基于蛋白质组学的江苏啤酒大麦麦芽过滤性能缺陷的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过滤性能(包括麦汁的过滤速度、粘度和浊度)是啤酒大麦麦芽品质的一项重要指标,严重影响啤酒的生产效率和成品啤酒的质量。针对国内啤酒大麦主产区之一江苏地区的大麦(单二和港啤1号为主产品种)所生产麦芽过滤性能不良的缺点,本文以过滤性能优良且普遍进口的加拿大品种Metcalfe和澳大利亚品种Baudin的大麦麦芽为参照,在分析单二和港啤1号大麦麦芽过滤性能缺陷及直接影响因素的基础上,通过比较蛋白质组学的策略,解析了单二和港啤1号麦芽与Metcalfe和Baudin麦芽之间差异的活性蛋白质,并就差异蛋白质对过滤性能的影响及其作用途径展开深入研究,以揭示造成江苏啤酒大麦麦芽过滤性能缺陷的内源性因素。主要研究结果如下:
     (1)通过对麦芽协定麦汁常规指标的统计分析表征了江苏啤酒大麦麦芽过滤性能的缺陷:四个年份的24个单二和港啤1号麦芽比20个Baudin和Metcalfe麦芽协定麦汁的过滤速度、粘度和浊度分别平均慢44.2%,高11.4%和260.5%;造成这种缺陷的直接原因是制麦和糖化过程中大分子物质的降解程度较低:协定麦汁中高分子的β-葡聚糖、阿拉伯木聚糖和蛋白质的含量与过滤性能显著相关且均在单二和港啤1号中较高,而原料大麦之间β-葡聚糖的含量差异并不显著,Metcalfe和Baudin大麦中阿拉伯木聚糖的含量反而比单二和港啤1号的平均高11.2%。
     (2)建立了基于双向电泳的啤酒大麦麦芽中活性蛋白质组的研究方法。确定采用低盐溶液从麦芽中提取的蛋白质可获得理想的双向电泳效果,并通过MALDI-TOF-TOF分析单二、港啤1号、Baudin和Metcalfe啤酒大麦麦芽的双向电泳凝胶中共同存在的347个蛋白质斑点,其中314个斑点鉴定为具有参与代谢功能的活性蛋白质,即主要是酶和病程相关蛋白质(包括酶的抑制剂)。
     (3)通过比较蛋白质组学策略,从定性和定量差异的角度研究筛选了江苏啤酒大麦麦芽过滤性能缺陷相关的活性蛋白质。在港啤1号和单二中表达量较低且根据其功能分析对过滤性能有利的蛋白质主要有β-淀粉酶、α-淀粉酶1、极限糊精酶、阿拉伯呋喃糖苷酶I(Arabinoxylan arabinofuranohydrolase I, AXAH-I)、β-D-葡聚糖外切酶I和预测的酯酶、Cu-Zn超氧化物歧化酶、抗坏血酸氧化还原酶和热激蛋白;在港啤1号和单二中表达量较高且根据功能分析对过滤性能不利的蛋白质主要有过氧化物酶、丝氨酸蛋白酶抑制剂Z7、α-淀粉酶/胰蛋白酶抑制剂CMb、非特异性脂肪酸转移酶1和B3-醇溶蛋白质。其中,β-淀粉酶、AXAH-I、丝氨酸蛋白酶抑制剂Z7和过氧化物酶在过滤性能差异的麦芽中表达量差别明显。
     (4)通过将单二和港啤1号中表达量不足较为严重的β-淀粉酶和AXAH-I从单二麦芽中分离纯化,并补充到单二麦芽的协定糖化中,研究它们对过滤性能的影响和途径,结果表明:β-淀粉酶通过降解可形成浑浊的糊精而明显改善麦汁浊度,AXAH-I通过促进阿拉伯木聚糖和蛋白质的溶解和水解而显著改善麦汁过滤速度,且两种水解酶具有协同作用。糖化起始时,当β-淀粉酶添加量达到80.0U g-1时,单二协定麦汁浊度和粘度分别降低了66.3%和7.2%,过滤速度加快了14.4%;当AXAH-I添加量达到6.0mU g-1时,麦汁过滤速度加快了34.2%,粘度降低了5.5%,而浊度增加约32.5%,阿拉伯木聚糖和总蛋白质的含量分别增加了5.7%和1.7%,说明添加AXAH-I促进了阿拉伯木聚糖和蛋白质的溶解,进而有利于水解,从而使多聚阿拉伯木聚糖含量、阿拉伯糖和木糖的比值、高分子蛋白质和β-葡聚糖含量分别降低了6.7%、31.0%、3.7%和12.4%。同时补充β-淀粉酶(80.0U g-1)和AXAH-I(6.0mU g-1),麦汁的过滤速度加快了58.5%,粘度和浊度分别降低了4.3%和30.7%。
     (5)丝氨酸蛋白酶抑制剂Z7主要通过与β-葡聚糖和多聚阿拉伯木聚糖的结合对单二协定麦汁过滤速度有较大的负面影响,而且过氧化物酶通过促进丝氨酸蛋白酶抑制剂与多酚的氧化结合对过滤性能具有协同的负面作用。糖化起始时,当丝氨酸蛋白酶抑制剂Z7添加量达到600μg g-1麦芽时,麦汁的过滤速度减慢了48.0%,粘度升高了2.7%,浊度降低了11.4%,β-葡聚糖和多聚阿拉伯木聚糖含量分别降低了12.3%和7.8%。单独添加400U g-1辣根过氧化物酶到单二麦芽的协定糖化中,麦汁过滤速度相对于空白对照减慢了8.9%;粘度增加了5.4%,浊度增加了9.2%,还原性多酚含量降低了35.5%,而同时添加600μg g-1丝氨酸蛋白酶抑制剂Z7和400U g-1辣根过氧化物酶使麦汁的过滤速度、粘度、浊度和还原性多酚含量相对于空白对照分别降低了62.2%、增加了6.8%、增加了10.0%和降低了47.8%。
     (6)改良制麦和糖化工艺发现,提高麦芽中β-淀粉酶、AXAH-I、α-淀粉酶1、β-D-葡聚糖外切酶I的表达量,降低非特异性脂肪酸转移酶1、过氧化物酶、丝氨酸蛋白酶抑制剂Z7的表达量,延长糖化阶段β-淀粉酶和阿拉伯呋喃糖苷水解酶I的作用时间有利于单二大麦麦芽过滤性能的改善。将β-淀粉酶和阿拉伯呋喃糖苷酶I初步补充到商品酶制剂中对过滤性能的改善效果更显著,当β-淀粉酶、AXAH-I和商品酶制剂(主要含有β-葡聚糖酶内切酶、阿拉伯木聚糖内切酶和蛋白酶活力)在单二麦芽协定糖化起始时的添加量分别为80.0U g-1、6.0mU g-1和0.4mg g-1时,相对于空白对照和单独添加0.4mg g-1的酶制剂,麦汁的过滤速度分别加快了81.3%和20.9%,粘度分别降低了7.3%和2.6%,浊度分别降低了48.5%和59.7%。
The filterability (including the wort filtering rate, viscosity and turbidity) is an essentialquality parameter of barley malt and significantly impacts productive efficiency and quality ofbeer. Jiangsu province is an major grown area of malting barleys in China, with Dan’er andGangpi1as the dominant cultivars. However, the filterability defect of these barley maltsseverely impeded their application in beer production. ACanadian cultivar of Metcalfe and anAustralian cultivar of Baudin with superior malt filterability are widely imported in Chinese.In this dissertation, endogenous reasons for the filterability defect of Dan’er and Gangpi1malts were studied. Firstly, the filterability defect of Dan’er and Gangpi1and the direct factorwere analyzed by conventional parameters. Then, metabolic proteins related to filterabilitywere screened by comparative proteomics. At last, the impacting paths of several keyfilterability-related proteins were researched. The main results were as follows:
     (1) The specific filterability defects of Dan’er and Gangpi1malts were characterized byCongress wort and the direct factors were analyzed. The average filtrating rate of Congresswort of24Dan’er and Gangpi1malt samples was slower44.2%than that of20Metcalfe andBaudin, and viscosity and turbidity were higher11.4%and260.5%, respectively. The directreason was the lower degradation rate of some macromolecules in Dan’er and Gangpi1during malting and mashing, rather than the higher content of these macromolecules in barleymaterials. The contents of macromolecular β-glucan, arabinoxylan (AX) and protein hadsignificant correlation with filterability parameters, and were higher in Dan’er and Gangpi1Congress wort. While, the difference of β-glucan contents between the barleys wasn’tsignificant. The average content of arabinoxylan in Metcalfe and Baudin barleys was higher11.2%than that in Dan’er and Gangpi1barleys.
     (2) A research method based on two-dimensional electrophoresis (2DE) was constructedto study metabolic proteins in barley malts. Firstly, proteins in2DE can be clearly separatedby extracting for1h at4℃with low-salt solution (5mmol L-1Tris/HCl pH7.5,1mmol L-1CaCl2) and blending for2min every15min. The shared347spots in2DE gels among Dan’er,Gangpi1, Metcalfe and Baudin malts were identified by MALDI-TOF-TOF. The resultsproved that about90%of protein spots were metabolic proteins, mainly including enzymesand pathogen-related proteins (some enzyme inhibitors included).
     (3) Filterability-related proteins were qualitatively and quantitatively screened usingcomparative proteomics. Metabolic proteins in Dan’er and Gangpi1of lower expressionlevels and benefits for filterability according to their functions, mainly included β-amylase,α-amylase1, limit dextrinase, arabinoxylan arabinofuranohydrolase I (AXAH-I), β-D-glucanexohydrolase I, predicted esterase, Cu-Zn superoxide dismutase, ascorbic acid redox enzymeand heat shock protein. In contrast, peroxidase, serpin Z7, α-amylase/trypsin inhibitor CMb,non-special lipid transfer protein1(LTP1) and prolamine B3had higher expression levels andmight be harmful for filterability. Beta-amylase, AXAH-I, serpin Z7and peroxidase expressedremarkable differently between malts with distinct filtrability.
     (4) Beta-amylase and AXAH-I were purified from the Dan’er malt and then replenishedinto its Congress mashing process. The results showed that adding β-amylase significantly decreased the wort turbidity by degrading starch contributing to turbidity. Adding AXAH-Iincreased the filtrating rate by promoting dissolution of AX, β-glucan and protein andfacilitating their hydrolysis. Moreover, the filterability was synergistically improved byβ-amylase and AXAH-I. When80.0U g-1of β-amylase was added at the beginning ofmashing, the wort turbidity and viscosity decreased by66.3%and7.2%, and filtering rateincreased by14.4%. When6.0mU g-1of AXAH-I was added at the beginning of Congressmashing, the filtrating rate increased by34.2%, viscosity decreased by5.5%, turbidityincreased by32.5%, and contents of AX and protein increased by5.7%and1.7%, respectively.The contents of macromolecular AX, β-glucan and protein, and ratio of arabinose to xylosedecreased by6.7%,12.4%,3.7%and31.0%, respectively. When80.0U g-1of β-amylase and6.0mU g-1were added at the beginning of mashing, the wort turbidity and viscosity decreasedby30.7%and4.3%, and filterability rate increased by58.5%.
     (5) Serpin Z7had a great negative effect on the filtrating rate of Dan’er Congress wortby cross-linking with β-glucan and AX. And peroxidase had synergistic effect with serpin Z7by promoting the cross-link of polyphenol and serpin Z7. When600μg g-1of serpin Z7wasadded, the filtering rate and turbidity decreased by48.0%and11.4%, viscosity increased by2.7%, and contents of β-glucan and AX decreased by12.3%and7.8%, respectively. When400U g-1of horseradish peroxidase was added, the wort filtrating rate decreased by8.9%,viscosity increased by5.4%, turbidity increased by9.2%, and the reducing polyphenolcontent decreased by35.5%, respectively. When600μg g-1of serpin Z7and400U g-1of thehorseradish peroxidase were added together, the filtering rate and the reducing polyphenolcontent decreased by62.2%and47.8%, but viscosity and turbidity increased by6.8%and10.0%, respectively.
     (6) Modifying malting condition can improve filterability of Dan’er malt by increasingthe abundance of β-amylase, AXAH-I, α-amylase1and β-D-glucan exohydrolase I, anddecreasing the abundance of LTP1, peroxidase and serpin Z7. Extending the action time ofβ-amylase and AXAH-I during mashing can improve filterability. Compounding β-amylaseand AXAH-I to an commercial enzyme preparation (mainly consist of endo-β-(1,3;1,4)-glucanase, endoxylanase and protease) could improve filterability better than individualapplication of the enzyme preparation. Compared with control and only adding0.4mg g-1ofthe enzyme preparation at the beginning of Dan’er Congress mashing, the filtrating rate ofwort increased by81.3%and20.9%, viscosity decreased by7.3%and2.6%, turbiditydecreased48.5%and59.7%, respectively, by adding80.0U g-1of β-amylase,6.0mU g-1ofAXAH-I and0.4mg g-1of the enzyme preparation.
引文
[1]中国国家标准化管理委员会. GB4927-2008啤酒[S].北京:中国标准出版社,2008
    [2]李华.酿造酒工艺学[M].北京:中国农业出版社,2011.184-258
    [3] Jamar C, du Jardin P, Fauconnier M. Cell wall polysaccharides hydrolysis of malting barley (Hordeumvulgare L.): a review[J]. Biotechnologie,Agronomie, Société et Environnement,2011,15(2):301-313
    [4]管敦仪.啤酒工业手册[M].北京:中国轻工业出版社;1998:25-196
    [5]陈和,许如根,王龙俊,等.江苏啤酒大麦品种发展及其品质定位[J].江苏农业科学,2011,39(4):1-4
    [6]乔洪升.利用微生物改善国产麦芽品质的研究[D]:[硕士学位论文].无锡:江南大学;2010
    [7] Briggs DE. Malts and malting [M]. NewYork: KluwerAcademic/Plenum Publishers,1998.382-464
    [8]中华人民共和国国家发展和改革委员会. QB/T1686-2008啤酒麦芽[S].2008
    [9]] Panteloglou A, Smart K, Cook D. Malt-induced premature yeast flocculation: current perspectives[J].Journal of Industrial Microbiology&Biotechnology.2012,39(6):813-822
    [10] Kühbeck F, Back W, Krottenthaler M. Influence of lauter turbidity on wort composition, fermentationperformance and beer quality-a review[J]. Journal of the Institute of Brewing,2006,112(3):215-221
    [11] Hlavá P. Changes in malt wort dynamic viscosity during fermentation[J]. Journal on Processing andEnergy inAgriculture,2010,14(1):15-18
    [12]李胤.阿拉伯木聚糖溶解、降解机制的研究及酸性木聚糖酶基因的克隆、表达[D]:[博士学位论文].无锡:江南大学生物工程学院,2006
    [13]顾国贤.酿造酒工艺学[M].北京:中国轻工业出版社,2006.51-171
    [14] Weiss W, Postel W, G rg A. Application of sequential extraction procedures and glycoprotein blottingfor the characterization of the2-D polypeptide patterns of barley seed proteins[J]. Electrophoresis,1992,13(1):770-773
    [15]叶海生.影响麦汁浊度的因素探讨[J].啤酒科技,2008,(11):32-33
    [16] Scott RW. The viscosity of worts in relation to their content of β-glucan[J]. Journal of the Institute ofBrewing,1972,78(2):179-186
    [17] Vis RB, Lorenz K. Malting and brewing with a high β-glucan barley[J]. LWT-Food Science andTechnology,1998,31(1):20-26
    [18]夏振江,郭忠森.β-葡聚糖对啤酒生产的影响及在制麦过程中的控制[J].酿酒,2004,5:93
    [19] Vaikousi H, Biliaderis CG, Izydorczyk MS. Solution flow behavior and gelling properties ofwater-soluble barley (1→3,1→4)-β-glucans varying in molecular size[J]. Journal of Cereal Science,2004,39(1):119-137
    [20] Speers R A, Jin Y L, Paulson AT, et al. Effects of β-Glucan, shearing and environmental factors on theturbidityofwortandbeer[J].JournaloftheInstituteofBrewing,2003,109(3):236-244
    [21]李永仙,顾国贤,俞中,等.耐高温β-葡聚糖酶对成品麦芽的影响[J].酿酒,2002,5:96-98
    [22] Izydorczyk MS, Macri LJ, MacGregor AW. Structure and physicochemical properties of barleynon-starch polysaccharides-I. Water-extractable β-glucans and arabinoxylans[J]. Carbohydrate Polymers,1998,35(4):249-258
    [23] Debyser W, Derdelinckx G, Delcour JA. Arabinoxylan and arabinoxylan hydrolysing activities inbarley malts and worts derived from them[J]. Journal of Cereal Science,1997,26(1):67-74
    [24] Han JY. Structural characteristics of arabinoxylan in barley, malt, and beer[J]. Food Chemistry,2000,70(2):131-138
    [25] Vi tor R, Voragen A, Angelino S. Composition of non-starch polysaccharides in wort spent grain frombrewing trials with malt from a good malting quality barley and a feed barley[J]. Journal of the Institute ofBrewing,1993,99(3):243-248
    [26] Li Y, Lu J, Gu G, et al. Studies on water-extractable arabinoxylans during malting and brewing[J].Food Chemistry,2005,93(1):33-38
    [27] Lu J, Li Y. Effects of arabinoxylan solubilization on wort viscosity and filtration when mashing with gristcontaining wheatand wheat malt[J]. Food Chemistry,2006,98(1):164-170
    [28] Sungurtas J, Swanston JS, Davies HV, et al. Xylan-degrading enzymes and arabinoxylan solubilisationin barley cultivars of differing malting quality[J]. Journal of Cereal Science,2004,39(2):273-281
    [29] Miedl M, Garcia MA, Bamforth CW. Haze formation in model beer systems[J]. Journal of Agriculturaland Food Chemistry,2005,53(26):10161-10165
    [30]陈继超,郭勇.国产苏北麦芽麦汁浊度的影响因素研究[J].中国酿造,2010,(10):87-88
    [31] Wang J, Zhang G, Chen J, et al. The changes of β-glucan content and β-glucanase activity in barleybefore and after malting and their relationships to malt qualities[J]. Food Chemistry,2004,86(2):223-228
    [32] Scheffler A, Bamforth CW. Exogenous β-glucanases and pentosanases and their impact on mashing[J].Enzyme and Microbial Technology,2005,36(5-6):813-817
    [33] KanauchiM,BamforthCW.Therelevanceofdifferentenzymes for thehydrolysisofβ-glucansin maltingandmashing[J].JournaloftheInstituteofBrewing,2008,114(3):224-229
    [34] Bamforth CW, Kanauchi M. A simple model for the cell wall of the starchy endosperm in barley[J].Journal of the Institute of Brewing,2001,107(4):235-240
    [35]佟恩杰.制麦工艺对麦芽氧化还原酶的影响[J].中国酿造,2013,4:46-52
    [36] Passardi F, Penel C, Dunand C. Performing the paradoxical: how plant peroxidases modify the cellwall[J]. Trends in Plant Science,2004,9(11):534-540
    [37] Billaud C, Louarme L, Nicolas J. Comparison of peroxidases from barley kernel (Hordeum vulgare L.)and wheat germ (Triticum aestivum L.): isolation and preliminary characterization [J]. Journal of FoodBiochemistry,1999,23(2):145-172
    [38] Stephenson WH, Biawa JP, Miracle RE, et al. Laboratory-scale studies of the impact of oxygen onmashing[J]. Journal of the Institute of Brewing,2003,109(3):273-283
    [39] Clarkson SP, Large PJ, Bamforth CW. Oxygen-scavenging enzymes in barley and malt and theireffects during mashing[J]. Journal of the Institute of Brewing,1992,98(2):111-115
    [40]孟德敬.啤酒酿造过程中超氧化物歧化酶的研究[D]:[硕士学位论文].无锡:江南大学生物工程学院,2008
    [41] Jones BL, Marinac LA. Purification and partial characterization of a second cysteine proteinaseinhibitor from ungerminated barley (Hordeum vulgare L.)[J]. Journal of Agricultural and Food Chemistry,1999,48(2):257-264
    [42] Jones BL. The endogenous endoprotease inhibitors of barley and malt and their roles in malting andbrewing[J]. Journal of Cereal Science,2005,42(3):271-280
    [43] Debyser W, Derdelinckx G and Delcour J A. Arabinoxylan solubilisation and inhibition of the barleymalt xylanolytic system by wheat during brewing with wheat wholemeal adjunct: evidence for a new classof enzyme inhibitors[J]. Journal of theAmerican Society of Brewing Chemists,1997,55(13):153-156
    [44] Iimure T, Takoi K, Kaneko T, et al. Novel prediction method of beer foam stability using protein Z,barley dimeric α-amylase inhibitor-1(BDAI-1) and yeast thioredoxin[J]. Journal of Agricultural and FoodChemistry,2008,56(18):8664-8671
    [45] Iimure T, Nankaku N, Watanabe-Sugimoto M, et al. Identification of novel haze-active beer proteinsby proteome analysis[J]. Journal of Cereal Science,2009,49(1):141-147
    [46] Van LL, Rep M, Pieterse C. Significance of inducible defense-related proteins in infected plants[J].Annual Review of Phytopathology,2006,44(3):135-162
    [47] Swngle M, Kramer K, Muthkerishnan S. Properties of barley seed chitinases and release ofembryo-associated isoforms during earley stages of imbibition[J]. Plant Physiology,1992,99(3):1009-1014
    [48] Stanislava G. A Review: The role of barley seed pathogenesis-related proteins (PRs) in beerproduction[J]. Journal of the Institute of Brewing,2010,116(2):111-124
    [49] Zhang G, Li C. Genetics and improvement of barley malt quality hangzhou: Zhejiang University Press;2011:63-85
    [50]孙丽华,孙俊.大麦热稳定蛋白质的品种间差异研究[J].中国酿造,2011,236(11):115-117
    [51]徐斌.啤酒生产问答[M].北京:中国轻工业出版社,2008.36-135
    [52]张国平,陈锦新,汪军妹,等.中国大麦β-葡聚糖含量的品种和环境变异研究[J].中国农业科学,2002,35(1):53-58
    [53] Molina-Cano J, Romera E, Aikasalo R, et al. A reappraisal of the differences between Scandinavianand Spanish barleys: Effect of beta-glucan content and degradation on malt extract yield in the cv.Scarlett[J].2002,108(2):221-226
    [54] Oscarsson M, Andersson R, man P, et al. Effects of cultivar, nitrogen fertilization rate andenvironment on yield and grain quality of barley[J]. Journal of the Science of Food and Agriculture,1998,78(3):359-366
    [55]李秀琳,董亮,陈莉,等.同品种不同蛋白质含量大麦主要水解酶活力变化[J].酿酒科技,2008,171(9):58-61
    [56]周永光.制麦过程中β-葡聚糖的初步研究[D]:[硕士学位论文].无锡:江南大学生物工程学院,2011
    [57]乔海龙,杨启东,陈健,等.大麦β-葡聚糖的研究现状与展望[J].江苏农业科学,2012,40(1):4-7
    [58]汪军妹,沈秋泉,杨建明,等.大麦β-葡聚糖酶的品种和环境变异及其遗传[J].大麦科学,2003,4:33-37
    [59]张国良,戴其根,陈培红,等.氮肥运筹对港啤1号群体质量及产量和蛋白质含量的影响[J].麦类作物学报,2005,4:101-104
    [60] BriggsDE.Maltand malting[M].NewYork:Blackieacademic&professiona,1998.79-128
    [61]曾琳娟.糖化过程质量控制[J].啤酒科技,2011,158(2):47-48
    [62]梁长东,徐大勇,李荣花.江苏大麦育种工作的回顾与建议[J].大麦科学,2005,3:1-3
    [63]沈会权,陈和,陈健,等.江苏沿海地区农科所大麦育种研究进展[J].大麦与谷类科学,2009,3:12-15
    [64]吴洪斌.干燥条件对啤酒麦芽品质影响的研究[D]:[硕士学位论文].兰州:甘肃农业大学;2009
    [65]徐高红.麦汁过滤的影响因素和优化[J].啤酒科技,2009,144(12):42-43
    [66]王勇.浅谈麦汁过滤过程的优化[J].啤酒科技,2012,169(1):58-59
    [67]王志坚.糖化外加酶制剂的选择及使用条件[J].酿酒科技,2007,156(6):134-136
    [68]徐斌.酶制剂在啤酒工业中的应用[J].中国食品工业,2007,10:20-23
    [69]夏其昌,曾嵘.蛋白质化学和蛋白质组学[M].北京:科学出版社,2004.24-185
    [70]陈捷.农业生物蛋白质组学[M].北京:科学出版社,2009.12-210
    [71] Tyers M, Mann M. From genomics to proteomics[J]. Nature,2003,422(6928):193-197
    [72]理查德.辛普森主编.蛋白质与蛋白质组学实验指南[M].北京:化学工业出版社,2006.5-90
    [73] stergaard O, Melchior S, Roepstorff P, et al. Initial proteome analysis of mature barley seeds andmalt[J]. Proteomics,2002,2(6):733-739
    [74] Finnie C, Svensson B. Barley seed proteomics from spots to structures[J]. Journal of Proteomics,2009,72(3):315-324
    [75] Laugesen S, Bak-Jensen KS, H gglund P, et al. Barley peroxidase isozymes: Expression andpost-translational modification in mature seeds as identified by two-dimensional gel electrophoresis andmass spectrometry[J]. International Journal of Mass Spectrometry,2007,268(3):244-253
    [76] Juge N. Plant protein inhibitors of cell wall degrading enzymes[J]. Trends in Plant Science,2006,11(7):359-367
    [77] Weiss W, Postel W, G rg A. Barley cultivar discrimination: II. Sodium dodecyl sulfate-polyacrylamidegel electrophoresis and isoelectric focusing with immobilized pH gradients[J]. Electrophoresis,1991,12(5):330-337
    [78] Finnie C, Bagge M, Steenholdt T, et al. Integration of the barley genetic and seed proteome maps forchromosome1H,2H,3H,5H and7H[J]. Functional&Integrative Genomics,2009,9(1):135-143
    [79] Yang F, Jensen JD, Spliid NH, et al. Investigation of the effect of nitrogen on severity of FusariumHead Blight in barley[J]. Journal of Proteomics,2010,73(4):743-752
    [80] Witzel K, Weidner A, Surabhi G-K, et al. Comparative analysis of the grain proteome fraction inbarley genotypes with contrasting salinity tolerance during germination[J]. Plant, Cell&Environment,2010,33(2):211-222
    [81] Jin B, Li L, Feng Z, et al. Investigation of hordeins during brewing during brewing and their influenceon beer haze by protome analysis [J]. Journal of Food Biochemistry,2011,35(5):1522-1527
    [82] Perrocheau L, Rogniaux H, Boivin P, et al. Probing heat-stable water-soluble proteins from barley tomalt and beer[J]. Proteomics,2005,5(11):2849-2858
    [83]中国酿酒工业协会啤酒分会.2009年中国酿酒工业协会啤酒分会工作报告[J].啤酒科技,2010,148(4):1-8
    [84]中国酿酒工业协会啤酒分会.2010年中国酿酒工业协会啤酒分会工作报告[J].啤酒科技,2011,161(5):2-10
    [85]中国酿酒工业协会啤酒分会.2011年中国酿酒工业协会啤酒分会工作报告[J].啤酒科技,2012,173(5):1-10
    [86]李作安.中国啤酒大麦品质与国外的差距探究[J].浙江农业科学,2011,1:10-13
    [87]吕晓岩.麦芽缺陷对啤酒酿造的影响[J].酿酒科技,2010,151(7):56-58
    [88]白普一.2007年中国啤酒大麦与麦芽的生产概况和2007-2008年度市场走向分析[J].中国食品工业,2007,10:14-16
    [89]姚成勇,杨力,唐义军,等.对盐城啤酒大麦产业现状的调查与思考[J].大麦与谷类科学,2009,1:59-60
    [90]啤酒原料进口统计表[2009年12月][J].啤酒科技,2010,146(2):70
    [91]啤酒原料进口统计表[2010年12月][J].啤酒科技,2011,158(2):70
    [92]啤酒原料进口统计表[2011年12月][J].啤酒科技,2012,170(2):70
    [93]啤酒及啤酒原料进出口统计表[2012年12月][J].啤酒科技,2013,182(2):70-71
    [94] Jin YL. Effect of β-glucan and environmental factors on the physical and chemical properties of wortand beer [D]:[Doctoral Dissertation]. Ottawa: Dalhousie University;2002
    [95] Schneider J, Krottenthaler M, Back W, et al. Study on the membrane filtration of mash with particularrespect to the quality of wort and beer[J]. Journal of the Institute of Brewing,2005,111(5):380-387
    [96]李永仙,尹象胜,顾国贤,等.刚果红法测定麦汁和啤酒中的β-葡聚糖[J].无锡轻工大学学报,1997,16(1):8-13
    [97] Ishikawa N, Otsuka M, Kodama M, et al. Improvement of the Congo Red method, a rapid.Beta-glucan quantification method for the breeding of high quality malting barley[J]. Bulletin of theTochigi PrefecturalAgricultural Experiment Station,1998,47:57-64
    [98] Douglas SG. A rapid method for the determination of pentosans in wheat flour[J]. Food Chemistry,1981,7(2):139-145
    [99]李胤,周广勇,陆健,等.Douglas法快速测定啤酒中的戊聚糖[J].酿酒,2003,30(4):60-62
    [100]杨莹,张涧铮.麦汁、发酵液、成品酒隆丁区分之间的相互关系和检验准确性的探讨[J].酿酒,2007,34(6):59-62
    [101] Edney M, LaBerge D, Langrell D. Relationships among the beta-glucan contents of barley, malt, maltcongress extract, and beer[J]. Journal of theAmerican Society of Brewing Chemists,1998,56(4):164-168
    [102] Zhang G, Chen J, Wang J, et al. Cultivar and environmental effects on (1→3,1→4)-β-D-Glucan andprotein content in malting barley[J]. Journal of Cereal Science,2001,34(3):295-301
    [103] Narasimhalu P, Kong D, Choo TM, et al. Effects of environment and cultivar on total mixed-linkageβ-glucan content in eastern and western Canadian barleys (Hordeum vulgare L.)[J]. Canadian journal ofplant science,1995,75(2):371-376
    [104] Henry RJ. Genetic and environmental variation in the pentosan and β-glucan contents of barley, andtheir relation to malting quality[J]. Journal of Cereal Science,1986,4(3):269-277
    [105] Fleury MD, Edney MJ, Campbell LD, et al. Total, water-soluble and acid-soluble arabinoxylans in westernCanadianbarleys[J].Canadianjournalofplantscience,1997,77(2):191-196
    [106]邓兆怀.江苏高蛋白大麦的制麦工艺探讨[J].啤酒科技,2009,142(10):54-56
    [107] Zhang X, Shi L, Shu S, et al. An improved method of sample preparation on AnchorChip targetsfor MALDI-MS and MS/MS and its application in the liver proteome project[J]. Proteomics,2007,7(14):2340-2349
    [108] Giavalisco P, Nordhoff E, Lehrach H, et al. Extraction of proteins from plant tissues fortwo-dimensional electrophoresis analysis[J]. Electrophoresis,2003,24(2):207-216
    [109] Wang W, Tai F, Chen S. Optimizing protein extraction from plant tissues for enhanced proteomicsanalysis[J]. Journal of Separation Science,2008,31(11):2032-2039
    [110]胡笳,郭燕婷,李艳梅.蛋白质翻译后修饰研究进展[J].科学通报,2005,50(11):1061-1072
    [111] Eglinton JK, Langridge P, Evans DE. Thermostability variation in alleles of barley beta-amylase[J].Journal of Cereal Science,1998,28(3):301-309
    [112] Sels J, Mathys J, De Coninck BMA, et al. Plant pathogenesis-related (PR) proteins: A focus on PRpeptides[J]. Plant Physiology and Biochemistry,2008,46(11):941-950
    [113] Nelson H, Hardy J, Littlefield O, et al. Structure, function, and regulation of the heat shocktranscription factor[J]. Biophysical Journal1998,77(2):219
    [114] JonesBL.Endoproteasesofbarleyandmalt[J].JournalofCerealScience,2005,42(2):139-156
    [115] Paper JM, Scott-Craig JS, Adhikari ND, et al. Comparative proteomics of extracellular proteins invitro and in planta from the pathogenic fungus Fusarium graminearum[J]. Proteomics,2007,7(17):3171-3183
    [116] Flamini R, De Rosso M. Mass spectrometry in the analysis of grape and wine proteins[J]. Expertreview of proteomics,2006,3(3):321-331
    [117]赵妍,黄炳茹,王兆龙,等.蛋白质组学及其在植物非生物胁迫研究中的应用[J].上海交通大学学报(农业科学版),2011,29(6):67-72
    [118]刘红娟,刘洋,刘琳.脱落酸对植物抗逆性影响的研究进展[J].生物技术通报,2008,6:7-9
    [119] Gill HS, Eisenberg D. The Crystal structure of phosphinothricin in the active site of glutaminesynthetase illuminates the mechanism of enzymatic inhibition[J]. Biochemistry,2001,40(7):1903-1912
    [120] Sadanandom A, Bailey M, Ewan R, et al. The ubiquitin–proteasome system: central modifier of plantsignalling[J]. New Phytologist,2012,196(1):13-28
    [121] Arends AM, Fox GP, Henry RJ, et al. Genetic and environmental variation in the diastatic power ofaustralian barley[J]. Journal of Cereal Science,1995,21(1):63-70
    [122]张新忠,汪军妹,黄祖六,等.大麦α-淀粉酶的研究进展[J].大麦与谷类科学,2009,3:6-9
    [123]王镜岩.生物化学下册第3版[M].北京:高等教育出版社,2002.63-112
    [124]孔维宝,刘娜,陆健,等.过氧化物酶(POD)对协定糖化麦汁品质的影响[J].西北师范大学学报,2011,47(1):81-86
    [125]邬显章.酶的工业生产技术[M].吉林:吉林科学技术出版社,1973.10-165
    [126]张剑,林庭龙,秦瑛,等. β-淀粉酶研究进展[J].中国酿造,2009,205(4):5-8
    [127] Lee RC, Burton RA, Hrmova M, et al. Barley arabinoxylan arabinofuranohydrolases: purification,characterization and determination of primary structures from cDNA clones[J]. Biochemical Journal,2001,356(1):181-189
    [128] Laidlaw HKC, Lahnstein J, Burton RA, et al. Analysis of the arabinoxylan arabinofuranohydrolasegene family in barley does not support their involvement in the remodelling of endosperm cell walls duringdevelopment[J]. Journal of Experimental Botany,2012,63(8):3031-3045
    [129]邹琦.植物生理生化实验指导[M].北京:中国农业出版社,1995.56-59
    [130] Ferré H, Broberg A, Duus J, et al. A novel type of arabinoxylan arabinofuranohydrolase isolatedfrom germinated barley: Analysis of substrate preference and specificity by nano-probe NMR[J]. EuropeanJournal of Biochemistry,2000,267(22):6633-6641
    [131] Bradford MM. A rapid and sensitive method for the quantition of microgram quantities of proteinutiliaing the protein-dye binding[J].Analytical Biochemistry,1976,72:248-254
    [132]慕钰文.江苏啤酒大麦麦芽过滤性能影响因素的研究-β-淀粉酶的初步研究[D]:[硕士学位论文].无锡:江南大学;2013
    [133]高飞,金昭,蔡国林,等.江苏啤酒大麦麦芽中阿拉伯呋喃糖苷水解酶对过滤性能的影响[J].食品工业科技.2014, DOI: org/10.1016/j.jprot.2013.05.038
    [134]刘清,李玉,姚惠源. Folin-Ciocalteu比色法测定大麦提取液中总多酚的含量[J].食品科技,2007,32(4):175-177
    [135]阳佛送,李雪华.多糖结构研究的方法和进展[J].食品科技,2008,33(3):200-203
    [136]李胤,陆健,顾国贤.大麦麦芽中可溶性非淀粉质多糖的制备及成分分析[J].酿酒,2003,30(5):37-39
    [137]夏朝红,戴奇,房韦,等.几种多糖的红外光谱研究[J].武汉理工大学学报,2007,29(1):45-47
    [138] Faulds CB, Mandalari G, LoCurto R, et al. Arabinoxylan and mono-and dimeric ferulic acid releasefrom brewer’s grain and wheat bran by feruloyl esterases and glycosyl hydrolases from Humicolainsolens[J].Applied Microbiology and Biotechnology,2004,64(5):644-650
    [139] Kanauchi M, Bamforth CW. Growth of Trichoderma viride on crude cell wall preparations from barley[J].JournalofAgriculturalandFoodChemistry,2000,49(2):883-887
    [140] Izydorczyk MS, Biliaderis CG. Cereal arabinoxylans: advances in structure and physicochemicalproperties[J]. Carbohydrate Polymers,1995,28(1):33-48
    [141] Fluhr R, Lampl N, Roberts TH. Serpin protease inhibitors in plant biology[J]. Physiologia Plantarum,2012,145(1):95-102
    [142] Evans DE, Hejgaard J. The impact of malt derived proteins on beer foam quality. Part I. the effect ofgermination and kilning on the level of protein Z4, protein Z7and LTP1[J]. Journal of the Institute ofBrewing,1999,105(3):159-170
    [143] Hejgaard J. Purification and properties of protein Z-a major albumin of barley endosperm[J].Physiologia Plantarum,1982,54(2):174-182
    [144] Iimure T, Nankaku N, Kihara M, et al. Proteome analysis of the wort boiling process[J]. FoodResearch International,2012,45(1):262-271
    [145] Sreerama N, Woody RW. Estimation of protein secondary structure from circular dichroism spectra:comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set[J]. AnalyticalBiochemistry,2000,287(2):252-260
    [146]曾茂茂,王霄,陈洁.蛋白质疏水性测定方法的相关性及适用性[J].食品科学,2011,32(15):117-120
    [147]李忠光,龚明.愈创木酚法测定植物过氧化物酶活性的改进[J].植物生理学通讯,2008,44(2):323-324
    [148]秦礼康,丁霄霖.陈窖豆豉粑类黑精提取及骨架肽段氨基酸组成分析[J].食品科学,2006,27(1):125-129
    [149]师成斌,张晓云,田艳花,等.黑麦芽类黑精体外抗氧化活性的研究[J].食品工程,2007,1:56-59
    [150]王镜岩.生物化学[M].北京:高等教育出版社,2002.207-212
    [151]李维虎,郑飞云,刘春凤,等.啤酒泡沫蛋白质的二级结构特点及其质谱鉴定[J].食品与生物技术学报,2012,31(9):918-924
    [152]张汆,骆会婷.食品类黑精的研究进展[J].中国食品添加剂,2005,3:11-13
    [153]庄海宁,冯涛.美拉德反应合成蛋白质-多糖复合物及其应用[J].粮食与油脂,2007,12:4-7
    [154] Shu Y-W, Sahara S, Nakamura S, et al. Effects of the length of polysaccharide chains on thefunctional properties of the Maillard-type lysozyme-polysaccharide conjugate[J]. Journal of Agriculturaland Food Chemistry,1996,44(9):2544-2548
    [155] Bobálová J, Petry-Podgórska I, La tovi ková M, et al. Monitoring of malting process bycharacterization of glycation of barley protein Z[J]. European Food Research and Technology,2010,230(4):665-673

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700