纳米纤维素/聚乙烯醇复合材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以杨木和棉花为原材料通过化学机械相结合的方法制备了高长径比纳米纤维素,且通过混合搅拌法、冷冻干燥浇铸法、薄膜浸渍法三种方法制备了纳米纤维素/聚乙烯醇复合膜,其中,浸渍法制得的薄膜性能最佳。本文旨在利用纳米纤维素提高聚乙烯醇的综合性能,扩大其在医药、生物包装以及园艺等方面的生物基复合膜的应用。本文使用的检测手段有电子扫描电镜、傅里叶红外、透光率测试、力学性能测试、热力学性能测试以及降解性能测试。测试结果如下:
     1、从电子扫描电镜照片可知,本论文中从杨木和棉花中提取的纳米纤维素的直径主要分布在50~150nm之间,长径比在1000~4000之间。观察浸渍法制得的复合膜的拉伸断裂面可知,纳米纤维素膜和聚乙烯醇是相互渗透,紧密结合为一体的,且断裂面为韧窝状,说明纳米纤维素膜对聚乙烯醇有很好的增强作用。
     2、傅里叶红外分析表明了杨木和棉花在在经过亚氯酸钠处理之后,代表木质素的波峰变弱了;经过氢氧化钾处理之后,代表半纤维素的波峰变得不明显;经过盐酸处理之后,代表纤维素的波峰增强。综上所述,经过化学处理之后,本论文去除了杨木和棉花的木质素和半纤维素等杂质,成功提取了纤维素。复合膜的红外光谱图表明纳米纤维素膜和聚乙烯醇的结合是物理性质的,而不是化学性质的。
     3、透光率测试表明随着纳米纤维素膜的厚度的增加,不论是可见光透过率还是紫外光透过率均有所下降。其中,棉花的透过率稍高于杨木的透过率,这是因为杨木纳米纤维素含有200nm以上纤维素比棉花纳米纤维素多些。复合膜的透光率随着纳米纤维素质量分数的增加也有缓慢的降低趋势。
     4、拉力试验结果表明,杨木和棉花的纳米纤维素复合膜的力学性能相当。纳米纤维素膜的力学性能极好,拉伸强度高达101.79MPa,弹性模量高达5741MPa。当纳米纤维素膜的厚度为0.03mm时,力学性能达到最佳,可提高聚乙烯醇的弹性模量200%。
     5、热力学性能分析可知纳米纤维素的热膨胀系数极低,热力学性能极佳,将它们加入到聚乙烯醇中可以制备理想的低热膨胀系数的复合膜,且复合材料的热稳定性也会随着纳米纤维素含量的增加而略有提高。
     6、生物降解试验表明,纳米纤维素膜/聚乙烯醇复合膜可生物降解,且随着纳米纤维素含量的增加,降解性能越高。本论文制备的复合膜是环境友好增强型材料。
     综上所述,本论文成功制备了具有低热膨胀系数、透明性、力学性能较好、可生物降解的纤维增强聚乙烯醇复合物。而且,因为这些纳米纤维素都取自天然的植物杨木和棉花,来源不仅丰富而且可环保可降解。这些优势必将促进纳米复合材料的发展,扩大聚乙烯醇的应用领域。
This work was to prepare the high aspect ratios (length/diameter) nano cellulose extractedfrom poplar and cotton with mechanochemistry treatment. There are three methods to preparenano cellulose/PVA composite: Mixture of mixing method; Freeze drying casting method and theFilm immersion method, among them, the last method is the best. Successful preparation of suchbio-based composites could open up ways to new applications in e.g. medicine, bio-packaging orhorticulture. The nano cellulose and composite films were characterized with scanning electronmicroscope (SEM), fourier transform infrared spectrometry (FTIR), ultraviolet-visible spectra(UV-vis), tensile testing machine, thermo mechanical analysis(TMA) and constant temperatureand humidity incubator. Test results are as follows:
     1、SEM showed the diameter of the cellulose was mainly range between30~100nm and highaspect ratio was mainly range between1000~4000. Observe the composite film tensile fractureswith film immersion method, the nano cellulose film and PVA were mutual blend, touchedclosely, and the fracture present dimple that suggested nano cellulose film had very good enhanceeffect on PVA.
     2、FTIR indicated after poplar and cotton through the sodium chlorate treatment, the peaksrepresented of lignin become weak and also the peak of hemicellulose after potassium hydroxidetreatment. After the hydrochloric acid treatment, representatives the peak represented of celluloseincreased. To sum up, after mechanochemistry treatment, this work successfully extractedcellulose from poplar and cotton. FTIR indicated the interaction between nano cellulose andmatrix is physical rather than chemical in origin.
     3、UV-vis showed that with the thickness of nano cellulose film increased, no matter thevisible light or uv light transmittance, they were all decreased. Among them, the cotton was betterthan the poplar, this is because poplar contained more nano cellulose fiber that bigger than200nm. The light transmittance of composite film also decreased with the content of celluloseincreased.
     4、The mechanical properties of PVA were improved significantly and the two plantnanofibers had the similarly reinforcing effects in the matrix. The mechanical properties of nanocellulose film were wonderful, tensile strength was reached up to101.79MPa, and elasticmodulus was reached up to5741MPa. When the thickness of nano cellulose film was0.03mm,the mechanical properties reached the best, improved the elastic modulus of poly (vinyl alcohol)200%.
     5、TMA suggested that the thermal expansion coefficient of nano cellulose was extremelylow. When added them to the PVA, there can be made of ideal composite film with low thermalexpansion coefficient, and thermal stability of composite material was increased with the content of nano cellulose slightly increased.
     6、Biological degradation test showed that nano cellulose/PVA composite film wasbiodegradable. With the content of nano cellulose increased, the degradation property becomebetter. This composite film was environment friendly enhanced material.
     In conclusion, cellulose nanofibers as a future resource have tremendous potential since theyare one of the most abundant organic resources on the earth. The potential applications ofcellulose nanofbers are as thickeners in food products, as strengthening agents for packagingmaterials, as barrier coatings, and in lightweight and strong polymer nanocomposites.
引文
[1]陈文帅,生物质纤维素纳米纤丝制备及其结构性能研究,东北林业大学,2010,16,06
    [2] George J, Sreekala MS, Thomas S. A review on interface motion and characterization of natural fiberreinforced plastic composites J.Polymer Engineering and science,2001,41(9):1471~1485
    [3]陈红莲,高天明,黄茂芳,王丹华,丁爱武,热带作物学报,第31卷第11期,2010年11月
    [4] Samir M,Alloin F,Sanchez J Y,et a1.Cmss—linked nanocomposite polymer electro Iytes reinforced withcellulose whiskers J.Macro Inolecules,2004,37(13):4839~4844.
    [5] Yan Z Y,Chen S Y,Wang H P,et al. Carbohydrate Res.2008,343:73~80
    [6] Ye D Y, ontane D, Farriol X. Carbohydr. Polym.005,62(3):258—266.
    [7] Gray D G, Roman M. ACS Symposium Series-Cellulose Nanocomposites.2006,938:26—32.
    [8] Sain M, Oksman K. ACS Symposium Series-Cellulose Nanocomposites,2006,938:2-8
    [9] Oksman K, Mathew A P, Bondeson D,et al. Compos. Sci.Technol.,2006,66(15):2776—2784.
    [10] Nakagaito A N, Yano H. ACS Symposium Series-Cellulose Nanocomposites,2006,938:151—168
    [11] Takahashi N,Okubo K,Fujii T. Bamboo J.,2005,22:81—92
    [12] Gindl W, Keckes J. Polymer,2005,46(23):10221—10225
    [13] White L A, Delhom C. Proceedings of Beltwide Cotton Conferences. San Antonio:National Cotton Councilof America,2006,2373:1—5
    [14] Noorani S, Simonsen J, Atre S. ACS Symposium Series-Cellulose Nanocomposites,2006,938:209—220
    [15] MathewA P, Chakraborty A,Oksman K. et al. ACS Symposium Series-Cellulose Nanocomposites,2006,938:114—131
    [16] Jaeger R, Bergshoef M M, Batlle C M I, et al. Macromol.Symposia,1998,127:141—150
    [17] Frey M, JooY. KimCW. Polym. Prepr.,2003,44(2):168—169
    [18]赵胜利(Zhao S L),宣英男(Xuan YN),黄勇(Huang Y).高分子材料科学与工程(Polymer MaterialsScience&Engineering).2004,20(2):151—154
    [19] Uppal R, Ramaswamy G N. Proceedings of Beltwide Cotton Conferences. New Orleans: National CottonCouncil of America,2005,2191:1—12
    [20] Kim CW,Frey MW,MarquezM, JooYL. J. Polym. Sci. PartB:Polym. Phys.2005,43(13):1673—1683.
    [21]吴晓辉(Wu XH),王林格(Wang L G),黄勇(Huang Y)高分子学报(Acta Polymerica Sinica),2006,2:264—268·1575·第10期叶代勇纳米纤维素的制备.
    [22]尤春,张振方,童昕,等。PVA/明胶/淀粉水凝胶的制备及性能J。塑料工业,2007,35(2):47249
    [23]张毅,汪明礼,黄山学院学报A,第6卷第3期,2004年6月
    [24]陈云深,陈凯,沈斌君。交联定形相变储能材料的研制J.复合材料学报,2006,23(3):67270
    [25]吴春金,张龙,李磊,等。聚乙烯醇复合超滤膜的研制及其耐污染性能J.水处理技术,2008,34(4):40243.
    [26]崔明,刘振东,李立平。橡胶纳米填料应用研究进展1.橡胶T业,2004.51(4):249—252.
    [27]范玉晶,桂红星,张艺,许家瑞,纳米纤维素微晶/PVA复合材料的研究,广东化工,第38卷,总第216期,2011年第4期
    [28]张琳琳,邵丽,崔园园,冯超阳,张志斌,陈世龙,PVA复合材料的研究进展,化工新型材料,第38卷第1期,2010年1月
    [29] D.M. Bruceb, R.N.Hobsonb, J.W.Farrentb, D.G.Hepworth, High-performance composites from low-costplant primary cell walls, Composites: Part A36(2005)1486–1493
    [30] Chang Suk Kong, Wan Suk Yoo,Kui Young Lee,Han Seong Kim, Nanofiber deposition by electroblowingof PVA (polyvinyl alcohol),J Mater Sci (2009)44:1107–1112
    [31] Kim CW,FreyMW,MarquezM,JooYL. J. Polym. Sci. PartB:Polym. Phys.,2005,43(13):1673—1683.
    [32] Kulpinski P. J. Appl. Polym. Sci.,2005,98(4):1855—1859.
    [33] Kobayashi S, Ohmae M. Adv. Polym. Sci.,2006,194:159—210.
    [34] De Souza Lima M M, Borsali R. Macromol. Rapid Commun.,2004,25:771—787.
    [35] Nakatsubo F, Kamitakahara H, Hori M. J. Am. Chem. Soc.,1996,118(7):1677—1681.
    [36] E. H. Qua,P. R. Hornsby,H. S. S Sharma,G. Lyons,R. D. McCall,Published online27April2009in WileyInterScience (www.interscience.wiley.com),DOI10.1002/app.30116
    [37] Maria S. Peresin,Youssef Habibi,Justin O. Zoppe,Joel J. Pawlak,andOrlando J. Rojas, Biomacromolecules2010,11,674–681
    [38] Jue Lu, Tao Wang, Lawrence T. Drzal, Composites: Part A39(2008)738–746
    [39] Sun-Young Lee, D. Jagan Mohan, In-Aeh Kang, Geum-Hyun Doh, Soo Lee, and Seong Ok Han, Fibersand Polymers2009, Vol.10, No.1,77-82, DOI10.1007/s12221-009-0077-x
    [40] Qingzheng Cheng, Siqun Wang, Timthy G. Rials, Composites: Part A40(2009)218–224
    [41] Yoko Okahisa, Ayako Yoshida, Satoshi Miyaguchi, Hiroyuki Yano, Composites Science and Technology69(2009)1958–1961
    [42] Yoko Okahisa, Kentaro Abe, Masaya Nogi, A.N. Nakagaito, Takeshi Nakatani, Hiroyuki Yano, CompositesScience and Technology71(2011)1342–1347
    [43] J. Lu, Wang, T., Drzal, L.T. Preparation and properties of microfibrillated cellulose polyvinyl alcoholcomposite materialsJ. Composites Part A: Applied Science and Manufacturing,2008,39(5):738-746
    [44] Q. Cheng, Wang, S., Rials, T., et al. Physi cal and mechanical properties of polyvinyl alcohol andpolypropylene composite materials reinforced with fibr il aggregates isolated from regenerated cellulosefibersJ. Cellulose,2007,14(6):593-602
    [45] A. Chakraborty, Sain, M., Kortschot, M. Reinforcing potential of wood pulp-derived microfibres in aPVA matrixJ. Holzforschung,2006,60(1):53-58
    [46] D. Dubief, E. Samain, A. Dufresne, Macromolecules1999,32,5765.
    [47] V. Favier, H. Chanzy, J. Y. Cavaille, Macromolecules1995,28,6365.
    [48] My. A. S. A. Samir, F. Alloin, A. Dufresne, Biomacromolecules2005,6,612.
    [49]李伟王锐刘守新,化学进展,第20卷第10期,2010年10月
    [50] Chunyi Tang, Haiqing Liu, Composites: Part A39(2008)1638–1643
    [51] Qingzheng Cheng, Siqun Wang, Timthy G. Rials, Composites: Part A40(2009)218–224
    [52] S. Iwamoto, Abe, K., Yano, H. The E ffect of Hemicelluloses on Wood Pulp Nanofibrillation and NanofiberNetwork CharacteristicsJ. Biomacromolecules,2008,91022–1026
    [53] BOHLMANNGM. General characteristics, processability, industrial applications and market evolution ofbiodegradable polymersM//Handbook ofBiodegradablePolymers. UK: RapraTechnologyLimited,2005:183-218
    [54] Kime, Seojw, Jeonghm. Morphology and properties ofwaterbornepolyurethane/claynanocomposites J.European Polymer Journa,l2003,39(12):85-91.
    [55] STRAWHECKERKE, MANIAS E. Structure and properties of poly(vinyl alcohol)/Namontmorillonitenanocomposites J. Chemistry of Materials,2000,12(10):2943-2949.
    [56]PengZheng, KongLingxue. A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites J.Polymer Degradation Stability,2007,92(6):1061-1071.
    [57] Wang Hongmei, FangPengfei, Chenzhe, et a.l Synthesis and characterization ofCdS/PVAnanocompositefilms J. Applied Surface Science,2007,253(20):8495-8499
    [58] PAIVAMC, ZHOUB, FERNANDOKAS, et a.l Mechanical and morphological characterization ofpolymercarbon nanocomposites from functionalized carbon nanotubes J. Carbon,2004,42(14):2849-2854
    [59] Sturcova A,Davies G R,Eichhorn S J.Biomacromolecules,2005,6:1055-1061
    [60] Millon LE,Wan WK.The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite forbiomedical applicationsJ.J Biomed Mater Res B Appl Biomater2006;79B(2):245-253.
    [61]Liao WT, Lee WJ, Chen CY, Hsieh LT, Lai CC, Chem Technol Biotechnol2000,Vol.75.
    [62] Yano H,Sugiyama J,Nakagaito AN,Nogi M,Matsuura T,Hikita M,et al.Optically transparent compositesreinforced with networks of bacterial nanofibersJ.Adv Mater2005;17(2):153-155.
    [63] Nogi M,Handa K,Nakagaito AN,Yano H.Optically transparent bionanofiber composites with lowsensitivity to refractive index of the polymer matrixJ.Appl Phys2005;87(24):1-3.
    [64] Nogi M,Ifuku S,Abe K,Handa K,Nakagaito AN,Yano H.Fiber-content dependency of the opticaltransparency and thermal expansion of bacterial nanofiber reinforced compositesJ.Appl Phys Lett2006;88(13):133124-133121.
    [65] Shimazaki Y,Miyazaki Y,Takezawa Y,Nogi M,Abe K,Ifuku S,et al.Excellent Thermal Conductivity ofTransparent Cellulose Nanofiber/Epoxy Resin NanocompositesJ.Biomacromolecules2007;8(9):2976-2978.
    [66] Nogi M, Yano H. Transparent nanocomposites based on cellulose produced by bacteria offer potentialinnovation in the electronics device industry. AdvMater2008.
    [67] Ifuku S,Nogi M,Abe K,Handa K,Nakatsubo F,Yano H.Surface modification of bacterial cellulosenanofibers for property enhancement of optically transparent composites:dependence on acetyl-group DSJ.Biomacromolecules2007;8(6):1973-1978.
    [68] Iwamoto S, Nakagaito AN, Yano H. Nano-fibrillation of pulp fibers for the processing of transparentnanocomposites. Appl Phys A2007;89:461–6.
    [69] HelbertW,Cavaille J Y. Therrnoplastic nano∞mposties filled the wheatstraw cellulosewhiskers.1.Processing andmechanical behaviorJ.POLYMER COMPOSITE,1996,17(4):604~611.
    [70] Hajji P,Cavaille J Y,Favier V,et a1.Tensile behavior of nanocomposites from latex andcellulosewhiskersJ.P01ymercomposites,1996,17(4):612~619.
    [71]唐丽荣,黄彪戴达松欧文李玉华陈学榕,林业科学,第47卷,第11期,2011年11月
    [72] Yean-Hum Yen, Young-Ho Na, Soon-Do Yoon. Mechanical Properties with the Functional Group ofAdditives for Starch/PVA blend filmj.journal of polymers and the envrironment,2006,14(1):71~78
    [73] Suzuki T, Ichihara Y, Yamada M, et al. Some characteristics of Pseudomonas O-3which utilizes polyvinylalcohol. Agric Biolchem,1975,39:2447~2448
    [74] Morita M, Watanabe Y. A secondary alcohol oxidase: a component of a polyvinyl alcohol degradingenzyme preparation. Agric Boil Chem.,1977,41;41:1535~1537
    [75] Sakai K, Hamada N, Watanabe y. Sudies on the poly(vinyl alcohol)-degrading enzyme. Part VI.Degradation mechanism of poly(vinyl alcohol) by successive reactions of secondary alcohol oxidase andb-diketone hydrolase from Pseudomonas sp. Agric Biol Chem,1986,50:989~996
    [76]刘白玲,曾祥成,杨金华,等.聚乙烯醇生物降解的影响因素J.材料研究学报,2000,14(增刊):108~112.
    [77] Zhu, C, Kou, X, You, Y., Zhang, Z.; Zuo, J. J Appl Polym Sci,2003,89,848.
    [78] Zhu, C.; Zhang, Z.; Liu, Q.; Wang, Z.; Jin, J. J Appl Polym Sci,2003,90,982.
    [79] Shibata, M.; Oyamada, S.; Kobayashi, S.; Yagimnuma, D. J Appl Polym Sci2004,92,3857.
    [80] Hadano, S.; Maehara, S.; Onimura, K.; Yamasaki, H.; Tsutsumi,H. J Appl Polym Sci2004,92,2658.
    [81] Hadano, S., Maehara, S., Onimura, K., Yamasaki, H., Tsutsumi, H.,&Oishi, T.(2004).Syntheses andbiodegradability of benzylated waste pulps and graft compolymers from PBzs andl-lactic acid. Journal ofApplied Polymer Science,92,2658–2664.
    [82] Ramaraj, B.,&Poomalai, P.(2006). Ecofriendly poly(vinyl alcohol) and coconut shell powder compositefilms: Physico-mechanical, thermal properties, and swelling studies. Journal of Applied Polymer Science,102,3862–3867.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700