基于改进位移模式的有限元超收敛算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超收敛计算的研究是近年来有限元领域研究中的热点与难点之一。通过对基于改进位移模式的积分形式与基于常规位移模式伽辽金方程的比较,导出了伽辽金方程精确成立的条件。在以此条件作为位移模式分析的理论依据前提下,本文提出了改进位移模式,即将高阶有限元解的位移模式用常规有限元解的位移模式表示,用两种位移模式之和构造新的位移模式,结合多尺度方法的思想和超收敛计算的解析公式,提出了一种全新的前处理超收敛的计算方法。该方法无需任何人为的磨光,对一维有限元法的线性单元,本文结点和单元的位移、导数都达到了h4阶的超收敛精度。应力跨单元自动平衡,可精确满足自然边界条件,且实施简便,计算量增加很小。
     有限元线法是一个不断发展的课题,国内外对有限元线法超收敛的计算研究得较少。本文利用有限元线法的半解析性,将一维有限元中获得全面成功的改进位移模式的超收敛算法推广至二维有限元线法,取得了良好的效果。
     全文主要工作如下:
     1、通过基于改进位移模式与基于常规位移模式伽辽金方程的比较,导出了伽辽金方程精确成立的条件。论证了位移模式与泡函数的相关性。提出了一次元与泡函数结合的单元方案。利用精确成立的条件,通过量级分析,保留泡函数主要的影响项,避免了求解泡函数的解析表达式。为位移模式的分析提供了理论依据。
     2、以一维C0问题为模型问题,提出有限元法的基于改进位移模式的前处理超收敛算法。在原有试函数的基础上,增加了高阶试函数,使得单元内平衡方程的残差减少,从而达到提高精度的目标。对于近似单元,根据单元内部平衡条件,导出单元上任一点的位移和导数的超收敛解的计算公式。基于伽辽金方法,采用积分形式推导了单元刚度矩阵。
     3、将基于改进位移模式的前处理超收敛算法成功推广到一维有限元法其它问题,包括(1)一维C1问题;(2)二阶非自伴两点边值问题Galerkin有限元问题,亦即将基于改进位移模式的前处理超收敛算法推广到了非自伴算子问题而不仅仅是自伴算子的问题。(3)一维n阶问题的超收敛算法,本部分工作为该法广泛应用于一般一维问题的有限元法的超收敛计算打下了良好的基础。
     4、将基于改进位移模式的前处理超收敛算法成功推广应用到二维有限元线法的Poisson方程问题,基于线性形函数,采用变分形式推导了有限元线法求解的修正的常微分方程组。算例结果表明:结点和单元内的位移、导数的收敛精度得到了极大的提高。
     由于本文得出的应力和位移是逐点超收敛的,因而有望在此基础上发展出不同于目前常规的误差估计和自适应求解方法。
Research on super-convergent computation in the field of Finite ElementMethod(FEM) has been a hot and difficult subject in recent years. Based on thecomparison of improved displacement mode and conventional displacement mode ofGalerkin equations, the exact conditions for the establishment of Galerkin equation isderived. Based on the premise of this paper, improved displacement mode isproposed,the displacement mode of high-order finite element solution is expressedwith a conventional finite element solution, the new displacement model isconstructed with the sum of the displacement model of conventional finite elementand the high-order displacement model of finite element solution, combined with thethinking of multi-scale method and the analytical formulas of superconvergencecomputing, a new pretreatment method of superconvergence calculation is proposed.The method does not need any artificial polish, for one-dimensional FEM, thedisplacement and the derivative accuracy of nodes and elements have reached h4order. The stresses so calculated are automatically in equilibrium across elements andare exact at free ends or edges, the implementation is simple, the work of calculationincrease very small.
     The Finite Element Method of Lines(FEMOL) is a continuous developmentsubject,At home and abroad study of superconvergence calculation on FEMOL islittle.Used the semi-analytical nature of FEMOL,the superconvergence calculation ofimproved displacement mode is also applied, to two-dimensional FEMOL and similarconclusions have been made.
     The main work of this paper is as follows:
     1. Based on the comparison of improved displacement mode and conventionaldisplacement mode of Galerkin equations, the exact conditions for the establishmentof Galerkin equation is derived. The association of displacement mode and the bubblefunction is demonstrated. The combination program of liner element and bubblefunction is proposed. Using the condition of precise establishment, by the analysisorder of magnitude, retaining the main impact item of bubble function, the analyticalexpression solving of bubble function is avoided. The theoretical basis of the analysisof the displacement mode is provided.
     2. Taking one-dimensional C0problem as a model problem, a pretreatment method of superconvergence calculation based on improved displacement mode isproposed for FEM. for improving the accuracy of the solution and reducing theresidual of balance equation, the higher-order trial functions is added at thefoundation of the original trial function, for approximate elements, according to theinternal equilibrium of unit,a complete set of formulas for super-convergentdisplacements and derivatives at any point on an element are also derived. Theelement stiffness matrix is derived using the integral form.
     3. A pretreatment method of superconvergence calculation based on improveddisplacement mode is successfully extended to other problems in one-dimensionalFEM,such as one-dimensional C1problem and the for second order non-self-adjointboundary-value problem, now that, the method can be used for not only self-adjointoperator problem but also non-self-adjoint operator problem. The problem ofone-dimensional n-order can be sloved by this method.
     4. A pretreatment method of superconvergence calculation based on improveddisplacement mode is successfully extended to Poisson equation problems intwo-dimensional FEMOL, based on linear shape function the modified ordinarydifferential equations of FEMOL is derived using the variational form. The result ofexamples show that the displacement and the derivative accuracy of nodes andelements has been greatly improved.
     Using super-convergent stresses and displacements, the associated errorestimation and self-adaptive solution strategy may also be developed in the future.
引文
[1]王勖成.有限单元法.北京:清华大学出版社,2003
    [2] Tong P. Exact solution of certain problems by finite-element method. AIAAJournal,1969,10(7):178~180.
    [3] Strang G, Fix G. An analysis of the finite element method. Englewood, Cliffs, N.J.:Prentice-Hall,1973,139-154.
    [4] Zienkiewicz O C, Zhu J Z. The superconvergence patch recovery and a posteriorierror estimator, part I: the superconvergence patch recovery. International Journalfor Numerical Methods in Engineering,1992,33(2):1331~1364.
    [5]罗建辉.弹性力学求解体系研究:[博士学位论文].长沙:湖南大学土木工程学院,2002
    [6] Argyris, J. H., and S. Kelsey: Energy Theorems and Structural Analysis,Butterworth Scientific Publications, London,1960,124-180.
    [7] Courant, R.: Variational Methods for the Solution of Problems of Equilibrium andVibration, Bull. Am. Math. Soc.,1943,49(4):1-43.
    [8] Hrenikfof, A.: Solution of Problems in Elasticity by the Frame-work Method, J.Appl. Mech., Trans. ASME,1943,8(1):169-175.
    [9] Turner, M., R. Clouch, H. Martin, and L. Topp: Stiffness and Deflection Analysisof Complex Structures, J. Aero Sci.,1956,23(6):805-823.
    [10] Bathe, K. J.: Finite Element Procedures in Engineering Analysis, Prentice-Hall,Englewood Cliffs, N. J.1982,551-569.
    [11] Bathe, K. J., and E. L. Wilson: Numerical Methods in Finite Element Analysis,Prentice-Hall, Englewood Cliffs, N. J.1976,19-34.
    [12] Becker, E. B., G. F. Carey, and J. T. Oden: Introduction of Finite Elements, vol. Ⅰ,Prentice-Hall, Englewood Cliff, N.1981,119-131.
    [13] Brebbia, C. A., and J. J. Connor: Fundamentals of Finite Element Techniques forStructural Engineers, Butterworths, London.1975,778-790.
    [14] Cheung, Y. K., and M. F. Yeo: A Practical Introduction to Finite Element Analysis,Pitman, London,1979,309-328.
    [15] Chung, T. J.: Finite Element Analysis in Fluid Dynamics, McGraw-Hall, NewYork.1978,419-454.
    [16] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems, North-Holland,Amsterdam,1978,779-792.
    [17] Connor, J. C., and C. A. Brebbia: Finite Element Techniques for Fluid Flow,Butterworths, London.1976,215-244.
    [18] Cook, R. D.: Concepts and Applications of Finite Element Analysis, John Wiley,New York.1974,739-764.
    [19] Desai, C. S.: Elementary Finite Element Method, Prentice-Hall, Englewood Cliffs,N. J.1979,7-15.
    [20] Desai, C. S., and J. F. Abel: Introduction to the Finite Element Method, VanNostrand Reinhold, New York.1972,301-334.
    [21] Fenner, R. T.: Finite Element Methods for Engineers, Macmillan, London.1975,75-88.
    [22] Gallagher, R. H,: Finite Element Analysis Fundamentals, Prentice-Hall,Englewood Cliffs, N. J.1975,1-114.
    [23] Hinton, E., and D. R. J. Owen: Finite Element Programming, Academic Press,London.1977,177-204.
    [24] Hinton, E., and D. R. J. Owen: An Introduction to Pinite Element Computations,Pineridge Press, Swansca, U. K.1979,464-483.
    [25] Huebner, K. H.: The Finite Element Method for Engineers, Wiley-Interscience,New York.1975,1-94.
    [26] Irons, B. M., and S. Ahmad: Techniques of Finite Element, Ellis Horwood,Chichester, U. K.1979,22-58.
    [27] Martin, H. C., and G. F. Carey: Introduction to Finite Element Analysis-Theoryand Application, McGraw-Hill, New York.1973,79-263.
    [28] Mitchell, A. R., and R. Wait: The Finite Element Method in Partial DifferentialEquations, John Wiley, London.1977,339-454.
    [29] Nath, B.: Fundamentals of Finite Elements for Engineers, Athlone Press, London.1974,779-841.
    [30] Norric, D. H., and G. de Vries: The Finite Element Method: Fundamentals andApplications, Academic Press, New York.1973,279-440.
    [31] Norric, D, H., and G. de Vries: An Introduction to Finite Element Analysis,Academic Press, New York.1978,1-88.
    [32] Oden, J. T.: Finite Elements of Nonlinear Continua, McGraw-Hill, New York.1972,26-44.
    [33] Oden, J. T., and J. N. Reddy: An Introduction to the Mathematical Theory ofFinite Element, Wiley-Interscience, New York.1976,713-811.
    [34] Owen, D. R. R., and E. Hinton: Finite Elements in Plasticity: Theory and Practice,Pineridge Press, Swansea, U. K.1980,235-254.
    [35] Pinder, G. F., and W. G. Gray: Finite Elements in Subsurface Hydrology,Academic Press, New York.1977,529-543.
    [36] Rao, S. S.: The Finite Element Method in Engineering, Pergamon Press, Oxford.1982,498-557.
    [37] Wachspress, E. L.: A Rational Finite Element Basic, A cademic Press, New York.1975,228-369.
    [38] R.W.Clough. the Finite Element Method in Plane Stress Analysis, Proc.2nd. A. S.C. E. Conf.on Electronic Computation, Pittsburg, Pa., Sept.1960,13-38.
    [39]王枚.一维有限单元法及二维有限元线法后处理超收敛计算的研究:[博士学位论文].北京:清华大学土木工程系,2003,1-138
    [40] Yuan Si. From matrix displacement method to FEM: loss and recovery of stressaccuracy. Invited Papers, Proceedings of1st International Conference onStructural Engineering, ed. Long Yuqiu, Beijing: Tsinghua University Press,1999,134~141.
    [41] L.S. Xanthis and S. Yuan, Finite Element Method of Lines for Elliptic BoundaryValue Problems, to appear in Comput. Meths. Appl. Mech.Engng,1986,22(1):22-31.
    [42] S. Yuan, L.S. Xanthis and J. Gao, Parametric FEMOL Elemnts for Plane Elasticit yProblems, to appear in Comput. Meths. Appl. Mech.Engng,1990,26(3):22-31.
    [43]袁驷.一种新型的半解析法-有限元线法.第一届全国解析与数值结合法学术讨论会论文集.湖南,1990,1-133
    [44]袁驷.有限元线法.数值计算与计算机应用,1992,14(4):252-260
    [45] S. Yuan and J. Gao, a Rectangular FEMOL Element for Thin Plate Bending, Proc.of Int. Conf. on Structural Engineering and Computation, Beijing,1990,12(2):327-333.
    [46] S. Yuan and J. Gao, a New Computational Tool in Structural Analysis: the FiniteElement Method of Lines (FEMOL), Proc. of Int. Conf. on EPMESC Ⅲ, Macau,1990,22(2):517-526.
    [47]袁驷.计算力学的有限元线法.力学进展,1992,5:208-216
    [48]高建岭.有限元线法的曲线单元.清华大学研究生学报,1990,4:1-5
    [49]袁驷.弹塑性扭转问题的FEMOL分析.第三届全国塑性力学学术交流会论文集,南京,1990,1-182
    [50]肖嘉.基于EEP法的线法二阶常微分方程组有限元自适应分析:[博士学位论文].北京:清华大学土木工程系,2009,1-163
    [51]高建岭.结构分析的有限元线法:[博士学位论文].北京:清华大学土木工程系,1990,1-78
    [52]袁驷,包世华.变截面框支剪立墙、落地墙和壁式框架结构水平震动的ODE求解器法.工程力学,1991,2:96-106
    [53]包世华,袁驷.高层建筑结构考虑楼板变形的连续化ODE求解器法.建筑结构,1991,6:16-20
    [54] Bao S and S. Yuan, Coupled vibrations for tall building cooperating systems byODE solver: Proc. of Asian Pacific Conf. on Computational Mechanics. Hongkong,1991,23(3):261-266.
    [55] Bao S and S. Yuan, Horiaontal vibrations for tall building structures with floordeformations considered by ODE solver:2nd int.Conf.on Tall Buildings. Beijing,1992,13(3):26-32.
    [56]石绍春.有限元线法无穷单元的构造与应用:[硕士学位论文].北京:清华大学土木工程系,1992,1-89
    [57]袁驷,张亿果.有限元线法求解非线性模型问题-Ⅰ.薄膜大挠度.工程力学,1993,3:1-9
    [58]袁驷,张亿果.有限元线法求解非线性模型问题-Ⅱ.扭转杆的最优截面.工程力学,1993,6:8-16
    [59]张亿果,袁驷.有限元线法求解非线性模型问题-Ⅲ.薄膜的固有振动.工程力学,1993,9:1-8
    [60]袁驷,张亿果.有限元线法求解非线性模型问题-Ⅳ.弹塑性扭转.工程力学,1993,12:9-16
    [61]袁驷.有限元线法的”三角形”单元.中国科学A辑,1993,5:552-560
    [62]袁驷.有限元线法通用程序-FEMOL92.计算结构力学及其应用,1993,2:118-122
    [63]袁驷,宋涛. P型有限元线法分析扁壳弯曲问题.土木工程学报,1994,12:36-44
    [64]袁驷,宋涛. P型有限元线法分析板弯曲问题.固体力学学报,1994,3:86-90
    [65]徐永君,袁驷.余能积分提取法计算应力强度因子.见:第五届全国结构工程学术会议论文集.北京,1996,196-201
    [66] Yuan S, Jin Y and Williams F W. Bending analysis of Mindlin plates by extendedKantorovich method. J. Eng. Mech.,1998,20(3):41-56.
    [67]方亚非.动边界问题的有限元线法分析:[博士学位论文].北京:清华大学土木工程系,1998,1-128
    [68]叶康生,袁驷.壳体的有限元线法分析(Ⅰ)—基本理论.工程力学,2002,6:20-29
    [69]叶康生,袁驷.壳体的有限元线法分析(Ⅱ)—数值算例.工程力学,2002,10:16-23
    [70]桂雄飞,袁驷.具有待定形函数的有限元线法.计算力学学报,2004,10:513-521
    [71]袁驷,王枚,王旭.二维有限元线法超收敛解答计算的EEP法.工程力学,2007,24(1):1-10
    [72]袁驷,肖嘉,叶康生.线法二阶常微分方程组有限元分析的EEP超收敛计算.工程力学,2009,11:1-10
    [73]袁驷,刘学林,叶康生.张拉膜结构极小曲面找形的有限元线法求解.土木工程学报,2010,11:1-7
    [74]孟令雄.有限元超收敛后处理技术:[博士学位论文].长沙:湖南师范大学,2006,1-97
    [75] Zienkiewicz, O. C., Cheung, Y. K., The finite element method in structural andcontinuum mechanics. McGraw-Hill.1967,172-181.
    [76] Douglas, Jr. J., Dupont, T., Some superconvergence results for Galerkin methodsfor the approximate solution of two-point boundary vadue problems. In Tbpics inNumerical Analysis, London,1973,89—92.
    [77]陈传淼.有限元方法及其提高精度分析.长沙:湖南科学技术出版社,1982
    [78]翁德兴.有限元计算后处理及自动绘图.内燃机学报,1988,6(3):350-356
    [79]赵庆华.单元能量投影法的数学分析:[博士学位论文].长沙:湖南大学,2007,1-86
    [80]朱起定,林群.有限元超收敛理论.长沙:湖南科学技术出版社,1989
    [81]林群,朱起定.有限元的预处理与后处理理论.上海:上海科学技术出版社,1994
    [82] Wahlbin, L. B. Superconvergence in Galerkin finite element methods. Lecturenotes in Mathematics1605, Springer,1995,55-82.
    [83]陈传淼,黄云清.有限元高精度理论.长沙:湖南科学技术出版社,1995
    [84]林群,严宁宁.高效有限元构造与分析.保定:河北大学出版社,1996
    [85] Ainsworth, M., Oden, J. T. A posteriori error estimation in finite elementanalysis.Wiley Interscience, New York,2000,89-92
    [86] Babuska, I. Strouboulis, T. The finite element method and its reliability. Oxforduniversity press, London,2001,54-62.
    [87] Zhu, Q. D. Natural inner superconvergence for the fmite element method.Proceedings of the China-France Symposinm on Finite Element Methods(Beijing,1982), Science Press, Beljing,Oorden and breach,1983,935-960.
    [88] Bahuska. I., Strouboulis. T., Upadhyay, et al. Computer-Based proof of theexistence of superconvergence points in the finite element method:superconvergence of the derivatives in finite element solutions of Lapplace’SPoisson’S and the Elasticity equations. Numerical Methods for PartialDifferential quations,1996,12(3):372—392.
    [89] J. T. Oden and H. J. Brauchili, On the Calcuation of Consistent StressDistribution in Finite Element Applications, International Journal for NumericalMethods in Engineering,1971,21(3):313-325.
    [90] E. Hinton and J. S. Campbell, Local and Global Smoothing of DiscontinuousFinite Element Functions Using a Least Square Method, International Journal forNumerical Methods in Engineering,1974,8(3):461-480.
    [91] D. A. Field, an h-p Multgrid Method for Finite Element Analysis, InternationalJournal for Numerical Methods in Engineering,1991,36(6):89-908.
    [92] T. Blacker and T. belyschko, Superconvergent Path Recovery with Equilibriumand Conjoint Interpolant Enhancements, International Journal for NumericalMethods in Engineering,1994,37(4):517-536.
    [93] A. Tessler, H. R. Riggs and S. C. Macy, a Variational Method for Finite ElementStress Recovery and Error Estimation, Computer Methods in Applied Mechanicsand Engineering,1994,11(3):369-382.
    [94] R. J. Mackinnon and G. F. Carey, Superconvergent Derivatives: a Taylor SeriesAnalysis, International Journal for Numerical Methods in Engineering,1989,28(1):489-509.
    [95] J. Z. Zhu and O. C. Zienkiewicz, Superconvergence Recovery Technique and aPosteriori Error Estimator, International Journal for Numerical Methods inEngineering,1990,30(1):1321-1339.
    [96] O. C. Zienkiewicz and J. Z. Zhu, the Superconvergence Patch Recovery and aPosteriori Error Estimator, International Journal for Numerical Methods inEngineering,1992,33(1):1365-1382.
    [97] N. E. Wiberg and F. Adulwahab, Patch Recovery Based on SuperconvergentDerivatives and Equilibrium, International Journal for Numerical Methods inEngineering,1993,36(6):2703-2724.
    [98] N. E. Wiberg and S. Ziukas, Enhanced Superconvergent Patch RecoveryIncorporating Equilibrium and Boundary Conditions, International Journal forNumerical Methods in Engineering,1994,37(2):3417-3440.
    [99] M. Tabbara, T. Blacker and T. Belytschko, Finite Element Derivative Recoveryby Moving Least Square Interpolants, Computer Methods in Applied Mechanicsand Engineering,1994,17(4):211-223.
    [100] N. E. Wiberg and F. Adulwahab and S. Ziukas, Improved Element Stress for Nodeand Element Patches Using Superconvergent Patch Recovery, Communications inNumerical Methods in Engineering,1995,11(1):619-627.
    [101] X. D. Li and N. E. Wiberg, a Posteriori Error Estimator by Element PtachPost-processing, Adaptive Analysis in Energy and L2Norms Computers andStructures,1994,53(4):907-917.
    [102]龙驭球,支秉琛,匡文起等.分区混合有限元法计算应力强度因子.力学学报,1982,4:341~353
    [103]傅向荣,龙驭球.分区混合元法分析平面裂纹问题.工程力学,2001,18(6):39~46
    [104]傅向荣,龙驭球.解析试函数法分析平面切口问题.工程力学,2003,20(4):33~38
    [105]龙驭球,傅向荣.基于解析试函数的广义协调四边形厚板元.工程力学,2002,19(3):10~15
    [106]傅向荣,龙驭球.基于解析试函数的广义协调四边形膜元.工程力学,2002,19(4):12~16
    [107]傅向荣,龙驭球,袁明武等.基于解析试函数的内参型广义协调膜元.工程力学,2006,23(1):1~15
    [108]陈晓明,岑松,龙志飞等.将三角形薄板元推广为厚板元的解析试函数法.清华大学学报(自然科学版),2004,44(3):376~378
    [109]傅向荣,龙驭球,袁明武.基于解析试函数的广义协调超基膜元.工程力学,2005,22(3):1~4
    [110]李云贵,聂祺.基于解析试函数法的短肢剪力墙单元.工程力学,2009,26(4):181~186
    [111]钟万勰,纪峥.理性有限元.计算结构力学及其应用,1996,13(1):1~8
    [112]钟万勰,纪峥.平面理性元的收敛性证明.力学学报,1997,29(6):676~685
    [113]钟万勰.弹性力学求解新体系.大连:大连理工大学出版社,1995
    [114]纪峥,钟万勰.平面理性四节点及五节点四边形有限元.计算力学学报,1997,14(1):19~27
    [115]孙卫明,杨光松. Reissner厚板弹性弯曲的理性有限元法.应用数学和力学,1999,20(2):181~186
    [116]纪峥,刘泽佳,赵伟.平面理性八节点曲边四边形有限元RCQ8.大连理工大学学报,2000,40(1):40~44
    [117]王永富,钟万勰.平面八节点四边形理性元.固体力学学报,2002,23(1):109~114
    [118]王永富,钟万勰.空间理性八节点块体元.应用力学学报,2003,20(3):131~135
    [119]朱炳麒,陈学宏.理性Timoshenko梁单元及其应用.力学与实践,2008,30(1):31~34
    [120]朱炳麒,陈学宏,韦彪.理性有限元在多层层合板中的应用.水利水电科技进展,2008,28(3):73~75
    [121] T. J. R. Hughes, Multiscale phenomena: Green’s functions, theDirichlet-to-Neumann formulation, subgrid scale models, bubbles and the originsof stabilized methods, Comput. Methods Appl. Mech. Engrg,1995,12(7):387~401.
    [122] T. J. R. Hughes, G.R. Feijoo and M. Luca, etc., The variational multiscalemethod--a paradigm for computational mechanics, Comput. Methods Appl. Mech.Engrg,1998,16(6):3~24.
    [123]祁玉龙.变分多尺度有限元方法中分析/数值求解细尺度解的研究.陕西科技大学学报,2008,26(2):125~129
    [124] A. Masud*, R.A. Khurram, A multiscale/stabilized finite element method for theadvection–diffusion equation, Comput. Methods Appl. Mech. Engrg,2004,19(3):1997~2018.
    [125] A. Masud, R.A. Khurram, A multiscale finite element method for theincompressible Navier–Stokes equations, Comput. Methods Appl. Mech. Engrg,2006,195:1750~1777.
    [126]巫斌.第二类积分方程多尺度方法:分析与实现:[博士学位论文].广州:中山大学,2004,1-157
    [127]刘涛,邓子辰.材料弹塑性性能数值模拟的多尺度方法.固体力学学报,2007,28(1):97~101
    [128]朱海涛,欧阳洁.对流-扩散-反应方程的变分多尺度解法.工程数学学报,2009,26(6):997~1004
    [129]穆保英,侯延仁,张运章.求解非定常Navier-Stokes方程的自适应变分多尺度方法.工程数学学报,2010,27(2):258~270
    [130]朱海涛,欧阳洁,王晓东.粘性不可压流的变分多尺度数值模拟.计算物理,2011,28(3):347~354
    [131]曾攀.计算力学中的高精度数值分析新方法:复合单元法.中国科学(E辑),2000,30(1):39~46
    [132]曾攀,石亿平.工程中数值分析的复杂力学建模与高精度方法.中国科学基金,2000,2:86~91
    [133]曾攀,石亿平.工程中数值分析的复杂力学建模与高精度方法.中国科学基金,2000,2:86~91
    [134]袁驷.从矩阵位移法看有限元应力精度的损失与恢复.力学与实践,1998,20(4):1~6
    [135] Yuan Si. From matrix displacement method to FEM: loss and recovery of stressaccuracy. Proceedings of First International Conference on Structural Engineering.ed. Y. Long, Kunming, China,1999,134-141.
    [136] Tong P. Exact solution of certain problems by finite-element method. AIAAJournal,1969,8(7):178-180.
    [137] Strang G and Fix G. An analysis of the finite element method. Prentice-Hall,1973,24-31.
    [138]袁驷,王枚.一维有限元后处理超收敛解答计算的EEP法.工程力学,2004,21(2):1~9
    [139]袁驷,王枚,和雪峰.一维C1有限元超收敛解答计算的EEP法.工程力学,2006,23(2):1~9
    [140]王玫,袁驷. Timoshenko梁单元超收敛结点应力的EEP法计算.应用数学和力学,2004,25(11):1224~1134
    [141]袁驷,林永静.二阶非自伴两点边值问题Galerkin有限元后处理超收敛解答计算的EEP法.计算力学学报,2007,24(2):142~147
    [142]袁征.二维有限元后处理超收敛的研究:[硕士学位论文].北京:清华大学土木工程系,2003
    [143]和雪峰.基于EEP超收敛法的一维有限元自适应分析[博士学位论文].北京:清华大学土木系,2006
    [144] Zhao Qinghua, Zhou shuzi,Zhu Qiding.Mathematical analysis of EEP methodfor one.dimensional finite element postprocessing.Applied Mathematics andMechanics(English Edition),2007,28(4):401-405
    [145]赵庆华,周叔子.关于单元能量投影法的两点注记.工程力学,2008,25(2):93-94
    [146]袁驷,王旭,邢沁妍,叶康生.具有最佳超收敛阶的EEP法计算格式: I算法公式.工程力学,2007,24(10):1-5
    [147]陈传淼.有限元超收敛构造理论.长沙:湖南科学技术出版社,2002
    [148]袁驷,邢沁妍,王旭等.具有最佳超收敛阶的EEP法计算格式: II数值算例.工程力学,2007,24(11):1-5
    [149]袁驷,赵庆华.具有最佳超收敛阶的EEP法计算格式: III数学证明.工程力学,2007,24(12):1-6
    [150]袁驷,和雪峰.基于EEP法的一维有限元自适应求解.应用数学和力学,2006,27(11):1280-1291
    [151]袁驷,邢沁妍,王旭等.基于最佳超收敛阶EEP法的一维有限元自适应求解.应用数学与力学,2008,29(5):533-543
    [152] Zienkiewicz O C, Taylor R. The Finite Element Method,4-th ed McGraw-Hill,NY,1989,76-85.
    [153]孙雁,钟万勰.影响函数与有限元应力计算.计算力学学报,2010,27(1):1-7
    [154]孙雁,钟万勰.有限元表面应力计算.计算力学学报,2010,27(2):177-181
    [155] Luo Jianhui, Liu Guangdong, Shang Shouping. Research on a systematicmethodology for theory of elasticity. Applied Mathematics and Mechanics,2003,24(7):853~862.
    [156] Luo Jianhui, Long Yuqiu and Liu Guangdong. A new orthogonality relationshipfor orthotropic thin plate theory and its variational principle. Science in ChinaSeries G-Physics and Astronomy,2005,38(3):371~380.
    [157]唐义军,罗建辉.基于改进位移模式的一维C1有限元超收敛算法.计算力学学报,2012,29(5):721~725
    [158]唐义军,罗建辉.基于改进位移模式的一维有限元超收敛算法.计算力学学报,2012,29(6):954~959
    [159]袁驷,徐俊杰,叶康生等.二维自适应技术新进展:从有限元线法到有限元法.工程力学,2011,28(增刊Ⅱ):1-10
    [160]袁驷,杜炎,邢沁妍等.一维EEP自适应技术新进展:从线性到非线性.工程力学,2011,29(增刊Ⅱ):1-8
    [161] M.X.Li, Q. Lin, S.H.Zhang. Extrapolationg and superconvergence of the Stekloveigen-value problem. Adv.Comput. Math,2010,33(1):25-44.
    [162] Ben-yu Guo and Hong-li jia, Pseudospectral method for quadrilaterals, J.Comput.Appl. Math.,2011,36(1):113-151.
    [163] Ben-yu Guo and Tian-jun Wang, Composite Laguerre-Legendre spectral methodfor exterior probems, Adv.Comput.Math,2010,32(1):393-429.
    [164] Ben-yu Guo and Tian-jun Wang, Composite Laguerre-Legendre spectral methodfor fourth-order exterior probems, Adv.Comput.Math,2010,32(2):361-385.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700