啤酒大麦冠层温度分异现象及其生理特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国啤酒大麦灌浆结实期常处于大气温度迅速上升阶段,特别是灌浆后期,植株常遭受高温的伤害,使啤酒大麦粒重下降,也使蛋白质含量增加,这严重影响了啤酒大麦的产量和品质。本试验应用红外测温仪连续两年(2006,2007)对6个不同啤酒大麦品种花后冠层温度进行观测,并对其一系列生理代谢参数和农艺性状进行了测定。结果表明:
     1.不同啤酒大麦品种冠层温度花后存在明显的差异,95-83、D-18和法瓦维特持续偏低,甘啤4号、哈瑞特、99-6持续偏高,出现了极显著的群体冠层温度分异现象。参照张嵩午对小麦温度型的划分方法,可把前者可归为低温品种,后者归为暖温品种。
     2.冠层温度日变化观测表明,不同大麦品种一天中的冠层温度以13:00~15:00时为最高,品种间的差异也最大。
     3.大麦花后叶片叶绿素含量有一个前增加后降低的变化趋势。低温大麦叶绿素含量降解速率缓慢,且在生育后期显著高于暖温大麦。叶片可溶性蛋白质含量呈先上升后又下降趋势;低温大麦下降速率慢,暖温大麦下降速率快,导致低温大麦可溶性蛋白质含量显著高于暖温大麦。大麦叶片MDA含量随着功能叶逐渐衰老而呈指数增长,低温大麦积累速度缓慢,积累量较少,暖温大麦增加速度较快,积累量大。低温大麦叶绿素、可溶性蛋白等含量高、分解缓慢,加上膜系统损伤程度低,使叶片能维持正常的活力,保持较高的光合生产能力,对提高产量和品质具有积极意义。
     4.花后低温大麦叶片SOD、CAT等保护酶活性随生育进程推进,呈下降趋势。但低温大麦SOD、CAT活性下降速率低于暖温大麦,生育后期更是明显。低温大麦保护酶活性(SOD、CAT)高、下降慢的特点,有利于有效清除活性氧,减轻膜系统损伤,从而延缓叶片衰老。
     5.灌浆期间,硝酸还原酶(NR)活性急剧上升,后快速下降,再缓慢下降,但低温大麦的硝酸还原酶活性较暖温大麦高,且下降也较为缓慢,生育后期尤为明显,说明低温大麦比暖温大麦具有更高的氮肥利用能力,具备高产的基础。
     6.不同品种大麦不同功能叶净光合速率均随成熟期的临近而下降;同一测定时期,同一大麦品种不同功能叶的净光合速率表现为旗叶>倒2叶>倒3叶。越接近灌浆后期,低温大麦和暖温大麦的叶片净光合速率差异越大,低温大麦显著高于暖温大麦。不同温型大麦越到生育后期,蒸腾速率差异越明显,低温大麦显著高于暖温大麦。大麦叶片衰老期间光合作用受到气孔因素和非气孔因素的影响,非气孔因素是重要的限制因子,低温大麦的非气孔因素的优势更大。
     7.随大麦衰老,根系伤流呈先快后慢的下降趋势。生育后期低温大麦根系伤流显著高于暖温大麦。表明低温大麦根系功能旺盛,可为大麦生育后期提供更多的生理代谢原料。
     8.低温大麦95-83、D-18、法瓦维特在穗重、穗粒重和千粒重方面均显著高于暖温大麦甘啤4号、哈瑞特、99-6,显示低温大麦灌浆特性优于暖温大麦,而收获指数显著低于暖温大麦。表明冠层温度对粒重有较大的影响,但低温大麦产量并不一定高产,有关冠层温度和产量的关系有待进一步研究。
Usually, filling-legume period of malting barley in China is in this stage that atmospheric temperature is rising fast, especially in the later period of filling-legume, high temperature often harms plants, that led to declining of grain weight of malting barley and increasing in protein content, this is a serious influence on the yield and quality of malting barley. This paper continuously observed the canopy temperature of 6 different malting barley varieties after anthsis for 2 years with infrared thermometer, and a series of physiological metabolism parameters and agricultural characters in 2006 and 2007.The results showed that:
     1. There was a obvious difference among canopy temperature of different malting barley after flower, 95-83,D-18 and Favorit were continuously low and Ganpi4,Harrington and 99-6 were continuously high. That showed the marked difference phenomenon of canopy temperatures of different malting barley varieties population. According to the method of definition for wheat temperature type by Zhang Songwu, we called the former cool varieties and the later warm varieties.
     2. The observation of the diurnal fluctuation of canopy temperatures showed that the highest canopy temperature of different barley in one day was at 13:00~15:00,and at the same time, the difference of different varieties was also the most.
     3. The trend of chlorophyll content of barley after flower was firstly incremental and then descendant. The degradation rate of chlorophyll content of cool barley was low and its content was obviously higher than warm barley’s in later of growth. The soluble protein content of leaf raised firstly and then declined, but the declining rate of cool barley was slow and warm barley was opposite, that led to the soluble protein content of cool barley obviously higher than warm barley. The MDA contend of barley leaf raised by index with the gradual senescence of function leaves,but both the accumulation speed and the accumulation amount of MDA of cool barley were slower and less than warm barley. Chlorophyll and soluble protein content of cool barley was high, degradation speed was slow and damaged condition of membrane system was tiny, so their leaves could maintain normal activity and keep higher production of photosynthesis, these were beneficial for improving yield and quality.
     4. The protective enzymes SOD, CAT et al. of leaf of cool barley was declining after flower with growth progress, but the declining rate of SOD, CAT of cool barley were lower than warm barley, and it was more obviously in later growth. These characters of protective enzymes high activity and low declining speed of cool barley was propitious to clear active oxygen and alleviate the harm of membrane system, these could defer senescence of leaf.
     5. During filling-legume period, NR activity of malting barley raised sharply firstly and then declined fast and declined slowly finally, but NR activity of cool barley was higher than warm barley, and the declining was slower, especially in the latter growth. These showed that cool barley had a higher capability than warm barley to use nitrogenous fertilizer, had the basis of high yield.
     6. Net photosynthetic rate of different leaf position of different barley varieties declined with approaches of autumn period. At the same period, net photosynthetic rate of different leaf position of the same barley variety was flag leaf > 2nd leaf from up>3rd leaf from up. More closed to the later of filling-legume, more significant difference in net photosynthetic rate between cool barley and warm barley, and cool barley was significantly higher than warm barley. With the growth gone, the difference of transpiration rate of different temperature type barleys was more obvious, cool barley was significantly higher than warm barley. Stomata factor and non-stomata factor could effect on photosynthetic during the period of senescence of barley leaves, and non- stomata factor was important limiting factor, but non- stomata factor of cool barley had a more superior.
     7. With senescence of barley, root bleaching raised firstly and then declined. Root bleaching sap of cool barley was more than warm barley, this showed that root system of cool barley had a hearty function that could offer more physiological metabolism materials in later growth. 8. All of Ear weight, Ear grains weight,1000-grains-weight of cool barley 95-83,D-18, Favorit were significantly higher than warm barley Ganpi4, Harrington and 99-6, these showed that filling-legume characteristic of cool barley was better than warm barley. But, Harvest index of cool barley was significantly lower than warm barley.this showed that the canopy temperature has the tremendous influence to the grain weight,but cool barley not necessarily have higher yield than warm barley, There is a link between different temperature varieties and grain yield and this is an area that needs exploration. The relation of the canopy temperature and the yield will be studied in the future.
引文
[1] 卢良恕.中国大麦学[M].北京:中国农业出版社,1996.
    [2] 陆咏梅.甘肃农垦啤酒大麦生产优势与品质问题[J],2000(1):36~38.
    [3] 唐子恺,肖猛,段文霞,等.发展大麦生产是四川农业的新路子[J],2003(1):6~10.
    [4] 金文林.特种作物优质栽培及加工技术[M].北京:化学工业出版社,2003.
    [5] 郑家文.发展优质啤饲大麦作为保山市小春生产突破口大麦科学[J],2002 (4):1~7.
    [6] 谢志新,丁守仁.大麦品质育种研究与进展[J].大麦科学,1996(l):1~6.
    [7] 叶信璋.大麦生产发展概况及其展望[J].农牧情报研究,1984(8):l~15.
    [8] 顾自奋,黄志仁,许如根,吕超.近 10 年世界大麦生产概况[J].大麦科学,2001(1):1~4.
    [9] 林艳.世界啤酒大麦[J].酿酒科技,1999,5:105~108
    [10] 杨建明等.我国大麦生产、需求与育种对策[J].大麦科学,2003(1):1~6.
    [11] 张宇萍,韩一军.中国大麦生产和消费及供求形势[J].农业展望,2007,6:38~40.
    [12] 黄志仁,杨锦昌.对我国发展啤麦生产的回顾与思考[J].大麦科学,2003,(4):1~7.
    [13] 董玉琛,郑殿升.中国作物及其野生近缘植物,粮食作物卷[M]. 北京:中国农业出版社,2006.
    [14] 孙鲁威.啤酒大麦一个渴望发展的边缘产业[J].北京农业,2007.12(中旬):5~6.
    [15] 张国良,戴其根,张洪程,等.江苏省大麦生产现状分析及其发展对策[J].大麦科学,2004,(4):6~9.
    [16] 陈富.甘肃省啤酒大麦产业发展现状、存在问题及建议[J].大麦与谷类科学,2007,(1):1~4.
    [17] 陈斌.不同来源啤酒大麦质量及供应状况的比较研究.[M].扬州.2006.
    [18] Scott WR, Appleyard M, FellowesG, Kirby EJM. Effect of genotype and position in the ear on carpel and grain growth and mature grain weight of spring barley [J]. Agric Sci(Camb) [J],1983(100):383~391.
    [19] 孙桂华,任玉山,杨镇.辽宁杂粮[M].北京:中国农业科学技术出版社,2006.
    [20] Garcial del Moral MB, Garcial del Moral EF.Tiller production and survival in relation to grain yied in winter and spring barley[J].Field Crops Res 1996(44):85~93.
    [21] Cannell RQ.The tillering pattern in barley varieties. Ⅱ.The effect of temperature light intensity and daylength on the frequency of occurrence of thecoleoptile node and second tillers in barley[J]. Agric Sci (Camb) [J],1969(72):423~435.
    [22] 张国宽,王敏,瞿为富,等.大麦生产与气候变化的关系及其对策[J].大麦科学,2000(2):25~27.
    [23] 阐晓玉,黑河地区气象因素对二棱大麦产量构成性状的影响[J].农业系统科学与综合研究,1997,13(3):234~235,240.
    [24] 杨力,周正宽,唐义军,等.气候变暖对盐城啤麦生产的影响及其调控对策[J].大麦科学,1998,2:12~13.
    [25] Frank AB,Bauer A,Black AL.Effects of air temperature and fertilizer nitrogen on spike development of spring barley[J].Crop Sci ,1992(32):793~797.
    [26] Kernich GC,Halloran GM.Temperature effects on the duration of the spikelet growth phase and spikelet abortion in barley[J]. Agron Crop Sci ,1996(176):23~29.
    [27] 黄继荣,丁守仁.温光条件对大麦空壳率的影响[J].大麦科学,1993(1):36~38
    [28] Metzger DD,Czaplewski SJ,Rasmussen DC.Grain-filling duration and yied in spring barley[J].Crop Sci 1984,(24):1101~1105.
    [29] Ho KM,Jui PY .Duration and rate of kernel filling in barley(Hordeum vulgare L.) [J].Cereal Res Commun,1989(17):69~76.
    [30] Cochrane MP, Paterson L, Duffus CM, et al.The effect of temperature on grain development and starch quality in barley[J].Aspects Appl Biol 1996(45):139~146.
    [31] Gallagher JN,Biscoe PV,Scott RK.Barley and its environment.V.Stability of grain weight[J]. Appl Ecol 1975(12):319~336.
    [32] Voltas J,Van Ecuwijk FA,Sombrero A ,et al. Integrating statistical and ccophysiological analyses of genotype by environment interaction for grain filling of barley individual grain weight[J].Field Crop Research,1999(62):63~73.
    [33] Kuroyanagi T,Paulsen GM. Mode of high temperature injury in wheat.Ⅱ :Comparisons of wheat and rice with and without inflorescences[J]. Physiologina plantarum,1985(65):203~208.
    [34] Al-Khatib K,Paulsen GM. Mode of high temperature injury in wheat during grain development[J] .Physiologina Plantarum, 1984(61):363~368.
    [35] 赵如英 , 边永高 , 张月华 . 嘉兴地区大麦产量与气象因素的关系分析 [J]. 浙江农业科学,1997(6):270~272.
    [36] Lingle SE, Chevalier P,movement and metabolism of sucrose in developing barley kernels[J].Crop Sci 1984(24):315~319.
    [37] Wallwork MAB,Logue SJ,Macleod LC,et al.Effect of high temperature during grain filling on starch synthesis in the developing barley grain[J]. Aust J Plant Physiol. 1998(25):173~181.
    [38] 郭兴章,陈柔,张征太,等.优质啤酒大麦的农业气候生态[J].新疆农业科学,1987(1):12~15.
    [39] Coles G.D.Jamieson P.D.and Haslemore R.M.Effects of moisture stress on malting quality in Triumph barley[J].Journal of Cereal Science.1991 14:161~177.
    [40]Savin R.S,Nicolas M.E.Effects of short Periods of drought and high temperature on grain growth and starch accumulation of two malting barley cultivars[J].Australia Journal of Plant Physiology.1996 23:201~210.
    [41] 王文正,吕潇,黎秀卿,等.生态条件对我国大麦蛋白质含量影响的研究[J].山东农业大学学报,1998 29:9~10.
    [42] 汪军妹,张国平,陈锦新.啤酒大麦蛋白质含量与粒重的品种和环境效应[J].浙江大学学报,2001,27(5):503~507.
    [43] 张桂珍,邱以孝.啤酒大麦品质性状的研究[J].河北农业技术师范学院学报[J],1998 12:45~48.
    [44] 吕潇,林澄菲,杨铮,等.中国大麦资源蛋白质含量的生态分析[M].中国大麦文集,1992 第三集:41~44.
    [45] 黎秀卿,王文正,吕潇.北方春大麦区大麦蛋白质含量与生态条件的关系[J].山东农业科学,1998(2):20~21.
    [46] 靳正忠,齐军仓,石国亮,等.不同生态条件对大麦籽粒蛋白质及其组分含量的影响[J].石河子大学学报(自然科学版)2006,24(5):539~542.
    [47] 梅雨祥.大麦籽粒蛋白质含量与气候关系的研究[J].新疆农业科学,1987(1);12~15.
    [48] 董振国,于沪宁.农田作物层环境生态[M].北京:中国农业科技出版社,1994.
    [49] 黄亚群.春小麦品种磷营养效率研究 I.磷营养效率分类与鉴定[J].麦类作物,1999,19(2):39.
    [50] Tanner C B.Plant temperatures[J].Agron J,1963,55:210~211.
    [51] 程旺大,姚海根,赵国平,等.冠层温度在作物水分状况探测中的应用[J],中国农学通报,2000,16(5):42~44.
    [52] 程旺大.冠层温度在水稻抗旱性基因型筛选中的应用及其测定技术[J],植物学通报,2001,18(1):70~75.
    [53] Wiegand W L , Namken L N. Infiuence of plant moisture stress ,solar radiation , and air temperature on cotton leaf temperature [J ] . Agron J , 1966 ,58 :582~586.
    [54] Ehrler W L , Van Barel L H M. Sorghum foliar response to chang in soil water content [J] . Agron J , 1967 ,59 :243~246.
    [55] 康绍忠,熊运章.作物缺水状况的判别方法与灌水指标的研究[J].水利学报,1991,(1):34~39.
    [56] 石培华,梅旭荣,冷石林,等.冠层温度与冬小麦农田生态系统水分状况的关系[J].应用生态学报,1997,8(3)∶ 332~334.
    [57] 王宏.作物水分亏缺诊断研究综述[A],作物与水分关系研究[C].北京:中国科学技术出社,1992,229~252.
    [58] 刘恩民,于强,谢贤群.水分亏缺对冬小麦冠层温度影响的研究[J].生态农业研究,2000,8(1):21~23.
    [59] 梁银丽,张成娥.冠层温度-气温差与作物水分亏缺关系的研究[J].生态农业研究,2000,8(1):24~26.
    [60] 石培华,等.冠层—气温差监测和诊断冬小麦农田水分[J].中国农业气象,1995,16(2):13~15.
    [61] 蔡焕杰,康绍忠,熊运章.用冠层温度计算作物缺水指标的一种简化模式[J].水利学报,1996,(5):44~49.
    [62] 袁国富,唐登银,罗毅等.基于冠层温度的作物缺水研究进展[J].地球科学进展,2000,16(1):49~54.
    [63] Tubaileh A S,Sammis T W,Lugg D G.Utilization of thermal infrared thermometry for detection of water stress in spring barley[J].Agric Water Manage,1986,12:75~85.
    [64] Pinter P J Jr,Reginato R J.A thermal infrared technique for monitoring cotton water stress and scheduling irrigation[J].Transactions of the ASAE,1982,25:1651~1655.
    [65] Hatfield J L,Wanjura D F,Barker G L.Canopy temperature response to water stress under partial canopy[J].Transactions of the ASAE,1985,28:1607~1611.
    [66] Clawson K L,Blad B L.Infrared thermometry for scheduling irrigation of corn[J].Agronomy. Journal,1982,74:311~316.
    [67] Howell T A,Musick J T,Tolk J A.Canopy temperature of irrigated winter wheat[J].Trans of the ASAE,1986,29,1692~1698,1706.
    [68] Jackson R D.Canopy temperature and crop water stress[A].In:Hillel D,ed.Advances in Irrigation.Vol.1[C].New York:Academic Press,1982.43~85.
    [69] Jackson R.D,Idso S.B,Reginato R.J and Ehrler,W.L.Crop temperature reveals stress[J].Crops and soils.1977,29(8):10~13.
    [70] Jacson R.D,Reginato R.J,Idso S.B.Wheat canopy temperature:A practial tool for evaluating water requirment[J].Water Resource Research.1977,13(3):651~656.
    [71] 董振国. 作物层温度作为植物缺水指标的初步分析[J]. 生态科学. 1985 (2): 30~32.
    [72] 董振国. 作物层温度与土壤水分的关系[J].科学通报. 1986(8):18~20.
    [73] Fouche P S. Low altitude aerial infrared surveillance for estimating water stress in soybeans and wheat[J]. Applied-Plant-Science. 1995, 9(1): 1~6.
    [74] Bhosale A M; Jadhav A S; Bote N L; Varshneya M C. Canopy temperature as an indicator for scheduling irrigation for wheat. Journal of Maharashtra Agricultural Universities.1996, 21 (1):106~109.
    [75] Idso S B, Jack son R D, P inter P J Jr, et al. No rmalizing the stress degree day for environmental variability [J]. Agricultural Meteorology, 1981, 24: 45~55.
    [76] Mo ran M S, Clarke T R, Inoue Y, et al. Estimating crop water deficit using the relation between suface2air temperature and spectral vegetation index [J]. Remote Sensing of Environment, 1994, 49: 246~263.
    [77] Idso S B, Jack son R D, Reginato R J. Remote sensing of crop yields[J ]. Science, 1977, 196: 19~25.
    [78] Jack son R D, Reginato R J , Idso S B. W heat canopy temperature: A practical tool for evaluating water requirements [ J ].Water Resource Research, 1977, 13: 651~656.
    [79] Claw son K L , Blad B L. Infrared thermometry for scheduling irrigation of corn [ J ]. Agronomy Journal, 1982, 74: 311~316.
    [80] Gardner B R, Blad B L , Garrity D P, et al. Relationship s between crop temperature, grain yield, evapo transiation and phenological development in two hybrids of moisture stressed sorghum [J ]. Irrigation Science, 1981, 2: 213~224.
    [81] Ehleringer J.Leaf morphology and reflectance in relation to water and temperature stress,inadaption of plants to water and high temperature stress. Turner N C, and Kramer P J eds, Eiley-Interscience,New York,1980,295.
    [82]王纯枝,宇振荣,孙丹峰,等.夏玉米冠气温差及其影响因素关系探析[J],土壤学报,2006,37(4):651~658.
    [83] Gardner B R, Blad B L,Watts D G.. Plant and air temperatures in differentially irrigated corn [J].Agricultural Meteorology,1981,25:207~217.
    [84] Idso S B,Jackson R D, Pinter P J Jr, et al. Normalizing the stress degree day parameter for environmental variability[J].Agric Meteorol,1981.24:45~55.
    [85] 张宏名.农作物受旱的监测方法[J].气象,1987,13(12):48~50.
    [86] 刘学著.冬小麦冠气温差及其与叶水势的相关性研究[J]. 作物学报. 1995,21(5):528-532.
    [87] 刘学著, 张连根. 不同水分胁迫条件下冬小麦冠层温度日变化差异性研究. 北京农业大学学报. 1994,20(2):229~232.
    [88] Gardner B R, Nielsen D C, Shock C C. Infrared thermometry and the crop water stress index I, History, theory, and baselines [J]. Journal of Production Agriculture, 1992, 5: 462~466.
    [89] Gardner B R, Nielsen D C, Shock C C. Infrared thermometry and the crop water stress index, II: Sampling procedures and interpretation [J]. Journal of Production Agriculture,1992, 5: 466~475.
    [90] Vidal A , Devaux-Ros C. Evaluating forest fire hazard with a landsat TM derived water stress index [J]. Agricultural and Forest Meteorology, 1995, 77: 207~224.
    [91] Clarke T R. An empirical app roach for detecting crop water stress using multi spectral airborne sensor[J]. Hort Technology, 1997, 7: 1, 9~16.
    [92] Blum A Plant breeding for stress environment[J].C R C Press. Boca Rator.F L,1988.
    [93] Reynolds M P; Nagarajan S; Razzaque M A; Ageeb O A A. Using canopy temperature depression to select for yield potential of wheat in heat stressed environments[J]. Mexico, DF (Mexico). CIMMYT. 1997, 51: 35~36.
    [94] Blum A; Shpiler L; Golan G; Mayer J. Yield stability and canopy temperature of wheat genotypes under drought-stress[J]. Field Crops Research. 1989,22 (4):289-296.
    [95] Reynolds M P, Fischer R A,Balota M, Delgado M I B,Amani I. Physiological and morphological traits associated with spring wheat yield under hot, irrigated conditions. [Workshop paper]. Australian Journal of Plant Physiology (Australia). 1994, 21 (6): 717~730.
    [96] Golestani A S; Assad M T. Evaluation of four screening techniques for drought resistance and theirrelationship to yield reduction ratio in wheat[J]. Euphytica. 1998,103 (3): 293~299.
    [97] Saadalla M M, Alderfasi A A. Infrared-thermal sensing as a screening criterion for drought tolerance in wheat[J]. Annals of Agricultural Science . Cairo. 2000, 45 (2): 421~437.
    [98] Reynolds M P. Summary of date from the 1st and 2nd international heat stress genotype experiments[M].Centro International de Mejoramiento de Maizy Trigo,Mexico,DF.1994:184~192.
    [99] Balota M.; Amani I.; Reynolds M P.; Acevedo E. Evaluation of membrane thermostability and canopy temperature depression as screening traits for heat tolerance in wheat[J]. Mexico, DF (Mexico). CIMMYT. 1993, 26:15~18.
    [100] 许为钢,胡琳,盖钧缢.小麦耐热性研究.华[J],农学报,1999,14(2):20~24.
    [101] Ayeneh A, Vanginkel M, Reynolds M P, et al. Comparison of leaf, spike, peduncle and canopy temperature depression in wheat under heat stress[J].Field Crops Research,2002,79(2~3):173~184.
    [102] 张嵩午.小麦冷域问题[J].中国农业气象,1991,12(2):1~6.
    [103] 张嵩午.小麦群体的第二热源及其增温效应[J].生态学杂志,1990,9(2):1~6.
    [104] 张嵩午.小麦温型现象研究[J].应用生态学报,1997(8):471~474.
    [105] 张嵩午,宋哲民,曹翠兰.小麦冷温群体研究[J].中国农业气象,1995,16(4):1~5.
    [106] BlumA,张转放.干旱胁迫条件下不同基因型小麦品种的冠层温度[J].国外农学—麦类作物,1991,(2):36-37.
    [107] Blum A, Shpiler L, Golan G, Mayer J. Yield stability and canopy temperature of wheat genotypes under drought stress. Field Crops Res,1989,22(4):289~296.
    [108] 王长发.冷型小麦的冷温特征研究[D].西北农业大学.1999 届攻读博士学位研究生学位论文,陕西杨凌 1999.
    [109] 张嵩午.冷型小麦的概念特性未来[J]. 中国科学基金,2006,4:210~214.
    [110] Zhang S W,Wang C F,Feng B L,Miao F, Zhou C J,Zhang R P. Some traits of low temperature germplasm wheat under extremely unfavorable weather conditions[J].Prog Nat Sci,2001,11(12): 911-917.
    [111] 张嵩午,苗芳,王长发.小麦低温种质及其叶片的光合性能和结构特征[J].自然科学进展,2004,14(2):179~184.
    [112] 张嵩午 , 王长发 , 冯佰利 , 等 . 灾害性天气下小麦低温种质的性状表现 [J]. 自然科学进展,2001,11(10):1068~1073.
    [113] 张嵩午,宋哲民.冷型小麦及其育种学意义[J].西北农业大学学报,1996,24(1):14~17.
    [114] 张嵩午,王长发,周春菊等.冠层温度中间型小麦及其性状特征[J].麦类作物学报,2000,20(3):40~45.
    [115] 张 嵩 午 , 冯 佰 利 , 王 长 发 等 . 小 麦 冷 源 及 其 在 干 旱 条 件 下 的 适 应 性 [J]. 生 态 学报,2003,23(12):2558~2564.
    [116] 张嵩午,王长发,冯佰利.冠层温度多态性小麦的性状特征[J].生态学报,2002,22(12):1414~1419.
    [117] 王长发,张高午.冷型小麦表观性状研究[J].西北农业学报.2001,10(1):79~83.
    [118] 王长发,张嵩午.冷型小麦叶片光合特性研究[J].西北农业学报,2000,9(6):1~5.
    [119] 冯佰利,高小丽,赵琳等.干旱条件下小麦冠层温度及其性状的关联研究[J].生态学杂志,2005,24(5):508~512.
    [120] 张嵩午,王长发,周春菊.冷型小麦的表观特征和代谢功能的关联[J].华北农学报,1999,14(3):42~48.
    [121] 任正隆,张怀琼.作物物质积累和产量形成的研究及其在小麦育种和高产栽培中的应用[J].四川农业大学学报,2001,19(4):1~5.
    [122] 苗芳 , 张嵩午 , 刘国都 . 冠层温度中间型小麦叶片的显微结构特征 [J]. 西北农业学报 2004,13(4):9~12.
    [123] 慕小倩,张嵩午,蒋选利,等.冷型小麦旗叶的形态解剖学研究[J].西北植物学报.1998,18 (2):267~269
    [124] 苗芳,冯佰俐,周春菊,等.冷型小麦叶片显微结构的一些特征[J],作物学报, 2003,29(1):155~156.
    [125] 苗芳,张嵩午,王长发,等.小麦低温种质的器官结构特征[J].西北植物学报,2005,25(8):1499~1500.
    [126] 张嵩午,王长发小麦冷源及其性状特征的研究[J].中国农业科学,2001, 34 (1) : 1~4.
    [127] 王长发,张嵩午.冷型小麦旗叶衰老和活性氧代谢特性研究[J].西北植物学报,2000,20(5):727~732.
    [128] 张嵩午,王长发.冷型小麦及其生物学特征[J ].作物学报,1999, 25 (5) : 608~ 615.
    [129] 冯佰利. 干旱条件下不同基因型小麦冠层温度及其生物学特征[D].杨凌: 西北农林科技大学, 2003 .
    [130] 张嵩午, 王长发, 周春菊, 冯佰利, 苗芳.冠层温度中间型小麦及其性状特征[J].麦类作物学报 2000, 20 (3) : 40~45.
    [131] 周春菊 , 张嵩午 , 王林权 , 等 . 灌浆结实期冷型小麦叶片氮含量变化的研究 [J]. 土壤通报,2006,37(3):550~554.
    [132] 周春菊,张嵩午,王林权,等.不同温型小麦叶片气体交换特性研究[J].西北农业大学学报,1998,26(4):5~9.
    [133] 冯佰利, 王长发. 干旱条件下冷型小麦叶片气体交换特性研究[J ]. 麦类作物学报, 2001, 21 (4) : 48~51.
    [134] 张嵩午,王长发等.小麦潜在库容研究[J ]. 西北农业学报,1999, 8 (2) : 16~19.
    [135] 张嵩午,王长发,冯佰利,等.冷型小麦单穗潜在库填充的研究[J], 麦类作物学报,2001, 21 (4) : 31~33.
    [136] 张嵩午,刘党校.小麦冠温的多态性及其与品质变异的关联[J].中国农业科学,2007,40(8):1630~1637.
    [137] 张高午,刘党校.冷型小麦品质稳定性的研究[J].自然科学进展,2007, 17(1),29~34.
    [138] 张嵩午,王长发,冯佰利,等.冷型小麦对干旱和阴雨的双重适应性[J].生态学报,2004,24(4):680~685.
    [139] 严菊芳,张嵩午,刘党校.冷型小麦对旱区气候的适应性研究[J]西北农业学报,2006 ,15 (6) :71~74.
    [140] 周春菊.不同施肥条件下冷、暖型小麦若干性状的比较研究[D].杨凌: 西北农林科技大学, 2005 .
    [141] 高俊凤.植物生理学试验技术[M]. 西安:世界图书出版社,2000.
    [142] 王爱国, 罗广华, 邵从本, 等. 大豆种子超氧化物歧化酶的研究[J]. 植物生理学报. 1983, 9 (1): 77~83.
    [143] 施特尔马赫. 酶的测定方法[M ]. 钱嘉渊 译. 北京: 中国轻工业出版社, 1992.
    [144] 胡小平,王长发.2001.SAS 基础及统计及实例教程[M].西安:西安地图出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700