先进控制与优化软件的设计及在电站锅炉汽温预测控制中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工业企业改革和国际化的深入使国内企业面临着前所未有的竞争和挑战,同时节能减排成为“十一五”的重点,这都要求企业采用先进的控制和优化方法,努力在提高生产效率和安全性的同时节能降耗,以提高综合经济效益。
     火电占国内电力总装机容量超过四分之三,先进控制与优化的应用在火电领域有着非常重要的意义,这是因为先进控制与优化在火电机组的应用率仍然很低,这有多方面的因素:(1)先进算法很多过于复杂,难于计算机应用,且参数复杂调节难度大,不适合一般的工程人员;(2)大量早期投产的大型火电机组,由于设计和陈旧等原因,缺乏必要的控制手段;(3)缺乏自主研发的先进控制与优化软件系统。而本文则重点对其中两个方面进行了研究,即先进控制与优化软件系统的设计和实现,以及先进控制方法用于电站锅炉的主汽温控制。
     一、主蒸汽回路为电站锅炉最主要的回路之一,主汽温度的稳定直接影响锅炉运行的效率和安全性。主汽温平均温度提高1℃,机组效率直接提高1‰左右,同时汽温控制须非常稳定,超温将直接影响锅炉的安全运行,经常的超温会大大影响管路寿命,甚至会产生暴管事故而被迫停机维修,而过低的汽温会大幅影响锅炉效率。但是很多尤其是早期建设的电站锅炉系统,其主汽温自动控制很不理想,甚至无法投用,这是因为主蒸汽回路具有典型的大惯性、大滞后特点和对象模型随负荷变化较大等特点,同时较老机组存在较多的原始设计缺陷并缺乏执行手段,这就大幅增加了自动控制的应用难度。为此,我们针对此问题存在较为严重的平圩#1和石横#2机组主蒸汽回路,提出了一种基于多模型切换的阶梯式广义预测控制方法,并结合考虑风量、主汽压、上层磨煤量、蒸汽流量等影响因素成功应用于主汽温串级控制,在机组正常工作负荷范围内均能达到很好的控制品质,成功解决了两厂建厂以来一直无法解决的主汽温自动控制问题,具有推广应用价值。
     二、现有控制系统软件普遍存在的一些问题,如稳定性欠缺,功能单一,可移植、可扩展性弱,无法与大型DCS紧密结合并高速稳定进行数据交换等等。针对这些问题,提出了几种高效的高速数据交换方法用于不同应用场合,并通过对模块调度方式的分析和仿真,设计了高效的模块调度策略,同时基于工程实践经验,针对性的设计了双向数据缓冲池、统一的数据预处理接口、统一的模块模板用于算法的模块化实现、多线程模块动态挂接和调度、统一的配置文件支持和配置数据库支持、标准化格式的日志系统以及心跳信号等,首次自主研发了基于Solaris操作系统的DCS嵌入式先进控制与优化软件系统,系统具有稳定性高、模块化通用性强、数据处理稳定快速、算法便于应用和扩展并易于移植等特点,软件在石横#2机组主汽温控制和燃烧优化项目中的应用,显示了显著的性能和稳定性优势。
Industrial enterprise reform and the deepening of the internationalization let the domestic enterprises facing unprecedented competition and challenges. At the same time, energy reduction become the "11th Five-Year Plan". These all requires enterprises to adopt advanced control and optimization method, in an effort to improve production efficiency and reduce the energy consumption so as to improve overall economic efficiency.
     Thermal power takes more than three-quarters of the total electricity capacity in China. So, the applications of advanced control and optimization in this field have a very important significance. It is because of the application rate of advanced control and optimization in thermal power units remains low, which is multifaceted: (l)Advanced algorithms are generally too complicated and are difficult for computer applications. And the parameters are also too complicated for normal engineers to adjust; (2)There are a large number of early built large scale thermal power units, which lack of the necessary means of control ability because of the outdated design and obsolescence; (3)The lack of advanced control and optimization software system based on independent intellectual property rights. This paper will focus on two aspects: The development and implementation of advanced control and optimization software system. And the application of advanced methods for the control of the super-heat steam temperature of large scale power plants.
     1. Super-heat steam loop is one of the most important loops of power plant boiler system. The stability of super-heat steam temperature directly affects the boiler efficiency and also the safety. And the unit's efficiency increases l%o when super-heat steam temperature increases 1°C. At the same time, steam temperature must be very stable, because overheating will directly affect the boiler safety, and frequently overheating will lower pipes' life, and even produce pipe explosion and forces boiler to be shutdown for maintenance; On the other side, over-low-temperature will significantly drop the boiler's efficiency. However, many power plant boilers, especially the early built ones, their super-heat steam temperature control were not optimal, or even unable to be automatic controlled. It is because the super-heat loop is of a typically large inertia, and the model varies much with the boiler load. At the same time, many of them lack controllable instruments, which has substantially increased the difficulty of the control. Because Pingwei #1 and Shiheng #2 Unit are of the most problematic boilers, we specifically proposed a Model-switching Stair-like Generalized Predictive Control method, and taking air volume, main steam pressure, feeds of the upper coal, steam flow, and other factors into consideration. And then we designed cascaded controller based on the model-switching method and the controller showed very good control quality. The controller design successfully solved the automatic super-heat steam temperature control problem since the two plants' foundation, and showed exclusive performance and portability of the new method.
     2. Existing control software system generally has problems such as lack of stability and functionality, weak of portability and scalability, unable to tightly integrate with large scale DCS system and perform stabile and high-speed data exchange with DCS, etc. To solve these problems, we proposed several efficient data exchange methods for different application occasions, and designed a highly efficient module-scheduling strategy. And we also designed many advanced features such as bi-directional data pool, unified data preprocessing interface, unified module template, multi-threaded dynamic loaded and scheduled modules, unified configuration file and configuration database support, standardized formatted logging system, and heartbeat signals support. Finally, based on the Solaris operating system, we produced DCS-embedded advanced control and optimization software system. The system features high stability, versatile modularity, fast&stable data processing, and is highly expansible and portable. The software's application in the super-heat steam temperature control and combustion optimization project in Shiheng Power Plant showed significant performance and stability advantages.
引文
于湘涛,刘红军,王晓慧等.2003.基于内模PID控制的火电厂主汽温控制系统[J].自动化技术与应用,22(7):50-52
    马平,李伟.郑贵文等.2006.基于无模型自适应控制的主汽温控制系统[J].电力科学与工程,2006(1):19-21
    王东风,翟永杰.2001.多模型自适应广义预测控制及其在电厂汽温系统中的应用仿真[J].工业仪表与自动化装置,2001(1):34-39
    王庆东,冯增健,孙优贤.2004.锅炉热工过程先进控制策略研究综述[J].电力系统及其自动化学报,16(5):75-80
    王志萍,彭道刚,杨平,杨艳华.2004.专家PID控制在主汽温控制系统中的应用[J].现代电力,21(4):58-61
    王卓,李平,郭烁.2004.基于多模型的非线性系统广义预测控制[J].微计算机信息,20(8):33-34
    王国玉,梅华,韩璞等.2003.主汽温系统模糊自适应预测函数控制[J].中国电机工程学报,23(10):230-235
    王泽宁,刘春勇.2007.基于内模原理电站锅炉汽温控制策略的工程应用[J].电力系统自动化,31(4):97-100
    王俊国,周建中.2005.Visual C++6.0环境下的过程控制系统软件设计与实现[J].工业仪表与自动化装置,2005(6):45-47
    王晓兰,香兴民,杨新华等.2004.航天器材料光学性能原位测量系统控制软件的开发[J].测控技术,23(8):50-52
    王献忠,杜维.1999.模型预测控制发展概况[J].自动化与仪器仪表,1999(4):4-9
    中华人民共和国电力工业部热工自动化标准化技术委员会.1998.DL/T 657-1998.中华人民共和国电力行业标准-火力发电厂模拟量控制系统在线验收测试规程[S]:1309-1311
    卞正岗.2006.电力工业自动化的发展[J].中国仪器仪表,2006(1):29-33
    方来华,曹作良,李军.2002.先进过程控制(APC)技术介绍与比较[J].天津理工学院学报,18(3):26-30
    石宇静,柴天佑.2007.基于神经网络与多模型的非线性自适应广义预测控制[J].自动化学报,33(5):540-545
    左燕,侯国莲,张建华等.2002.复合模糊串级系统在火电厂过热汽温控制中的应用[J].现代电力,19(1):64-69
    冯瑞冬.2004.混合逻辑动态系统的预测控制器设计[J].控制工程,11(4):371-374
    向立志,谭杰,邹益仁.2003.先进控制算法软件的设计与开发[J].计算机工程,29(18):41-42.59
    许超,陈治纲,邵惠鹤.2002.预测控制技术及应用发展综述[J].化工自动化及仪表,29(3):2-10
    孙德敏,薛美盛,吴刚,张志刚.2001.推动先进控制与优化技术在过程工业中的应用[J].自动化博览,2001(3):1-3
    孙鑫.2007.DCS的特点及与PLC、FCS的比较[J].世界仪表与自动化,11(3):27-31
    李秀改,高东杰,王宇红.2002.基于混合逻辑动态模型的混杂系统预测控制[J].控制与决策,17(3):315-318
    李学明,刘吉臻,李志军等.过热蒸汽温度控制系统优化[J].热力发电,33(5):42-44
    李俊,吴刚,孙德敏.2003.大型电站锅炉主蒸汽温度的模块化阶梯式动态矩阵控制[J].中国科学技术大学学报,33(4):460-465
    杨晋萍,张兴中.2002.基于模糊控制的电厂过热汽温控制系统仿真[J].太原理工大学学报,33(4):400-402
    李曼珍.2002.现代控制技术在过程控制中的应用浅谈[J].仪器仪表用户,9(4):5-7
    杨清宇,施仁.2004.多总线混合分布式网络控制系统研究[J].小型微型计算机系统,25(5):934-937
    吴刚,张志刚,张玉柱.1993.具有监督级的自适应PID软件包及在丙烯睛装置中的应用[J].智能控制与智能自动化,1993:2179-2184
    吴刚.1989.预测控制研究及在工业锅炉自动控制中的应用[D].合肥:中国科学技术大学
    吴宝光,谢克明.2004.火电厂锅炉先进控制与优化策略研究[J].太原理工大学学报,25(2):208-211
    吴剑强,荣冈.2004.先进控制软件集成实时数据平台的分析与设计[J].计算机应用研究,2004(12):53-55
    张弋力,马明前.2004.基于模糊控制算法的温度控制系统[J].自动化与仪器仪表,2004(1):18-20
    张长青,杨锋,薛建中等.2006.锅炉汽温控制H∞性能状态观测器的设计[J].中国电机工程学报,26(14):109-113
    张庆武.2006.模块多变量广义预测控制及应用[D].合肥:中国科学技术大学
    张建华,侯国莲,李农庄等.2000.多模型过热汽温控制系统[J].华北电力大学学报,27(3):38-41
    张政江.2004.基于模型补偿与切换的锅炉过热汽温控制[J].浙江大学学报:工学版,38(8):1047-1050
    张柯,王明春,张雨飞.2006.GPC-PID串级控制在主汽温控制系统中的仿真研究[J].锅炉技术,37(1):20-23
    张萍,易东云.2003.软件配置信息设计实现方法[J].计算机系统应用,2003(2):60-62
    张慧平,戴波,杨薇.2006.现代控制理论在过程工业中的应用和发展[J].北京石油化工学院学报,14(3):56-61
    周洪煜,张坚.2003.基于Elman网络的过热汽温隐式广义预测控制[J].计算技术与 自动化,22(1):27-30
    周雪斌,刘延泉,苗广祥等.2004.基于神经网络预测自整定PID在锅炉主汽温控制中的应用[J].仪器仪表用户.11(5):38-40
    庞倩超,崔玉华,李艳秋.2003.先进控制技术综述[J].国外油田工程,19(12):37-38
    赵文杰,牛玉广,刘吉臻.2003.基于多模型的过热汽温自适应串级控制[J].计算机仿真,20(5):107-112
    赵英凯,李胜,林锦国等.2002.基于ANFIS的锅炉蒸汽温度预测控制系统[J].基础自动化,9(1):25-27
    项岱军.2000.2008t/h锅炉汽温调节系统[J].华东电力,2000(10):45-48
    赵景波,周祥龙.2003.预测函数控制在工业锅炉燃烧系统上的应用[J].工业仪表与自动化装置,2003(3):24-26
    赵锡龄,焦云婷.2001.单神经元自适应控制PSD在再热汽温控制中的应用[J].中国电机工程学报,21(2):93-96
    郝美,蔡云达.2004.阳光发电公司锅炉主汽温度控制分析与实践[J].电力学报,19(1):27-32
    郝晓弘,李应启,刘树博.小型工业监控软件的实时数据库设计与实现[J].计算机心用研究,23(9):198-200
    荣雅群,窦春霞,袁石文.2003.过热汽温模糊神经网络预测控制器的设计[J].中国电机工程学报,23(1):177-180
    胡耀华.贾欣乐.2000.广义预测控制综述[J].信息与控制,29(3):248-256
    姜睿.王军,李东海,罗贵明.2008.改进最小二乘算法在主汽温控制系统中的应用[J].清华大学学报:自然科学版,48(1):97-100
    姚德馨,韩江洪.2006.基于多层复用的工控软件设计[J].电脑知识与技术,2006(10):152-153,159
    高可,单家元.2006.基于LINUX的通用实时控制软件设计[J].微计算机信息,22(7-2):61-63
    席裕庚,王凡.1996.非线性系统预测控制的多模型方法[J].自动化学报,22(4):456-461
    席裕庚.1993.预测控制[M].国防工业出版社
    唐义军,朱永超,张建龙等.2007.满意优化在火电厂汽温控制系统中的应用[J].电力系统自动化,31(9):72-77
    陶文伟,肖大雏,姚钢等.2001.单神经元控制器及其在过热汽温控制中的应用[J].热力发电,2001(1):32-35
    黄成静,刘红军,王东风.2003.DMC-PID串级主汽温控制系统[J].华北电力大学学报.30(2):53-55,67
    黄湘云,朱学峰.2005.预测控制的研究现状与展望[J].石油化工自动化,27(2):27-31
    董玉杰.1998.UNIX系统中多任务结构软件的设计与实现[J].计算机工程与应用,34(5):9-11
    葛萍,孙志英.2003.基于FUZZY-PID的主汽温控制[J].浙江电力,2003(2):26-29
    韩璞,孙海蓉,周黎辉.2005.自适应神经元PID控制器在过热汽温控制中的应用[J].华北电力大学学报,32(5):62-65
    谢克明,侯宏仑,谢刚.2001.过热汽温系统的自适应递阶模糊PID参数控制[J].中国电机工程学报,21(9):38-42,67
    薛美盛,祁飞,吴刚,孙德敏.2005.先进控制与优化应用中的若干问题研究[J].自动化博览,22(6):14-17
    薛耀锋,袁景淇.2004.先进过程控制技术及应用[J].自动化博览,2004(06):5-9
    Banerjee P.,Shah S.L.1995.Robust Stability of GPC as Applied to a First oder Model with Delay[C].Proceedings of the American Control Conference,Seattle,USA:2884-2889
    Bemporad A.,Morari M.1999.Control of systems integrating logic,dynamics,and constraints[J].Automatica,35(3):407-427
    Bruccoleri M.,et.al.2005.UML design and AWL programming for reconfigurable control software development of a robotic manipulator[C],10th IEEE Conference on Emerging Technologies and Factory Automation:331-338
    Campo P.J.,Morari M.1986.Infinity norm formulation of model predictive control problems[C],Proc.of the IEEE American Control Conference:339-343
    Clarke D.W.1996.Adaptive predictive control[J].Annual Reviews in Control,20:83-94
    Clarke D.W.,Hinton C.E.1997.Adaptive control of servohydraulic materials-testing machines:a comparison between black- and grey-box models[J].Annual Reviews in Control,25:77-88
    Clarke D.W.,Mohtadi C.1989.Properties of generalized predictive controI[J].Automatica,25(6):859-875
    Clarke D. W., Mohtadi C., Tuffs P. S. 1987. Generalized predictive control-Part Ⅰ.The basic algorithm[J]. Automatica, 23(2):137-148
    Dong-Feng Wang, Pu Han, Guo-Yu Wang, et.al. 2002. Multi-model adaptive predictive functional control and its application[C]. Proceedings of International Conference on Machine Learning and Cybernetics, Beijing: 2126-2130
    Garcia C. E., Morshedi A. M. 1986. Quadratic Programming Solution of Dynamic Matrix Control (QDMC) [J]. Chem. Eng. Commun. : 1986(46): 73-87
    Gopinathan M, BoSkovik J. D., Mehra R. K., et.al. 1998. A Multiple Model Predictive Scheme for Fault-Tolerant Flight Control Design[C]. Proceedings of the 37th IEEE Conference on Decision & Control, Tampa, Florida USA:1376-1381
    Hagglund T., Astrom K. J. 2000. Supervision of adaptive control algorithms[J]. Automatica, 36(8): 1171-1180
    Jianhua Zhang, Fei Dong, Guolian Hou. 2006. Constrained Model-on-Demand Predictive Controller Design for Superheated Steam Temperature System[C]. IEEE Conference on Industrial Electronics and Applications, Singapore
    
    Kuure-Kinsey M, Bequette B.W. 2007. Multiple Model Predictive Control: A State Estimation based Approach[C]. Proceedings of the 2007 American Control Conference, New York City, USA:3739-3744
    Lainiotis D. G. 1976. Partitioning: A unifying framework for adaptive systems, I: Estimation[J]. Proceedings of the IEEE, 64(8): 1126-1143
    Lainiotis D.G., Papaparaskeva P. 1998. A partitioned adaptive approach to nonlinear channel equalization[J]. IEEE Transactions on Communications, 46(10):1325-1336
    Lijing Zhang, Yue Zhang, Dongfeng Wang, et.al. 2007. Multiple Models Generalized Predictive Control for Superheated Steam Temperature Based On MLD Model[C].Proceedings of the IEEE International Conference on Automation and Logistics, Jinan, China:2740-2743
    Ma J., Berkelman P. 2006. Control Software Design of A Compact Laparoscopic Surgical Robot System[C]. Proceedings of the 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China:2345-2350
    Mark J, Willis, Ming T. 2002. Tham Advanced process control[EB/OL]. http://www. lorien. ncl. ac. uk/ming/advcontrl/apc. htm
    Moallem M. 2005. Design and Implementation of Computer Control Software[J], IEEE Control Systems Magazine, 2005(2):26-29
    Morshedi A. M., Cutler C. R., Skrovanek T. A. 1985. Optimal solution of dynamic matrix control with linear programming techniques (LDMC)[C]. Proceedings of the American control conference, Boston, Massachusetts:199-208
    
    Rao R.R., Aufderheide B., Bequette B.W. 1999. Multiple Model Predictive Control of Hemodynamic Variables: An Experimental Study[C]. Proceedings of the Amencan Control Conference, San Diego, California:1253-1257
    Rodriguez J.A., Romagnoli J.A., Goodwin G.C. 2003. Supervisory multiple regime control[J]. Journal of Process Control, 13(2):177-191
    Shige Wang, Kang G. Shin. 2006. Task Construction for Model-Based Design of Embedded Control Software [J]. IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 32 (4) : 254-264
    The Foxboro Company. 2001. I/A Series Product Specification Sheets and User Documentation[Z]. 33 Commercial Street, Foxboro, Massachusetts 02035
    XIU-CHUN LUAN, SHI-YONG LI, LI-LING LI. 2004. ADAPTIVE CONTROL FOR THE SUPERHEATED STEAM TEMPERATURE BASED ON MULTI-MODEL STATE OBSERVER [C]. Proceedings of the Third International Conference on Machine Learning and Cybernetics,Shanghai:978-982

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700