 2001, 22 (6): 81-83.
    [10] Eugene K, Lee Y L. Implantable applications of chitin and chitosan [J]. Biomaterials, 2003, 24(13): 2339-2349.
    [11]张俐娜.天然高分子改性材料及应用[M].北京:化学工业出版社, 2005.
    [12]蒋挺大.壳聚糖[M].北京:化学工业出版社, 2001.
    [13]严俊.甲壳素的化学和应用[J].化学通报, 1984, 11: 26.
    [14] Dutta P K, Tripathi S, Mehrotra G K, et al. Perspectives for chitosan based antimicrobial films in food applications [J]. Food Chemistry, 2009, 114(4): 1173-1182.
    [15]李承明,黄雅钦.明胶/壳聚糖共混膜的制备[J].明胶科学技术, 2004, 24(1): 24.
    [16]王雅芬,王慧俐.可食性壳聚糖包装膜的制备及其性质研究[J].东海海洋, 2001, 19(2): 32-38.
    [17]余家会,杜予民,郑化.壳聚糖/明胶共混膜[J].武汉大学学报(自然科学版), 1999, 45(4): 440-444.
    [18] Xu Y X, Kim K M, Hanna M A, et al. Chitosan–starch composite film: preparation and characterization [J]. Industrial Crops and Products, 2005, 21(2): 185-192.
    [19] Cholwasa B, Duangdao A O, Kawee S. Preparation and properties evaluation of chitosan-coated cassava starch films [J]. Carbohydrate Polymers, 2006, 63(1): 61-67.
    [20]蒋鹏举,卢俊,陈玉平,等.添加剂对壳聚糖膜透光性和吸湿性的影响[J].化工时刊, 2007, 21(5): 14-15.
    [21] Zeng M, Zhang L N, Zhang Y X. Effects of solid substrate on structure and properties of casting waterborne polyurethane/carboxymethyl chitin films [J]. Polymer, 2004, 45(10): 3535-3545.
    [22] Manisara P, Pitt S, Ratana R. Preparation and characterization of hexanoyl chitosan/ polylactide blend films [J]. Carbohydrate Polymers, 2005, 60(3): 343-350.
    [23] Haeyong K, Hyun C H, In C U, et al. Physical properties of silk fibroin/chitosan blend films [J]. Applied Polymer Science, 2001, 80(7): 928-934.
    [24] Metha R, Paradorn N, Pranee P. Preparation and properties of polydimethylsiloxane modified chitosan [J]. Carbohyrate Polymers, 2006, 63(2): 229-237.
    [25]刘维锦,林志浩.纤维素/壳聚糖可生物降解膜的制备及力学性能[J].塑料工业, 2003, 31(12): 44-46.
    [26] Uragami T, Matsuda T, Okuno H, et al. Structure of chemically modified chitosan membranes and their characteristics of permeation and separation of aqueous ethanol solutions [J]. Journal of Membrane Science, 1994, 88(2): 243-251.
    [27] Hoagland P D, Parris N. Chitosan/pectin laminated films [J]. Journal of Agriculture and Food Chemistry, 1996, 44(7): 1915-1919.
    [28] Yuan N Y, Tsai R Y, Ho M H, et al. Fabrication and characterization of chondroitin sulfate-modified chitosan membranes for biomedical applications [J]. Desalination, 2008, 234(1): 166-174.
    [29] Xie Y L, Wang M J, Yao S J. Preparation and characterization of biocompatible microcapsules of sodium cellulose sulfate/chitosan by means of layer-by-layer self- assembly [J]. Langmuir, 2009, 25(16): 8999-9005.
    [30] Son T W , Kim B G, Park Y M, et al. Effects of mixing ratio on the mechanical and thermal properties of polyelectrolyte complex film [J]. Macromolecular Research, 2006, 14(3): 267- 271.
    [31] Chen M, Yeh G H, Chiang B. Antimicrobial and physicochemical properties of methylcellulose and chitosan films containing a preservative [J]. Journal of Food Processing and Preservation, 1996, 20(5): 379-390.
    [32]李牧.壳聚糖的性质及应用研究[J].科技信息, 2007, 20: 14-15.
    [33] Ranby B G. Physico-chemical investigations on bacterial cellulose [J]. Ark Kemi, 1952, 4 (14): 249-257.
    [34] Ranby B G. Physico-chemical investigations on animal cellulose (Tunicin) [J]. Ark Kemi 1952, 4(13): 241-8.
    [35]高洁,汤烈贵.纤维素科学[M].北京:科学出版社, 1999.
    [36]邵自强,等.纤维素醚[M].北京:化学工业出版社, 2007.
    [37]詹怀宇,等.纤维化学与物理[M].北京:科学出版社, 2005.
    [38] Oke I. Nanoscience in nature: cellulose nanocrystals [J]. Studies by Undergraduate Researchers at Guelph, 2010, 3(2): 77-80.
    [39] Samir M A, Alloin F, Dufresne A. Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field [J]. Biomacromolecules, 2005, 6(2): 612-626.
    [40] Lima M M, Wong J T, Paillet M. Translational and rotational dynamics of rodlike cellulose whiskers [J]. Langmuir, 2003, 19 (1): 24–29.
    [41] Sturcova A, Davies G R, Eichhorn S J. Elastic modulus and stress transfer properties of tunicate cellulose whiskers [J]. Biomacromolecules, 2005, 6(2): 1055-1061.
    [42] Tashiro K, Kobayashi M. Theoretical evaluation of three-dimensional elastic constants of native and regenerated celluloses: role of hydrogen bonds [J]. Polymer, 1991, 32(8): 1516- 1526.
    [43]甄文娟,单志华.纳米纤维素在绿色复合材料中的应用研究[J].现代化工, 2008(6): 85-88.
    [44]叶代勇.纳米纤维素的制备[J].化学进展, 2007, 19(10): 1568-1575.
    [45] Bondeson D, Mathew A, Oksman K. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis [J]. Cellulose, 2006, 13(2): 171-180.
    [46] Stephanie B C, Maren R, Derek G. Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions [J]. Biomacromolecules, 2005, 6(2): 1048-1054.
    [47] Li R J, Fei J M, Cai Y R, et al. Cellulose whiskers extracted from mulberry: A novel biomass production [J]. Carbohydrate Polymers, 2009, 76(1): 94-99.
    [48]王能,丁恩勇.酸碱处理后纳米微晶纤维素的热行为分析[J].高分子学报, 2004, 6: 925-928.
    [49] Wang Y X, Cao X D, Zhang L. Effects of cellulose whiskers on properties of soy Protein thermoplastics[J]. Macromolecular Bioscience, 2006, 6(7): 524-531.
    [50]李金玲,周刘佳,叶代勇.硫酸铜助催化制备纳米纤维素晶须[J].精细化工, 2009, 26(9): 844-849.
    [51] Nancy L G, Wim T, Alain D. Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites [J]. Cellulose, 2006, 13(3): 261-270.
    [52] Lu Y S, Weng L H, Cao X D. Morphological, thermal and mechanical properties of ramie crystallites reinforced plasticized starch biocomposites [J]. Carbohydrate Polymers, 2006, 63(2): 198-204.
    [53] Liu D Y, Yuan X W, Bhattacharyyal D. Easteal.Characterisation of solution cast cellulose nanofibre reinforced poly(lactic acid) [J]. Express Polymer Letters, 2010, 4(1): 26-31.
    [54] Rosa M F, Medeiros E S, Malmonge J A, et al. Cellulose nanowhiskers from coconut husk fibers: Effect of preparation conditions on their thermal and morphological behavior [J]. Carbohydrate Polymers, 2010, 81(1): 83-92.
    [55] Chen Y, Liu C H, Chang P R, et al. Bionanocomposites based on pea starch and cellulose nanowhiskers hydrolyzedfrom pea hull fibre: Effect of hydrolysis time [J]. Carbohydrate Polymers, 2009, 76(4): 607-615.
    [56] Gilberto S, Houssein A, Julien B, et al. High reinforcing capability cellulose nanocrystals extracted from syngonanthus nitens (capim dourado) [J]. Cellulose, 2010, 17(2): 289-298.
    [57] Hubbe M A, Rojas O J, Lucia L A, et al. Cellulosic nanocomposites, review [J]. Bioresources, 2008, 3(3): 929-980.
    [58] Favier V, Chanzy H, Cavaille J Y. Polymer nanocomposltes relnforced by cellulose whiskers [J]. Macromolecules 1995, 28(18): 6365-6367.
    [59] Elena T, Joel T, David B, et al. Thermal and mechanical properties of poly (3- hydroxybutyrate-co-3-hydroxyvalerate) / cellulose nanowhiskers composites [J]. Polymer, 2010, 51(12): 2652-2660.
    [60] Mehdi R, Youssef H, Naceur M B, et al. Cellulose whiskers reinforced polyvinyl alcohol copolymers nanocomposites [J]. European Polymer Journal, 2008, 44(8): 2489-2498.
    [61] Ljungberg N, Cavaille J Y, Heux L. Nanocomposites of isotactic polypropylene reinforced with rod-like cellulose whiskers [J]. Polymer, 2006, 47(18): 6285-6292.
    [62] Marcovich N E, Bellesi N E, Auad M L, et al. Cellulose micro/nanocrystals reinforced polyurethane [J]. Journal of Materials Research, 2006, 21(4): 870-881.
    [63] Aparecido J M, Gilberto S, Antonio A S, et al. Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites [J]. Polymer, 2009, 50(19): 4552-4563.
    [64] Gregory C, Laurent H, Rachid A, et al. Cellulose poly(ethylene-co-vinyl acetate) nanocomposites studied by molecular modeling and mechanical spectroscopy [J]. Biomacr- omolecules, 2005, 6 (4): 2025-2031.
    [65] Ayuk J E, Mathew A P, Oksman K. The effect of plasticizer and cellulose nanowhisker content on the dispersion and properties of cellulose acetate butyrate nanocomposites [J]. Journal of Applied Polymer Science, 2009, 114(5): 2723-2730.
    [66] Dogan N, Mchugh T H. Effects of microcrystalline cellulose on functional properties of hydroxy propyl methyl cellulose microcomposite films [J]. Journal of Food Science, 2007, 72(1): 16-22.
    [67] Rakesh K, Lina Z. Investigation into ramie whisker reinforced arylated soy protein composites [J]. Frontier of Chemistry in China, 2010, 5(1): 104-108.
    [68] Yasuatomo N, Yoshiharu N, Masahisa W, et al. Mechanical properties of silk fibroin microcrystalline cellulose composite films [J]. Journal of Applied Polymer Science, 2002, 86(13): 3425-3429.
    [69] Mikkonen K S, Mathew A P, Pirkkalainen K, et al. Glucomannan composite films with cellulose nanowhiskers [J]. Cellulose, 2010, 17(1): 69-81.
    [70] Henriette M C, Mattoso L H, Delilah W, et al. Nanocomposite edible films from mango puree reinforced with cellulose nanofibers [J]. Journal of Food Science, 2009, 74(5): 31-35.
    [71] Petersson L, Oksman K. Biopolymer based nanocomposites: comparing layered silicates and microcrystalline cellulose as nanoreinforcement [J]. Composites Science and Tech- nology, 2006, 66(13): 2187-2196.
    [72] Youssef H, Henri C, Michel R V. TEMPO-mediated surface oxidation of cellulose whiskers [J]. Cellulose, 2006, 13(6): 679-687.
    [73]唐丽荣,黄彪,李玉华,等.纳米纤维素超微结构的表征与分析[J].生物质化学工程, 2010, 44(2): 1-4.
    [74]高善民,乔青安,许璞,等.微晶纤维素的制备及性质研究[J].功能材料, 2007, 38增刊: 2891-2894.
    [75] Aline F M, Athene M D. Imaging of anisotropic cellulose suspensions using environmental scanning electron microscopy [J]. Biomacromolecules, 2003, 4(3): 510-517.
    [76] Eichhorn S J, Dufresne A, Aranguren M, et al. Riview: current international research into cellulose nanofibres and nanocomposites [J]. Journal of Materials Science, 2010, 45(1):1- 33.
    [77]王能,丁恩勇,程镕时.纳米微晶纤维素表面改性研究[J].高分子学报, 2006, 8: 982- 987.
    [78] Kvien I, Tanem B S, Oksman K. Characterization of cellulose whiskers and their nanocomposites by atomic force and electron microscopy [J]. Biomacromolecules, 2005, 6 (6): 3160-3165.
    [79] Hafraoui S E, Nishiyama Y, Putaux J L, et al. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose [J]. Biomacromolecules, 2008, 9(1): 57-65.
    [80] Xiang C H, Frey M W. Nanocomposite fibers electrospun from biodegradable polymers [J].第九届亚太纺织国际会议, 2007, 5-19.
    [81] Sundar S T, Sain M M, Oksman K. Characterization of microcrystalline cellulose and cellulose long fiber modified by iron salt [J]. Carbohydrate Polymers, 2010, 80(1): 35-43.
    [82]郑化,杜予民,余家会,等.交联壳聚糖膜的制备与性能的研究[J].高等学校化学学报, 2000, 21(5): 809-812.
    [83]刘文辉,刘晓亚,杨成,等.光交联壳聚糖/聚乙烯醇共混膜的制备与性能[J].无锡轻工业大学学报, 2002, 21(4): 384-388.
    [84]王秀娟,张坤生.增塑剂对壳聚糖膜性能的影响[J].食品研究与开发, 2008, 29(9):7-11.
    [85] Suyatma N E, Tighzert L, Copinet A. Effects of Hydrophilic plasticizer on mechanical, thermal,and surface properties of chitosan films [J]. Agricultural and Food chemistry, 2005, 53(10): 3950-3957.
    [86]陈新,邵正中,黄郁芳.不同交联剂含量对戊二醛交联壳聚糖膜结构与性能影响的研究[J].化学学报, 2000, 58(12): 1654-1659.
    [87] Ljungberg N, Bonini C, Bortolussi F, et al. New nanaocomposite materials reinforced with cellulose whiskers in atactic polypropylene: effect of surface and dispersion characteristics [J]. Biomacromolecules, 2005, 6(5): 2732-2739.
    [88] Capadona J R, Shanmuganathan K, Trittschuh S, et al. Polymer nanocomposites with nanowhiskers isolated from microcrystalline cellulose [J]. Biomacromolecules, 2009, 10(4): 712-716.
    [89] Curvelo A A, Carvalho A J, Agnelli J A. Thermoplastic starch-cellulosic fibers composites: preliminary results [J]. Carbohydrate Polymers, 2001, 45(2): 183-188.
    [90] Muller C M, Borges L J. Effect of cellulose fibers on the crystallinity and mechanical properties of starch-based films at different relative humidity values [J]. Carbohydrate Polymers, 2009, 77(2): 293-299.
    [91] Murray C A, Dutcher J R. Effect of Changes in Relative Humidity and Temperature on Ultrathin Chitosan Films [J]. Biomacromolecules, 2006, 7 (12): 3460–3465.
    [92]杨睿,周啸,罗传秋,等.聚合物近代仪器分析[M].北京:清华大学出版社, 2010.
    [93] Wu Y B, Yu S H, Mi F L, et al. Preparation and characterization on mechanical and antibacterial properties of chitosan/cellulose blends [J]. Carbohydrate Polymers, 2004, 57 (4): 435-440.
    [94] Angles M N, Dufresne A. Plasticized starch/tunicin whiskers nanocomposites structural analysis [J]. Macromolecules, 2000, 33(22): 8344-8353.
    [95] Dufresne A, Vignon M R. Improvement of starch film performances using cellulose microfibrils [J]. Macromolecules, 1998, 31(8): 2693-2696.
    [96] Mathew A P, Dufresne A. Morphological investigation of nanocomposites from sorbitol plasticized starch and tunicin whiskers [J]. Biomacromolecules, 2002, 3(3): 609-617.
    [97] Azizi S, Alloin F, Sanchez, J Y, Dufresne A. Cellulose nanocrystals reinforced poly(oxyethylene) [J]. Polymer, 2004, 45(12): 4149-4157.
    [98] Paralikar S A, Simonsen J, Lombardi J. Poly(vinyl alcohol)/cellulose nanocrystal barrier membranes [J]. Journal of Membrane Science, 2008, 320(1): 248-258.
    [99] Clough S, Rhodes M B, Stein R S. The transmission of light by films of crystalline polymers [J]. Journal of Polymer Science, 1967, 18(1): 1-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700