太赫兹波传输及光子晶体光纤温度传感的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
太赫兹(THz)波的传输研究是其能够广泛应用的关键技术。一方面,研究THz波在大气中的传输特性,将对其应用到空间通信、大气科学以及遥感等领域产生重要影响;另一方面,研究具有高双折射的THz波导,将会使其在高比特率通信系统、高性能光器件、滤波器及传感器等中得到广泛应用,具有实际意义。
     普通光纤存在偏振态漂移、模间干扰和交叉敏感等若干问题,使光纤传感器的应用受到了限制。光子晶体光纤(PCF)作为一种新型光纤,由于其结构设计的灵活性以及性能的优越性,应用于传感后有望克服上述缺点,正逐渐成为传感领域的又一个研究方向。
     本文围绕THz波传输和基于填充混合液体的PCF温度传感研究展开,主要内容和创新点归纳如下:
     1.分析了THz波大气传输的研究概况,包括大气传输的基本原理,辐射传输方程的推导以及对各类THz波大气传输模型的比较,并指出尚待解决的问题,最后对THz辐射大气传输研究给出了若干建议和展望。
     2.设计了一种新型的高双折射混合格子THz PCF,对其芯区亚波长尺寸的空气孔采用三角形和长方形格子的混合排列,通过打破结构对称性实现了高的模式双折射。仿真结果表明:合理选择光纤参数后,该THz PCF在很宽的频率范围内,都具有较高的双折射(达到10-2)和低的限制损耗,且通过改变某些光纤参数,可以灵活地控制光纤的模式双折射或限制损耗特性。
     3.设计了一种具有大空气芯的聚合物椭圆环波导,它可通过在某一方向挤压普通圆形环波导得到。与之前报道的具有复杂横截面的空气芯THz波导不同的是,我们所提出的聚合物椭圆形环波导的结构非常简单,易于制造。数值结果表明:椭圆环波导存在高的模式双折射,在很宽的THz频率范围内都达到了10-2数量级,且由于大部分模式功率集中于空气芯内,使得由聚合物材料吸收引起的波导损耗大大降低。
     4.设计了一种基于类领结单元的新型聚合物THz光纤,其中芯区内引入的类领结单元能够增加结构的非对称性,从而获得高的模式双折射。仿真结果表明,这类光纤在很宽的频率范围内双折射值都达到了10-2数量级,特别是在三角形格子的THz光纤中,其双折射最大值达到≈5.11×10-2 (f=1.2THz)。且由于部分模式功率分布于空气孔内,由聚合物材料吸收所引起的波导损耗大大降低。
     5.设计了两种单偏振单模(SPSM)THz PCF。第一种是正方形格子排列的THz PCF,主要利用了折射率匹配耦合原理,使得波导中基模的某一偏振态模和包层缺陷模发生耦合,从而导致该芯区模的大部分功率泄露至包层缺陷中而无法在光纤内传输,实现了SPSM运行。第二种是基于菱形空气孔的THz PCF,通过在芯区附近引入缺陷,使得基模的某一偏振态模无法在波导内传输,从而实现了SPSM特性。仿真结果表明:光纤中引入缺陷的位置、个数及其尺寸均会对SPSM运行的区域和宽度产生影响。
     6.分析填充不同混合液后,两种PCFs(LMA-5和LMA-8)中的温度传感特性。理论计算表明选择合适的光纤,填充恰当的混合液后,随着温度的变化,光纤的有效折射率、模场分布和限制损耗变化明显,从而使得基于此类PCF的传感器对温度变化很灵敏。随后我们设计了相关的实验方案,进行了实验验证,结果表明实验数据与理论计算值的变化趋势一致。
The research on transmission properties of terahertz (THz) wave is important for its applications. On the one hand, the atmospheric transmission properties of THz radiation are the basis of THz space applications, such as space based communications, atmosphere science, remote sensing and so on. On the other hand, THz waveguides with high birefringence have great potential in high-bit-rate communication systems, high quality optical devices, filtering, sensing, etc.
     Conventional fiber sensors are limited by the problems of polarization drift, mode interference, cross-sensitivity and so on. Sensors based on photonic crystal fibers (PCFs) with unique properties and design flexibility, are expected to overcome the difficulties and gradually becoming a new research focus.
     The main contents and key innovative points are as follows:
     1. The research status of THz wave atmospheric propagation properties is summarized, a detailed description on the basic theories and radiative transfer equations is given, and a comparison among various atmospheric propagation models is made. Finally, some suggestions and prospects are given for the research and development.
     2. We propose a novel highly birefringent THz PCF with subwavelength circular air hole pairs in the core which are arranged as hybrid crystal lattice structure. Its high mode birefringence is realized by reducing structure symmetry in core. Simulation results show that this kind of THz PCFs exhibit high birefringence on a level of 10-2 and low confinement loss over a wide THz frequency range. Moreover, the birefringence or confinement loss can be controlled flexibly by adjusting fiber parameters.
     3. We analyze a simple birefringent THz waveguide which is a polymer elliptical-tube with a cross section of elliptical ring structure. It can be achieved by stretching a normal circular-tube in one direction. Simulations show that this kind of waveguide exhibits high birefringence on a level of 10-2 over a wide THz frequency range. Moreover, as a majority of modal power is trapped in the air-core inside the polymer elliptical-tube, and the THz waveguide guiding loss caused by material absorption can be reduced effectively.
     4. A novel highly birefringent polymer THz fiber based on a near-tie unit is proposed. The introduction of near-tie units in the fiber core can enhance asymmetry to realize high mode birefringence. Simulation results show that the polymer THz fiber exhibits high birefringence on a level of 10-2 over a wide frequency range, and an extremely large birefringence (≈0.051065 at f=1.2THz) is obtained in a trianglar lattice THz fiber. Moreover, as a part of mode power is trapped in the air holes, the THz fiber guiding loss caused by polymer material absorption can be reduced effectively.
     5. Two single-polarization single-mode (SPSM) THz PCFs are investigated. The first is square lattice THz PCF. One of the polarized states of fundamental mode is eliminated by index-matching coupling with the modes of two cladding defects, and SPSM property is obtained. The Second is a THz PCF based on rhombic air-holes. By introducing defects into to the cladding of PCF, one of the polarized fundamental modes is forbidden to propagate in the waveguide and SPSM fiber is realized. Numerical results show that the position, number and size of defects will affect the location and width of SPSM region.
     6. We analyze the temperature sensing properties of two kind of PCFs (LMA-5 and LMA-8) based on different liquid mixture. Theoretical calculations show that the effective refractive index, distribution of mode field and the confinement loss become highly dependent on temperature when proper PCF and liquid mixture are chosen. In the experiments, the results agree well with the theoretical simulations.
引文
[1]Peter H.Siegel, Terahertz Technology,IEEE Trans. Microwave Theory Tech., 2002, 50(3): 910-928
    [2]Iwao Hosako, Norihiko Sekine, Mikhall Patrashin, et al., At the Dawn of a New Era in Terahertz Technology, Proc. IEEE, 2007, 95(8):1611-1623
    [3]Albert Redo Sanchez, Xi Cheng Zhang, Terahertz Science and Technology Trends, IEEE J.Sel.Topics Quantun Electron., 2008, 14(2): 260-269
    [4]R.Appleby, H.B.Wallance, Standoff detection of weapons and contraband in the 100GHz to 1THz region, IEEE Trans. Antennas Propag., 2007,55(11):2944-2956
    [5]Radoslaw Piesiewicz, Martin Jacob, Martin Koch, et al., Performance analysis of future multi-gigabit wireless communication systems at THz frequencies with highly directive antennas in realistic indoor environments, IEEE Electron, 2008, 14(2): 421-430
    [6]Nagel M, Bolivar P H, Brucherseifer M, et al., Integrated THz technology for label-free genetic diagnostics, Appl.Phys.Lett., 2002, 80(1):154-156
    [7]Shen Y C, Lo T, Taday P F, et al., Detection and identification of explosives using terahertz pulsed spectroscopic imaging,Appl. Phys.Lett., 2005,86: 241116-1- 241116-3
    [8]Jiang Zhiping, Xu X G, Zhang X-C., Improvement of terahertz imaging with a dynamic subtraction technique, Appl. Opt., 2000, 39(17):2982-2987
    [9]John F Federici, Brian Schulkin, Feng Huang, et al., THz imaging and sensing for security applications - explosives, weapons and drugs, Semicond. Sci. Technol., 2005, 20:S266-S280
    [10]沈京玲,张存林,太赫兹波无损检测新技术及其应用,无损检测, 2005,27(3):146-147
    [11]谢旭,钟华,袁韬等,使用太赫兹技术研究航天飞机失事的原因,物理,2003, 32(9): 583-584
    [12]Ferguson B, Zhang X.-C., Materials for terahertz science and technology,Nature Mater., 2002,1:26-33
    [13]许景周,张希成,太赫兹科学技术和应用,北京:北京大学出版社, 2007
    [14]张存林等著,太赫兹感测与成像,北京:国防工业出版社, 2008
    [15]Zhen Tian, Changlei Wang, Qirong Xing, et al., Quantitative analysis of Kerr nonlinearity and Kerr-like nonlinearity induced via terahertz generation in ZnTe, Appl. Phys.Lett., 2008,92:041106-1-041106-3
    [16]Huan Liu, Jianquan Yao, Degang Xu, et al., Characteristics of photonic band gaps in woodpile three-dimensional terahertz photonic crystals, Opt.Express, 2007, 15: 695-703
    [17]Lu XueHui, He Ning, Kang Lin, et al., Nb5N6 thin film on silicon and silicon oxide: A good material for terahertz dectection, Chinese Sic Bull, 2009, 54: 3344-3346
    [18]H.Liu, J.Yao, D.Xu, et al.,Propagation characteristics of two-dimensional photonic crystals in the terahertz range, Appl.Phys.B, 2007,87:57-63
    [19]H Li, J C Cao, Z Y Tan, et al., Temperature performance of terahertz quantum-cascade lasers: experiment versus simulation, J.Phys.D:Appl.Phys., 2009,42:025101(5pp).
    [20]Zheng-Ming Sheng, Hui-Chun Wu, Kun Li, et al., Terahertz radiation from the vacuum-plasma interface driven by ultrashort intense laser pulses,Phys.Rev.E, 2004, 69:025401-1-025401-4
    [21]Zhengwei Zhang, Yan Zhang, Guozhong Zhao, et al.,Terahertz time-domain spectroscopy for explosive imaging, Optik, 2007, 118:325-329
    [22]Jia Wan-Li, Shi Wei, Ji Wei-Li, et al., Study of the dipole characteristic of terahertz wave emitted from photoconductor switches, Acta Physica Sinica, 2007, 56:3845-3850.
    [23]Zhang Kai-chun, Wu Zhen-hua, Liu Shegn-gang, THz wave radiation in periodically poled nonlinear crystal, High Power Laser and Particle Beams, 2007, 19:799-802.
    [24]何志红,姚建铨,任侠等,紧凑型超辐射光泵重水气体THz激光器的研制,光电子·激光,2008,19:34-37
    [25]R.J.Emery, P.Moffat, R.A.Bohlander et al., Measurements of anomalous atmospheric absorption in the wavenumber range 4 cm-1–15 cm-1 ,Journal of Atmospheric and Terrestrial Physics, 1975,37(4):587-584
    [26]J.R.Pardo, E.Serabyn, J.Cernicharo, Submillimeter atmospheric transmission measurements on Manna Kea during extremely dry El Nino conditions: implications for broadband opacity contributions, Journal of Quantitative Spectroscopy&Radiative Transfer,2001,68:419-433
    [27]D.L.Woolard, E.R.Brown, A.C.Samuels et al., Terahertz-frequency spectroscopy as a technique for the remote detection of biological warfare agents, Conference proceedings prepringt,2003,1-2
    [28]P.H.Siegel, Terahertz technology, IEEE Transactions on Microwave Theory and Techniques, 2002,50:910-928
    [29]R.J.Emery, A.M.Zavody, Atmospheric propagation in the frequency range 100- 1000GHz, The Radio and Electronic Engineer, 1979,49(7/8):370-380
    [30]W.A.Traub, M.T.Stier, Theoretical atmospheric transmission in the mid-and far-infrared at four altitudes, Appl.Opt., 1976,15(2):364-377
    [31]Hans J. Liebe, MPM-an atmospheric millimeter-wave propagation model, Int.J. Infrared Millimeter Waves, 1989,10(6):631-650
    [32]Juan R. Pardo, Jose Cernicharo, Eugene Serabyn, Atmospheric Transmission at Microwaves (ATM): An Improved Model for Millimeter/Submillimeter Applications, IEEE Trans. Antennas Propagat., 2001, 49(12):1683-1694
    [33]J.Urban, P.Baron, N.Lautié, et al., Moliere(v5): a versatile forward-and inversion model for the millimeter and sub-millimeter wavelength range, J.Quant. Spectrosc. &Radiat. Transfer, 2004, 83:529-554
    [34]Mendrok J, The SARTre Model for Radiative Transfer in Spherical Atmospheres and its application to the Derivation of Cirrus Cloud Properties[D]Germany: Freie Universit?t Berlin, 2006
    [35]Kasai Yasuko, Seta Takamasa, Atmospheric propagation model of terahertz-wave, Journal of the National Institute of Information and Communications Technology, 2008, 55(1):73-77
    [36]Philippe Baron, Jana Mendrok, KASAI Yasuko et al., AMATERASU: Model for Atmospheric TeraHertz Radiation Analysis and Simulation,Journal of the National Institute of Information and Communications Technology, 2008, 55(1):109-121
    [37]Jana Mendrok, Philippe Baron, KASAI Yasuko, The AMATERASU scattering module, Journal of the National Institute of Information and Communications Technology, 2008, 55(1):123-133
    [38]D.P.Marrone, R.Blundell, E.Tong et al., Observations in the 1.3 and 1.5THz Atmospheric windows with the receiver lab telescope, Proceedings of the 16th International Symposium on Space Terahertz Technology,2005,1-3
    [39]V.B.Podobedov, D.F.Plusquellic, K.M.Siegrist et al., Laboratory mesurements for the water vapor continuum and theoretical calculations for the water vapor foreign continuum in the terahertz spectral region, AIP Conf. Proc,2009,1100:151-154
    [40]李宇晔,模拟沙尘条件下的太赫兹波透射特性研究,硕士学位论文,首都师范大学,2008
    [41]梁奂晖,张萍,罗锡璋,亚毫米波大气传输特性研究与发展,中山大学研究生学刊(自然科学、医学版),2002,23(2):32-37
    [42]唐义平,李卫,李兴国等,亚毫米波的大气传输研究,红外与激光工程,1997, 26(1):25-32
    [43]唐义平,李兴国,李卫等,亚毫米波大气传输计算及分析,上海航天,1997,1:13-20
    [44]Arline M.Melo, Pierre Kaufmann, C.Guillermo Gimenez de Castro et al., Submillimeter-wave atmospheric transmission at EI Leoncito, Argentina Andes, Antennas and Propagation,2005, 53(4):1528-1534
    [45]Satoki Matsushita, Hiroshi Matsuo, Juan R.Pardo et al., FTS measurements of submillimeter-wave atmospheric opacity at Pampa la Bola II: supra-Terahertz windows and Model fitting, Publ.Astron.Soc.Japan,1999,51:603-610
    [46]C.Melsheimer, C.Verdes, S.A.Buehler et al., Intercomparison of general purpose clear sky atmospheric radiative transfer models for the millimeter/submillimeter spectral range,Radio Science,2005,40(RS1007):1-28
    [47]Robert J. Foltynowicz, Michael C.Wanke, Michael A. Mangan., Atmospheric Propagation of THz Radiation, Albuquerque: Sandia National Laboratories, 2005, 1-21
    [48]L.-J.Chen, H.-W.Chen,T.-F.Kao et al., Low-loss subwavelength plastic fiber for terahertz waveguiding, Opt.Lett.,2006,31(3):306-308
    [49]M.Nagel, A.Marchewka, H.Kurz, Low-index discontinuity terahertz waveguides, Opt.Express,2006,14(21):9944-9954
    [50]Shaghik Atakaramians, Shahraam Afshar Vahid, Bernd M.Fischer, Microwire fibers for low loss THz transmission, 2007,SPIE,6414:641401-1-641401-7
    [51]M.Sumetsky, How thin can a microfiber be and sitll guide light?, Opt. Lett.,2006,31(7):870-872
    [52]Hung-Wen Chen, Yu-Tai Li, Ci-Ling Pan, Investigation on spectral loss characteristics of subwavelength terahertz fibers, Opt.Lett.,2007,23(9):1017-1019
    [53]Chujun Zhao, Man Wu, Dianyuan Fan et al., Field enhancement and power distribution characteristics of subwavelength-diameter terahertz hollow optical fiber,Opt.Communications, 2008,281:1129-1133
    [54]Shaghik Atakaramians, Shahraam Afshar V., Bernd M.Fischer., Porous fibers: a novel approach to low loss THz waveguides, Opt.Express, 2008,16(12):8845-8854
    [55]S.Atakaramians, S.Afshar V., B.M.Fischer et al., Porous fibers: low loss, low dispersion waveguides for terahertz transmission, Pasadena, CA: Infrared, Millimeter and Terahertz Waves, 2008. 33rd International Conference, 2008,1-2
    [56]Alireza Hassani, Alexandre Dupuis, Maksim Skorobogatiy, Porous polymer fibers for low-loss Terahertz guiding, Opt.Express, 2008,16(9):6340-6351
    [57]Alireza Hassani, Alexandre Dupuis, Maksim Skorobogatiy, Low loss porous terahertz fibers containing multiple subwavelength holes, Appl.Phys.Lett.,2008, 92:071101-1-071101-3
    [58]Alexandre Dupuis, Alireza Hassani, Maksim Skorobogatiy, Design of porous polymer THz fibers, Proc.of SPIE,2008,6892:51-63
    [59]Shaghik Atakaramians, Shahraam Afshar V., Heike Ebendorff-Heidepriem et al., THz porous fibers: design, fabrication and experimental characterization, Opt.Express,2009,17(16):14053-14062
    [60]Shaghik Atakaramians, Shahraam Afshar V., Michael Naget et al., Experimental investigation of dispersion properties of THz porous fibers, Busan: Infrared, Millimeter, and Terahertz Waves, 2009. 34th International Conference,2009,1-2
    [61]S.Atakaramians, H.Ebendorff-Heidepriem,S.Afshar V. et al., Cleaving of extremely porous polymer fibers, IEEE Photonics Journal, 2009,1(6):286-292
    [62]Alexandre Dupuis, Jean-Francois Allard, Denis Morris et al., Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method, Opt.Express,2009,17(10):8012-8028
    [63]Alexandre Dupuis, Alireza Hassani, Maksim Skorobogatiy, Design and Fabrication of subwavelength THz fibers with multiple holes, Baltimore, Maryland: Conference on Lasers and Electro-Optics (CLEO), THz Waveguides (CThQ):CThQ6
    [64]Sung Hyun Nam, Antoinette J.Taylor, Anatoly Efimov, Subwavelength hybrid terahertz waveguides, Opt.Express,2009,17(25):22890-22897
    [65]Liang WANG, Dongxiao Yang, Yin CHEN et al., Single-polarization single-mode photonic crystal fiber for Terahertz applications, Shanghai: Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics, 2006. Joint 31st International Conference, 2006,ThuB4-3:566
    [66]M.Cho, J.Kim, H.Park et al., Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers, Opt.Express, 2008,16(1):7-12
    [67]Y.Han, M.Cho, J.Kim et al., Highly birefringent terahertz plastic photonic crystal fibers, Pasadena, CA: Infrared, Millimeter and Terahertz Waves, 2008. 33rd International Conference,1-2
    [68]Guobin Ren, Yandong Gong, Ping Shum et al., Low-loss air-core polarization maintaining terahertz fiber, Opt.Express, 2008,16(18):13593-13598
    [69]Guobin Ren, Yangdong Gong, Ping Shum et al., Polarization maintaining air-core bandgap fibers for Terahertz wave guiding, IEEE J.Quantum Electron., 2009, 45(5):506-513
    [70]Shaghik Atakaramians, Shahraam Afshar V., Bernd M.Fischer et al., Low loss, low dispersion and highly birefringent terahertz porous fibers, Opt. Communications, 2009,282:36-38
    [71]Haibin Chen, Daru Chen, Zhi Hong, Squeezed lattice elliptical-hole terahertz fiber with high birefringence, Appl.Opt., 2009, 48(20):3943-3947
    [72]Daru Chen, H.Y.Tam, Highly birefringent terahertz fibers based on super-cell structure, J.Lightw.Technol., 2010,28(12):1858-1863
    [73]WANG Jing-Li,YAO Jian-Quan, CHEN He-Ming et al., A Simple Birefringent Terahertz Waveguide Based on Polymer Elliptical Tube,Chinese Physics Letters, 2011, 28(1): 014207-1-014207-3
    [74]Jingli Wang, Jianquan Yao, Heming Chen et al., Ultrahigh birefringent polymer terahertz fiber based on a near-tie unit, Journal of Optics , 2011,13,055402
    [75]H.Han, H.Park, M.Cho et al., Terahertz pulse propagation in a plastic photonic crystal fiber, Appl.Phys.Lett.,2002,80(15):2634-2636
    [76]Masahiro Goto, Alex Quema, Hiroshi Takahashi et al., Teflon photonic crystal fiber as polarization-preserving waveguide in THz region, Niigata, Japan: International Conference on Ultrafast Phenomena (UP),2004,ME:ME33
    [77]M.Goto, A.Quema, H.Takahashi et al., Polarization-preserving teflon photonic crystal fiber waveguide for THz radiation, Infrared and Millimeter Waves, 2004 and 12th International Conference on Terahertz Electronics, 2004,139-140
    [78]Goto M, Quema A., Takahashi H. et al., Plastic photonic crystal fiber as terahretz waveguide, San Francisco, CA: Lasers and Electro-Optics, 2004,1-3
    [79]B M Azizur Rahman, N.Kejalakshmy, Tanvir Huda et al., Characterization of photonic crystal fibers for Terahertz frequencies, Proc.of SPIE, 2007,6772: 67720D-1-67720D-8
    [80]Yandong Gong, Guobin Ren, Michael Ong Ling Chuen et al., Air-core Bandgap terahertz fiber with wider bandwidth, Pasadena, CA: Infrared, Millimeter and Terahertz Waves, 2008. 33rd International Conference,2008,1-2
    [81]N.Kejalakshmy, B.M.A.Rahman, Arti Agrawal et al., Characterization of a Teflon PCF for THz frequency applications by using the finite element method, Boston, Massachusetts: Integrated Photonics and Nanophotonics Research and Applications (IPNRA), Modeling Optical Fibers and Waveguides (IWB), 2008, IWB2
    [82]Luca Vincetti, Hollow core photonic band gap fiber for THz applications, Microwave and optical technology letters, 2009, 51(7):1711-1714
    [83]Kristian Nielsen, Henrik K.Rasmussen, Aurele J.L.Adam et al., Bendable, low-loss Topas fibers for the terahertz frequency range,Opt.Express, 2009, 17(10):8592-8601
    [84]Kristian Nielsen, Ole Bang, Henrik Rasmussen et al., Low-loss and bendable THz fiber with tailored dispersion, Baltimore, Maryland: Conference on Lasers and electro-Optics (CLEO),2009,CThQ7
    [85]Kanglin Wang, Daniel M.Mittleman, Metal wires for terahertz wave guiding, Nature,2004,432:376-379
    [86]Kanglin Wang, Daniel M.Mittleman, Dispersion of surface plasmon polaritons on metal wires in the terahertz frequency range,Phys.Rev.Lett., 2006,96: 157401-1-157401-4
    [87]Qing Cao, Jurgen Jahns, Azimuthally polarized surface plasmons as effective terahertz waveguides, Opt.Express, 2005,13(2):511-518
    [88]T.-I.Jeon, J.Zhang, D.Grischkowsky, Thz Sommerfeld wave propagation on single metal wire, Appl.Phys.Lett.,2005,86:161904
    [89]Y.B.Ji,E.S.Lee,J.S.Jang et al., Enhancement of the detection of THz Sommerfeld wave using a conical wire waveguide, Opt.Express,2008,16:271-278
    [90]Huawei Liang, Shuangchen Ruan, Min Zhang, Terahertz surface wave propagation and focusing on conical metal wires, Opt.Express,2008, 16(22):18241-18248
    [91]Xiao-Yong He, Investigation of terahertz Sommerfeld wave propagation along conical metal wire,J.Opt.Soc.Am.B,26(9):A23-A28
    [92]Victoria Astley, Julianna Scheiman, Rajind Mendis et al., Bending and coupling losses in terahertz wire waveguides, Opt.Lett., 2010, 35(4):553-555
    [93]James A.Harrington, Roshan George et al., Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation, Opt.Express,2004, 12(21): 5263-5268
    [94]Takahiro Ito, Yuji Matsuura, Mitsunobu Miyagi et al., Flexible terahertz fiber optics with low bend-induced losses, J.Opt.Soc.Am.B,2007,24(5):1230-1235
    [95]Christos Themistos, B.M.Azizur Rahman, M.Rajarajan et al., Finite element solutions of surface-plasmon modes in metal-clad dielectric waveguides at THz frequency, J.Lightw.Technol.,2006,24(12):5111-5118
    [96]B M Azizur Rahman, Christos Themistos, Muttukrishnan Rajarajan et al., Surface plasmon modes for metal-clad terahertz waveguides, 2006, Proc.of SPIE,6373: 63730Q-1-63730Q-14
    [97]Muttukrishnan Rajarajan, Christos Themistos, B.M.A.Rahman et al., Plasmonics in metal-clad terahertz waveguides, PIERS Online,2007,3(3):294-299
    [98]Christos Themistos, B.M.Azizur Rahman, Muttukrishnan Rajarajan et al., Characterization of Silver/Polystyren(PS)-coated hollow glass waveguides at THz frequency, J.Lightw.Technol.,2007,25(9):2456-2462
    [99]B.M. Azizur Rahman, Christos Themistos,Tanvir Huda et al.,Low-loss terahertz waveguides exploiting surface-plasmon modes, Proc.of SPIE,2007,6772: 67720F-1-67720F-10
    [100]Bradley Bowden, James A.Harrington, Oleg Mitrofanov, Silver/polystyrene- coated hollow glass waveguides for the transmission of terahertz radiation, Opt.Lett.,2007,32(20):2945-2947
    [101]Bradley Bowden, James A.Harrington,Oleg Mitrofanov, Low-loss modes in hollow metallic terahertz waveguides with dielectric coatings, Appl.Phys.Lett., 2008,93:181104-1-181104-3
    [102]Oleg Mitrofanov, James A.Harrington, Dielectric-lined cylindrical metallic THz waveguides: mode structure and dispersion, Opt.Express, 2010,18(3):1898-1903
    [103]YU Rong-jin, ZHANG Yong-qiang, ZHANG Bing et al., New cobweb-structure hollow Bragg optical fibers, Optoelectronics Lett.,2007,3(1):10-13
    [104]Carlito S.Ponseca, Jr., Romeric Pobre, Elmer Estacio et al., Transmission of terahertz radiation using a microstructured polymer optical fiber, Opt.Lett., 2008,33(9):902-904
    [105]Ja-Yu Lu, Chin-Ping Yu, Hung-Chung Chang et al., Terahertz air-core microstructure fiber, Appl.Phys.Lett., 2008, 92:064105-1-064105-3
    [106]Chih-Hsien Lai, Yu-Chun Hsueh, Hung-Wen Chen et al., Low-index terahertz pipe waveguides, Opt.Lett., 2009, 34(21):3457-3459
    [107]Chih-Hsien Lai, Borwen You, Ja-Yu Lu et al., Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding, Opt.Express, 2010,18(1):309-322
    [108]L.Vincetti, Numerical analysis of plastic hollow core microstructured fiber for terahertz applications, Optical Fiber Technology,2009,15:398-401
    [109]L.Vincetti, Single-mode propagation in triangular tube lattice hollow-core terahertz fibers,Opt.Communication,2010,283:979-984
    [110]Daru Chen, Haibin Chen, A novel low-loss terahretz waveguide: polymer tube, Opt.Express, 2010,18(4):3762-3767
    [111]Daru Chen, Mode property of terahertz polymer tube, J.Lightw.Technol.,2010, 28(18):2708-2713
    [112]S.P.Jamison, R.W.McGowan, D.Grischkowsky, Single-mode waveguide propagation and reshaping of sub-ps terahertz pulses in sapphire fibers, Appl.Phys.Lett.,2000,76:1987-1989
    [113]Markus Wachter, Michael Nagel, Heinrich Kurz, Low-loss terhertz transmission through curved metallic slit waveguides fabricated by spak erosion, Appl.Phys. Lett.,2008,92:161102-1-161102-3
    [114]Wenqi Zhu, Amit Agrawal, Ajay Nahata, Planar plasmonic terahertz guided- wave devices,Opt.Express,2008,16(9):6216-6226
    [115]Eui Su Lee, D.H.Kang, A.I.Fernandez-Dominguez et al., Bragg reflection of terahertz waves in plasmonic crystals, Opt.Express, 2009,17(11):9212-9218
    [116]Eui Su Lee, Young Bin Ji, Sang Hoon Kim et al., Terahertz propagation on plasmonic crystal surface, San Jose, California: Frontiers in Optics (FiO), 2009,JWC:JWC26
    [117]Behnood G.Ghamsari, A.Hamed Majedi, THz plasmonic modes in metal-clad planar multilayer waveguides, Proc.of SPIE, 2009,7311:73110B-1-73110B-11
    [118]TIAN Dong-Bin, ZHANG Huai-Wu, WEN Qi-Ye et al., Coupled THz waveguide utilizing surface plasmon polaritons on thin dielectric slab sandwiched between two corrugated metallic claddings, CHIN.PHYS.LETT., 2010,27(4):044211-1-044211-4
    [119]Benjamin Reinhard, Oliver Paul, Rene Beigang et al., Experimental and numerical studies of terahertz surface waves on a thin metamaterial film, Opt.Lett., 2010, 35(9):1320-1321
    [120]Hong Su, Hang Zhou, Shixing Wang et al., Terahertz transmission properties of Cr ion implantation glass, CHIN.PHYS.LETT.,2010,8(4):425-427
    [121]Xinchao Lu, Jiaguang Han, Weili Zhang, Transmission field enhancement of terahertz pulses in plasmonic, rectangular coaxial geometries, Opt.Lett.,2010, 35(7):904-906
    [122]Hamid Pahlewaninezhad, Thomas E.Darcie, Barmak Heshmat, Two-wire waveguide for terahertz, Opt.Express, 2010,18(7):7415-7420
    [123]J.H.Kang, Q-Han Park, Perfect transmission of THz waves in structured metals, Journal of the Korean Physical Society,2006,49(3):881-884
    [124]Takehiko Hidaka, Hiroaki Minamide, Hiromasa Ito et al., Ferroelectric PVDF cladding terahertz wavegide, J.Lightw.Technol., 2005,23(8):2469-2473
    [125]Maksim Skorobogatiy, Alexandre Dupuis, Ferroelectric all-polymer hollow bragg fibers for terahertz guidance, Appl.Phys.Lett.,2007,90:113514-1-113514-3
    [126]R.Mendis, D.Grischkowsky, Plastic ribbon THz waveguides, J.Appl.Phys.,2000, 88(7):4449-4451
    [127]J.A.Deibel, N.Berndsen, K.Wang et al., Frequency-dependent radiation patterns emitted by THz plasmons on finite lenght cylindrical metal wires, Opt.Express, 2006,14:8772-8778
    [128]P.W.Smorenburg, W.P.E.M.O.Root, O.J.Luiten, Direct generation of terahertz surface plasmon polaritons on a wire using electron bunches, Phys.Rev.B, 2008,78:115415
    [129]Glenda de los Reyes, Alex Quema, Carlito Ponseca et al., Low-loss single-mode terahertz waveguiding using Cytop,Appl.Phys.Lett.,2006,89:211119-1-211119-3
    [130]A.Benz, G.Fasching, Ch.Deutsch et al.,Terahertz photonic crystal resonators in double-metal waveguides, Opt.Express,2007,15(19):12418-12424
    [131]Miguel Navarro-Cia, Miguel Beruete, Spyros Agrafiotis et al.,Broadband spoof plasmons and subwavelength electromagnetic energy confinement on ultrathin metafilms, 2009,17(20):18184-18195
    [132]Rajind Mendis, Daniel M.Mittleman, Comparison of the lowest-order transverse-electric(TE1) and transverse-magnetic(TEM) modes of the parallel- plate waveguide for terahertz pulse applications,Opt.Express,2009,17(17): 14839-14850
    [133]David G. Cooke, Peter Uhd Jepsen, Dynamic control of the flow of terahertz light, Honolulu, Hawaii:Nonlinear Optics: Materials, Fundamentals and Applications (NLO),2009,NWA:NWA3
    [134]J.W.Lee,T.H.Park,Peter Nordlander et al., Terahertz transmission properties of an individual slit in a thin metallic plate,Opt.Express, 2009,17(15):12660-12667
    [135]Li Jiusheng, Zhao Xiaoli, Terahertz waveguides based on photonic crystal, Shanghai, China: Communications and Photonics Conference and Exhibition (ACP), 2009,1-2
    [136]Behnood G.Ghamsari, A.Hamed Majedi, THz plasmonic modes in metal-clad planar multilayer waveguides, Proc.of SPIE,2009,7311:73110B-1-73110B-11
    [137]Sang-Hoon Kim, Eui Su Lee, Young Bin ji et al., Improvement of THz coupling using a tapered parallel-plate waveguide, Opt.Express,2010,18(2):1289-1295
    [138]N.Amer,W.C.Hurlbut, B.J.Norton et al., Terahertz wave propagation in one-dimensional periodic dielectrics,Appl.Opt.,2006,45(8):1857-1860
    [139]P.St.J.Russell,R.Dettmer, A neat idea [photonic crystal fiber], IEE Review, 2001,47(5):19-23
    [140]J.C.Knight, T.A.Birks, P.St.J.Russell et al., Pure silica single-mode fibre with hexagonal photonic crystal cladding, in Proc.Optical Fiber Communications Conference OFC 1996, San Jose, California, USA,1996
    [141]J.C.Knight, J.Broeng, T.A.Birks et al., Photonic band gap guidance in optical fibers, Science, 1998,282(5393):1476-1478
    [142]R.F.Cregan, B.J.Mangan,J.C.Knight et al., Single-mode photonic band gap guidance of light in air, Science,1999,285:1537-1539
    [143] Jonathan C. Knight, Photonic crystal fibers,Nature,2003,424:847-851
    [144]T.A.Birks, J.C.Kinght, P.S.J.Russell, Endlessly single-mode photonic crystal fiber, Opt.Lett.,1997,22(13):961-963
    [145]N.A.Mortensen, J.R.Folkenberg, M.D.Nielsen et al. Modal cutoff and the V parameter in photonic crystal fibers, Opt.Lett.,2003,28(20):1879-1881
    [146]B.T.Kuhlmey, R.C.McPhedran, C.M.de Sterke et al.,Microtructured optical fibers: where's the edge?, Opt. Lett., 2002,10(22):1285-1290
    [147]N.A.Mortensen, M.D.Nielsen, J.R.Folkenberg et al., Improved large-mode-area endlessly single-mode photonic crystal fibers, Opt.Lett.,2003,28(6):393-395
    [148]L.Labonte, D.Pagnoux, P.Roy et al. Accurate measurement of the cutoff wavelength in a microstructured optical fiber by means of an azimuthal filtering technique, Opt.Lett.,2006,31(12):1779-1781
    [149]K. Nakajima, Jian zhou, K.Tajima et al., Ultrawide-band single-mode transmission performance in a low-loss photonic crystal fiber, J.Lightwave Technol.,2005, 23(1): 7-12
    [150]N.A.Mortensen, J.R.Folken, P.M.W.Skovgaard et al., Numerical aperture of single-mode photonic crystal fibers, IEEE Photon.Technol.Lett., 2002,14(8): 1094-1096
    [151]K.Suzjki, H.Kubota, S.Kawanishi, Optical properties of a low-loss polarization-maintaing photonic crystal fiber, Optics Express, 2001,9(13): 676-680
    [152]A.O.Blanch, J.C.Knight, W.J.Wadsworth et al., Highly birefringent photonic crystal fibers, Opt.Lett.,2000.25(18):1325-1327
    [153]T.P.Hansen, J.Broeng, S.E.B.libori et al.,Highly birefringent index-guiding photonic crystal fbiers, IEEE Photo.Tech.Let.,2001,13(6):588-590
    [154]M.J.Steel, R.M.Osgood, Elliptical-hole photonic crystal fibers, Opt.Lett., 2001,26(4):229-231
    [155]M.J.Steel, R.M.Osgood, Polarization and dispersive properties of elliptical-hole photonic crystal fibers, J.Light.Tech.,2001,19(4):495-503
    [156]D.Mogilevtsev, J.Broeng, S.E.Barkou et al.,Design of polarization-preserving photonic crystal fibers with elliptical pores, J.Opt.A: Pure Appl.Opt., 2001, 3:141-143
    [157]J.C.Knight, J.Arriaga, T.A.Birks et al., Anomalous dispersion in photonic crystal fiber, IEEE Photo. Tech. Let., 2000,12(7):807-809
    [158]W.H.Reeves, J.C.Knight, P.St.J.Russell et al., Demonstration of ultra-flattened dispersion in photonic crystal fibers, Optics Express, 2002,10(14):609-613
    [159]A.Ferrando, E.Silvestre, J.J.Miret et al., Nearly zero ultraflattened dispersion in photonic crystal fibers, Opt.Lett.,2000,25(11):790-792
    [160]A.Ferrando, E.Silvestre, P.Andres, Designing the properties of dispersion-flattened photonic crystal fibers, Optics Express,2001,9(13):687-697
    [161]J.K.Ranka, R.S.Windeler, A.J.Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800nm, Opt.Lett., 2000,25(1):25-27
    [162]K.Saitoh, M.Koshiba, Numerical modeling of photonic crystal fibers, J.Light.Technol.,2005,23(11):3580-3590
    [163]K.Saitoh, M.Koshiba, Highly nonlinear dispersion-flattened photonic crystal fibers for supercontinuum generation in a telecommunication window, Opt.Express,2004,12(10):2027-2032
    [164]K.Sakamaki, M.Nakao, M.Naganuma et al., Soliton induced supercontinuum generation in photonic crystal fiber, IEEE J.Selected Topics In Quantum Electron.,2004,10(5):876-884
    [165]Jia Ya-Qin, Yan Pei-Guang, LV Ke-Cheng et al.,Experimental study and numerical analysis of femtosecond pulse propagation and supercontinuum generation in highly nonlinear photonic crystal fiber, Acta Phys.Sin., 2006, 55(4):1809-1814
    [166]K.Sakamaki, M.Nakao, M.Naganuma et al., Soliton induced supercontinuum generation in photonic crystal fiber, IEEE J.Selected Topics In Quantum Electron.,2004,10(5):876-884
    [167]Tanya M.Monro, V.Pruneri, N.G.R.Broderick et al., Broad-band second- marmonic generation in holey optical fibers, IEEE Photon.Tech.Lett., 13(9):981-983
    [168]M.D.Nielsen, J.R.Folkenberg, N.A.Mortensen, Singlemode photonic crystal fiber with effective area of 600μm2 and low bending loss, Electronics Letters, 2003, 39(25):1802-1803
    [169]J.C.Knight, T.A.Birks, R.F.Cregan et al., Large mode area photonic crystal fiber, Electronics Letters, 1998,34(13):1347-1348
    [170]Kunimasa Saitoh,Masanori Koshiba, Leakage loss and group velocity dispersion in air-core photonic bandgap fibers, Opt.Express,11(23):3100-3109
    [171]L.Vincetti, Confinement losses in honeycomb fibers, IEEE Photon.Technol.Lett. 2004,16(9):2048-2050
    [172]M.Yan, P.Shum, Leakage loss of air-guiding honeycomb photonic bandgap fiber, in Optical fiber Communication Conference,2005,Technical Digest.OFC/ NFOEC, Anaheim California, USA, vol.1,6-11 March 2005,pp1-3
    [173]J.A.West, C.M.Smith, N.F.Borrelli et al. Surface modes in air-core photonic band-gap fibers, Opt.Express,2004,12(8):1485-1496
    [174]Hyang Kyun Kim, Jonghwa Shin, Shanhui Fan et al., Surface-mode behavior of air-core photonic-bandgap fibers, Lasers and Electro-Optics 2004.(CLEO). Conference 2004,2:16-21
    [175]D.G.Ouzounov, F.R.Ahmad, D.Muller et al., Generation of megawatt optical solitons in hollow-core photonic band-gap fibers, Science,301:1702-1704
    [176]C.J.S.de Matos, J.R.Taylor, T.P.Hansen et al., All-fiber chirped pulse amplification using highly-despersive air-core photonic bandgap fiber, Opt.Express,2003, 11: 2832-2837
    [177]J.Limpert, T.Schreiber, S.Nolte et al. All fiber chirped-pulse amplification system based on compression in air-guiding photonic bandgap fiber, Opt. Express, 2003,11:3332-3337
    [178]C.J.S.de Matos, J.R.Taylor, Chirped pulse Raman amplification with compression in air-core photonic bandgap fiber, Opt.Express, 2005, 13:2828-2834
    [179]F.Benabid, J.C.Knight, P.St.J.Russell, Particle levitation and guidance in hollow-coer photonic crystal fiber,Opt.Express,2002,10(21):1195-1203
    [180]Y.L.Hoo, W.Jin, H.L.Ho et al., Evanescent-wave gas sensing using microstructure fiber, Opt. Eng., 2002,41(1):8-9
    [181]Y.L.Hoo, W.Jin, C.Shi et al., Design and modeling of a photonic crystal fiber gas sensor, Appl.Opt.,2003,42(18):3509-3515
    [182]Y.L.Hoo, W.Jin, H.L.Ho et al., Gas diffusion measurement using hollow-core photonic bandgap fiber, Sensors and Actuators B, 2005,105:183-186
    [183]T.Ritari, J.Tuominen,H.Ludvigsen et al., Gas sensing using air-guiding photonic bandgap fibers, Opt.Express,2004,12(17):4080-4087
    [184]Jesper B.Jensen, Lars H.Pedersen, Poul E.Hoiby et al., Photonic crystal fiber based evanescent-wave sensor for detection of biomolecules in aqueous solutions, Opt.Lett.,2004,20(17):1974-1976
    [185]Shu-Guang Li, Si-Ying Liu, Zhao-Yuan Song et al., Study of the sensitivity of gas sensing by use of index-guiding photonic crystal fibers, Appl.Opt.,2007, 46(22): 5183-5188
    [186]X.Yu, Y.Sun, P.Shum, Evanescent field absorption sensor in aqueous solutions using a defected-core photonic crystal fiber, San Diego, California: National Fiber Optic Engineers Conference (NFOEC),2008,1-3
    [187]Bertrand Gauvreau, Alireza Hassani,Majid Fassi Fehri et al.,Photonic bandgap fiber-based surface plasmon resonance sensors, Opt.Express,2007,15(18): 11413-11426
    [188]Nikolaos John Florous, Kunimasa Saitoh, Masanori Koshiba, Inline cryogenic temperature sensor based on the excitation of localized plasmonic oscillations in metallic nanoparticles embedded into photonic crystal fibers,Anaheim: Optical Fiber Communication and the National Fiber Optic Engineers Conference, 2007,1-3
    [189]Alireza Hassani, Maksim Skorobogatiy, Photonic crystal fiber-based plasmonic sensors for tht detection of biolayer thickness, J.Opt.Soc.Am.B,2009, 26(8): 1550-1557
    [190]Chao Shi, Claire Gu, Rebecca Newhouse et al.,Portable photonic crystal fiber sensor based on surface enhanced Raman scattering(SERS), San Jose, California: Frontiers in Optics (FiO), Fiber Optics Sensors (FTuE),2009,FTuE4
    [191]Xuan Yang, Chao Shi, Damon Wheeler et al., High-sensitivity molecular sensing using hollow-core photonic crystal fiber and surface-enhanced raman scattering, J.Opt.Soc.Am.A,2010,27(5):977-984
    [192]Stanislav O.Konorov, Aleksei M.Zheltikov, Michael Scalora, Photonic-crystal fiber as a multifunctional optical sensor and sample collector, Opt.Express, 13(9):3454-3459
    [193]Aleksandra Czapla, Tomasz R.Wolinski, Slawomir Ertman et al.,Sensing applications of photonic crystal fibers infiltrated with liquid crystal, Warsaw, Poland:Instrumentation and measurement Technology Conference,2007,1-3
    [194]Yongqin Yu, Xuejin Li, Xueming Hong et al., Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling,Opt.Express,2010, 18(15):15383-15388
    [195]Tingting Han, Yan-ge Liu, Zhi Wang et al., Avoided-crossing-based ultrasensitive photonic crystal fiber refractive index sensor,Opt.Lett.,2010, 35(12):2061-2063
    [196]N.Groothoff, J.Canning, E.Buckley et al., Bragg gratings in air silica structured fibers, Opt.Lett.,2003,28(4):233-235
    [197]H.Dobb, K.Kalli, D.J.Webb, Measured sensitivity of arc-induced long-period grating sensors in photonic crystal fiber,Opt.Communications,2006,260:184-191
    [198]Lars Rindorf, Jesper B.Jensen, Martin Dufva et al., Photonic crystal fiber long-period gratings for biochemical sensing,Opt.Express, 2006, 14(18): 8224-8231
    [199]Nikolaos John Florous, Kunimasa Saitoh, Shailendra Varsheney et al.,Fluidic sensors based on photonic crystal fiber gratings: an energing technology for realizing ultra-low thermo-responsive sensing plarforms, Salt Lake City: Integrated Photonics and Nanophotonics Research and Applications (IPNRA), 2007,ITuH2
    [200]Nikolaos J.Florous, K.Saitoh, S.K.Varsheney et al., Inline cryogenic temperature sensors based on photonic crystal fiber bragg gratings infiltrated with noble gases for harsh space application,Munich:Lasers and Electro-Optics, 2007 and the International Quantum Electronics Conference,2007,1-1
    [201]Lars Rindorf, Ole Bang, Sensitivity of photonic crystal fiber graging sensors: biosensing, refractive index, strain, and temperature sensing,J.Opt.Soc.Am.B, 2008,25(3):310-324
    [202]Chun-Liu Zhao, Limin Xiao, Jian Ju et al., Strain and temperature characteristics of a long-period grating written in a photonic crystal fiber and its application as a temperature-insensitive strain sensor, J.Ligh.Technol.,2008,26(2):220-227
    [203]Tomasz Nasilowski, Doped core microstructured fibers for bragg grating sensor applications, Photonics Letters of Poland,2009,1(3):112-114
    [204]W.N.MacPherson, M.J.Gander, R.Mcbride et al., Remotely addressed optical curvature sensor using multicore photonic crystal fibre, Opt.Communication, 2001,193:97-104
    [205]John H.Rothwell,Donal A.Flavin, William N.MacPherson et al.,Photonic sensing based on variation of propagation properties of photonic crystal fibers,2006, 14(25):12445-12450
    [206]Harneet K.Gahir, Dhiraj Khanna, Design and development of a temperature-compensated fiber optic polarimetric pressure sensor based on photonic crystal fiber at 1550nm, Appl.Opt.,2007, 46(8):1184-1189
    [207]Orlando Frazao, Jose M.Baptista, Jose L.Santos et al.,Curvature sensor using a highly birefringent photonic crystal fiber with two asymmetric hole regions in a sagnac interferometer,Appl.Opt.,2008,47(13):2520-2523
    [208]H.Y.Fu, A.C.L.Wong,P.A.Childs et al., Multiplexing of polarization-maintaining photonic crystal fiber based Sagnac interferometric sensors, Opt.Express,2009, 17(21):18501-18512
    [209]Bongkyun Kim, Tae-Hoon Kim, Long Cui et al., Twin core photonic crystal fiber for in-line Mach-Zehnder interferometric sensing applications,Opt. Express, 2009,17(18):15502-15507
    [210]Gianluca Coviello, Vittoria Finazzi, Joel Villatoro et al., Thermally stabilized PCF-based sensor for temperature measurements up to 1000℃,Opt.Express, 17(24):21551-21559
    [211]Chun-Liu Zhao, Xingyong Dong, Temperature-indenpendent strain sensor based on intensity measurement using a highly birefringent photonic crystal fiber loop mirror, Shanghai, China:Communications and Photonics Conference and Exhibition(ACP), 2009,1-2
    [212]W.Shin, T.J.Ahn, Y.L.Lee et al., Highly sensitive strain and bending sensor based on a fiber Mach-Zehnder interferometer in photonic crystal fiber, San Jose, CA: Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010,1-2
    [213]Fernando C.Favero, Sully M.M.Quintero, Cicero Martelli et al.,Hydrostatic pressure sensing with high birefringence photonic crystal fibers, Sensors,2010, 10:9698-9711
    [214]Paul Childs, Allan C.L.Wong et al.Fourier analysis for hydrostatic pressure sensing in a polarization-maintaining photonic crystal fiber, Appl.Opt., 2010, 49(36):6861-6867
    [215]H.Y.Fu, Chuang Wu, M.L.V.Tse et al., High pressure sensor based on photonic crystal fiber for downhole application, Appl.Opt.,2010,49(14):2639-2643
    [216]Bo Dong, Da-Peng Zhou, Li Wei, Temperature insensitive all-fiber compact polarization-maintaining photonic crystal fiber based interferometer and its applications in fiber sensors, J.Lightw.Technol.,2010,28(7):1011-1015
    [217]H.Y.Fu, Sunil K.Khijwania, H.Y.Tam et al., Polarization-maintaining photonic-crystal-fiber-based all-optical polarimetric torsion sensor,Appl.Opt., 2010,49(31):5954-5958
    [218]Darran K.C.Wu, Boris T.Kuhlmey, Benjamin J.Eggleton, Ultrasensitive photonic crystal fiber refractive index sensor, Opt.Lett.,2009,34(3):322-324
    [219]Rafael Euzebio P.de Oliveira, Christiano J.S.de Matos, Juliano G.Hayashi et al., Pressure sensing based on nonconventional air-guiding transmission windows in hollow-core photonic crystal fibers,J.Ligh.Technol.2009,27(11):1605-1609
    [230]Bing Sun, Ming-Yang Chen, Yong-Kang Zhang et al., Microstructred-core photonic-crystal fiber for ultra-sensitive refractive index sensing,Opt.Express, 2011,19(5):4092-4100
    [231]Bryan Park, Il Woong Jung, J Provine et al., Monolithic silicon photonic crystal fiber tip sensor for refractive index and temperature sensing, San Jose, CA: Lasers and Electro-Optics (CLEO) and Quantum Electronics and Laser Science Conference (QELS), 2010,1-2
    [232]M.Skorobogatiy, Design and fabrication of photonic crystal fibers for plasmonic sensing, applications from the visible to THz, Karlsruhe, Germany: Optical Sensors (Sensors), Fibers and Sensors II (SThC),2010,SThC3
    [233]Bongkyun Kim, Hyun-Kim, Khurram Naeem et al., Design, fabrication, and sensor applications of photonic crystal fibers, Journal of the Korean Physical Society,2010,57(6):1937-1941
    [234]N.Palka, W.Ciurapinski, J.Wojcik et al.,Core-ring photonic crystal fibers for sensing, Eur.Phys.J.Special Topics,2008,154:139-142
    [235]Maksim Skorobogatiy, Microstructured and photonic bandgap fibers for application in the resonant bio- and chemical sensors, Journal of Sensors,2009, 524237
    [236]Boris T.Kuhlmey,Advances in solid-core photonic bandgap fiber devices and sensors, Shanghai, China:Communications and Photonics Conference and Exhibition(ACP),2009,1-2
    [237]R.Biswas, M.Kandel,G.Mehta et al.,Antiresonant-guiding photonic crystal fibers for refractive index gradients sensing, San Jose, California: Frontiers in Optics (FiO), Fiber Optics Sensors (FTuE):2009,1-3
    [238]John Canning, Properties of specialist fibres and bagg gratings for optical fiber sensors, Journal of Sensors, 2009,871580
    [1]詹姆士·兰德,微波和THz频段用于遥感标准的研发,宇航计测技术, 2007, z1: 20-26
    [2]E.R.Brown, Fundamentals of Terrestrial Millimeter-Wave and THz Remote Sensing, International Journal of High Speed Electronics and Systems, 2003, 13(4):995-1097
    [3]Michael J.Fitch, Robert Osiander, Terahertz Wave for Communications and Sensing, Johns Hopkins APL Tech. Dig.,2004,25(4): 348-355
    [4]Jim Byrnes, Advances in Sensing with Security Applications, Netherlands: Springer,2006, 243-268
    [5]K.B.Cooper, R.J.Dengler, G.Chattopadhyay, et al., A High-Resolution Imaging Radar at 580GHz, IEEE Microw. Wireless Compon. Lett., 2008, 18(1):64-66
    [6]R.Piesiewicz, T.Kleine-Ostmann, N.Krumbholz, et al., Concept and Perspectives of Future Ultra Broadband THz Communication Systems, China: IEEE 31th Intl. Conf.on IRMMW and 14th Intl.Conf.on Terahertz Electronics,2006,96-96
    [7]T. Kürner, R. Piesiewicz, M. Koch, et al.,Propagation Models, Measurements and Simulations for Wireless Communication Systems beyond 100 GHz, Torino Italy: International Conference on Electromagnetics in Advanced Applications, 2007, 108-111
    [8]R.Piesiewicz, M.Jacob,J.Schoebel, et al., Influence of hardware parameters on the performance of future indoor THz communication systems under realistic propagation conditions, Munchen:Proc.Eur.Microw.Week , 2007,327-330
    [9]R.E.Miles, X.-C.Zhang, H.Eisele, et al., Terahertz Frequency Detection and Identification of Materials and Objects, Netherlands:Springer, 2007,325-338
    [10]M.Koch, Terahertz Applications and Techniques, Optical Fiber Communication and the National Fiber Optic Engineers Conference, 2007,1-3
    [11]N.Krumbholz, K.Gerlach, F.Rutz, et al.,Omnidirectional terahertz mirrors: A key element for future terahertz communication systems,Appl.Phys.Lett.2006,88: 202905-202905-3
    [12]Radoslaw Piesiewicz, Christian Jansen, Daniel Mittleman,et al., Scattering Analysis for the Modeling of THz Communication Systems,IEEE Trans. Antennas Propag.,2007,55(11):3002-3009
    [13]姚建铨,迟楠,杨鹏飞等,太赫兹通信技术的研究与展望,中国激光, 2009, 36(9): 2213-2233
    [14]Robert J. Foltynowicz, Michael C.Wanke, Michael A. Mangan., Atmospheric Propagation of THz Radiation, Albuquerque: Sandia National Laboratories, 2005, 1-21
    [15]J.R.Pardo, E.R.Serabyn, J.Cernicharo., Submillimeter atmospheric transmission measurements on Mauna Kea during El Nino conditions: implications for broadband opacity contributions, J.Quant.Spectrosc.&Radiat. Transfer, 2001, 68: 419-433
    [16]D.A.Naylor, G.R.Davis, B.G.Gom,et al., Atmospheric transmission at submillimetre wavelengths from Mauna Kea, Monthly Notes of the Royal Astronomical Society, 2000,315:622-628
    [17]E.Serabyn, E.W.Weisstein, D.C.Lis, et al., Submillimeter Fourier-transform spectrometer measurements of atmospheric opacity above Mauna Kea, Applied Optics, 1998, 37:2185-2198
    [18]R.J.Emery, P.Moffat, R.A.Bohlander,et al., Measurements of anomalous atmospheric absorption in the wavenumber range 4cm-1-15 cm-1, Journal of Atmospheric and Terrestrial Physics, 1975,37:587-594
    [19]R.J.Emery, A.M.Zavody, Atmospheric propagation in the frequency range 100- 1000GHz, The Radio and Electronic Engineer, 1979 49,(7/8):370-380
    [20]D.L.Woolard, E.R.Brown, A.C.Samuels, et al., Terahertz-frequency spectroscopy as a technique for the remote detection of biological warfare agents, Orlando, Florida: Proceedings to the 23nd Army Science Conference,2002
    [21]W.A.Traub, M.T.Stier, Theoretical atmospheric transmission in the mid- and far-infrared at four altitudes, Applied Optics, 1976, 15(2):364-377
    [22]Jeremy Pearce, Daniel M.Mileman, Using terahertz pulses to study light scattering, Physica B,2003,338:92-96
    [23]A. A. Danylov, J. Waldman, THz Laboratory Measurements of Atmospheric Absorption Between 6% and 52% Relative Humidity, Internal STL Report, 2006,1-7
    [24]许景周,张希成.太赫兹科学技术和应用,北京:北京大学出版社, 2007,1-20
    [25]张存林等著.太赫兹感测与成像,北京:国防工业出版社, 2008,218-223
    [26]刘长盛,刘文保.大气辐射学,南京:南京大学出版社, 1990,1-90
    [27]Paul B. Hays, Hilary E.Snell, Atmospheric Remote Sensing in the Terahertz Region,First International Symposium on Space Terahertz Technology, 1990,482- 491
    [28]Frank C. De Lucia, Douglas T. Petkie, Henry O. Everitt, A Double Resonance Approach to Submillimeter/ Terahertz Remote Sensing at Atmospheric Pressure, IEEE J. of Quan. Electron., 2009 ,45(2):163-170
    [29]Kasai, Yasuko, Ochiai, Satoshi, Mendrok, Jana, et al., THz remote sensing for water vapor and cloud observation,37th COSPAR Scientific Assembly, 2008, 1456-1457
    [30]J Mendrok, P Baron, Y Kasai, Terahertz Remote Sensing of Ice Clouds-Sensitivity on Ice Dielectric Properties, American Geophysical Union, Fall Meeting, 2007
    [31]KASAI Yasuko, Terahertz-Wave Remote Sensing,Journal of the National Institute of Information and Communication Technology, 2008, 55(1):79-81
    [32]SAGAWA Hideo, Terahertz Remote-Sensing of the Venusian Atmosphere: Observations Using the Nobeyama Millimeter Array, Journal of the National Institute of Information and Communication Technology, 2008,55(1): 149-157
    [33]Jana Mendrok, Philippe Baron, Yasuko Kasai, Studying the potential of terahertz radiation for deriving ice cloud microphysical information, Proc.of SPIE, 2008, 7107:710704-710704-8
    [34]KASAI Yasuko, SETA Takamasa, Atmospheric Propagation Model of Terhertz-Wave, Journal of the National Institute of Information and Communications Technology, 2008, 55(1) :73-77
    [35] JPL database,http://spec.jpl.nasa.gov/
    [36]M.Hess, P.Koepke, I.Schult, Optical Properties of Aerosols and Clouds: The Software Package OPAC, Bull.Am.Met.Soc., 1998,79:831-844
    [37]L.S.Rothman, I.E.Gordon, A.Barbe, et al., The HITRAN 2008 molecular spectroscopic database,J.Quant.Spectrosc.&Radiat. Transfer, 2009, 110:533-572
    [38]L.S.Rothman, R.R.Gamache, A.Goldman, et at., The HITRAN database: 1986 edition, Applied Optics, 1987,26:4058-4097
    [39]Rothman L S, Gamache R R, Tipping R H, et al., The HITRAN molecular database: edition of 1991 and 1992, J.Quant.Spectrosc.&Radiat. Transfer, 1992, 48(5,6):469-507
    [40]Rothman L S, Barbe A, Chris Penner D, et al., The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001, J.Quant.Spectrosc.&Radiat. Transfer, 2003, 82:5-44
    [41]Rothman L S, Jacquemarta D, Barbeb A, et al., The HITRAN 2004 molecular spectroscopic database, Special Issue of the Journal of Quantitative Spectroscopy and Radiative Transfer, 2005, 96:139-204
    [42]Elsasser W M, Mean Absorption and Equivalent Absorption Coefficient of a Band Spectrum, Phy.Rev., 1938, 54:126-129
    [43]Elsasser W M, Note on Atmospheric Absorption Caused by the Rotational Water Band, Phys.Rev., 1938, 53:768-768
    [44]Bignell K, Sheppard P A, On the atmospheric infrared continuum,J.Opt.Soc.Am., 1962,53(4):466-479
    [45]Penner S S, Varanasi P. Spectral absorption coefficients in the pure rotation spectrum of water vapor,J.Quant.Spectrosc.&Radiat. Transfer, 1967, 7:687-690
    [46]Varanasi P, Chou S, Penner S S. Absorption coefficients for water vapor in the 600~1000cm-1 region, J.Quant.Spectrosc.&Radiat. Transfer,1968,8(8):1537- 1541
    [47]Tobin D C, Strow L L, Lafferty W J, et al., Experimental investigation of the self-and N2 broadened continuum within theμ2 band of water vapor,Appl.Opt., 1996, 35:4724-4734
    [48]S.A. Clough, F.X. Kneizys, R.W. Davies, Line shape and the water vapor continuum, Atmospheric Research, 1989,23(3-4):229-241
    [49]E. J. Mlawer, S. A. Clough, D. C. Tobin, The MT_CKD water vapor continuum: a revised perspective including collision induced effects, Germany:Atmospheric Science from Space using Fourier Transform Spectrometry (ASSFTS) Workshop, Bad Wildbad (Black Forest),2003
    [50]吴北婴,李卫,陈洪滨等.大气辐射传输实用算法,北京:气象出版社,1998,1-20
    [51]S.图梅著,王明星,王庚辰等译.大气气溶胶,北京:科学出版社,1984, 1-15
    [52]Mendrok J, The SARTre Model for Radiative Transfer in Spherical Atmospheres and its application to the Derivation of Cirrus Cloud Properties[D]Germany: Freie Universit?t Berlin, 2006
    [53]尤峻汉.天体物理中的辐射机制[M].北京:科学出版社, 1983,47-117
    [54]K.R.兰编,杨建译.天体物理公式,上海:上海科学技术出版社,1983,67-68
    [55]石广玉.大气辐射学,北京:科学出版社, 2007,142-150
    [56]Hans J. Liebe, MPM-an atmospheric millimeter-wave propagation model, Int.J. Infrared Millimeter Waves, 1989,10(6):631-650
    [57]Juan R. Pardo, Jose Cernicharo, Eugene Serabyn, Atmospheric Transmission at Microwaves (ATM): An Improved Model for Millimeter/Submillimeter Applications, IEEE Trans. Antennas Propagat., 2001, 49(12):1683-1694
    [58]J.Urban, P.Baron, N.Lautié, et al., Moliere(v5): a versatile forward-and inversion model for the millimeter and sub-millimeter wavelength range, J.Quant. Spectrosc. &Radiat. Transfer, 2004, 83:529-554
    [59]Philippe Baron, Jana Mendrok, KASAI Yasuko, et al., AMATERASU: Model for Atmospheric TeraHertz Radiation Analysis and Simulation, Journal of the National Institute of Information and Communications Technology, 2008, 55(1): 109-120
    [60]Jana Mendrok, Philippe Baron, KASAI Yasuko., The AMATERASU Scattering Module, Journal of the National Institute of Information and Communications Technology, 2008,55(1):123-132
    [61]V.B.Podobedov, D.F.Plusquellic, K.M.Siegrist, et al., Laboratory Measurements for the water vapor continuum and theoretical calculations for the water vapor foreign continuum in the Terahertz spectral region, AIP Conf. Proc., 2009, 1100(1): 151-154.
    [62]V.B.Podobedov, D.F.Plusquellic, K.E.Siegrist, et al., New measurements of the water vapor continuum in the region from 0.3 to 2.7THz, J.Quant.Spectrosc.& Radiat. Transfer, 2008, 109: 458-467
    [63]T.Kuhn, A.Bauer, M.Godon, et al., Water vapor continuum: absorption measurements at 350GHz and model calculations, J.Quant.Spectrosc.&Radiat. Transfer, 2002, 74: 545-562
    [64]Podobedov VB, Plusquellic DF, Fraser GT, Investigation of water-vapor continuum in the THz region using a multipass cell, J.Quant.Spectrosc.&Radiat. Transfer, 2005, 91(3): 287-295
    [65]G. R. Davis, The far infrared continuum absorption of water vapour, J.Quant. Spectrosc.&Radiat. Transfer, 1993, 50(6): 673-694
    [66]Kasai Yasuko, Seta Takamasa, Atmospheric propagation model of terahertz-wave, Journal of the National Institute of Information and Communications Technology, 2008, 55(1):73-77
    [1]T.W.Corwe, T.Globus, D.L.Woolard, J.L.Hesler, Terahertz sources and detectors and their application to biological sensing, Phil.Trans.R.Soc.Lond., 2004,A362: 365-377
    [2]M.Cho, J.Kim,H.Park et al., Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,Opt.Express,2008,16:7-12
    [3]Maik Scheller, Christian J?rdens, Martin Koch, Terahertz form birefringence, Opt.Express, 2010,18:10137-10142
    [4]Shaghik Atakaramians, Shahraam Afshar V., Bernd M.Fischer et al., Low loss, low dispersion and highly birefringent terahertz porous fibers, Opt.Commun.,2009, 282:36-38
    [5]Guobin Ren, Yandong Gong, Ping Shum et al., Low-loss air-core polarization maintaining terahertz fiber, Opt.Express,2008,16:13593-13598
    [6]Y.Han, M.Cho, J.Kim et al., Highly birefringent Terahertz plastic photonic crystal fibers, in Proceedings of IEEE Conference on Infrared, Millimeter and Terahertz wave, 2008,1-2
    [7]R.Courant, Variational methods for the solution of problems of equilibrium and vibrations, Bull.Amer.Math.Soc., 1943,49(1):1-23
    [8]R.W.Clough, The finite element method of structural analysis, Proc.2nd Conf. Electronic Computation, ASCE, Pittsburgh, Pa.,Sept.1960
    [9]曾余庚,徐国华,宋国乡,电磁场有限单元法,北京:科学出版社,1982
    [10]倪光正,钱秀英等,电磁场数值计算.北京:高等教育出版社,1996
    [11]吕英华,计算电磁学的数值方法,北京:清华大学出版社,2006
    [12]金建铭(美),电磁场有限元方法(王建国译),西安:西安电子科技大学出版社,1998
    [13]G.R.布查南,有限元分析(董文军,谢伟松译),北京:科学出版社,2002
    [14]盛新庆,计算电磁学要论,北京:科学出版社,2004,76~108
    [15]中仿科技公司,RF MODULE用户指南,www.CnTech.com.cn
    [16]中仿科技公司,COMSOL Multiphysics有限元法多物理建模与分析,北京:人民交通出版社,2007
    [17]马慧,王刚,COMSOL Multiphysics基本操作指南和常见问题解答,北京:人民交通出版社,2009
    [18]Berenger J.P., A perfectly matched layer for the absorption of electromagnetic waves, J.Comp.Phys.,1994,114(2):185-200
    [19]廖延彪,光纤光学,北京:清华大学出版社,2000(第一版)
    [20]刘德明,光纤光学,北京:科学出版社,2008(第二版)
    [21]吴重庆,光波导理论(第2版),北京:清华大学出版社,2005
    [22]马科斯.玻恩,埃米尔.沃耳夫,光学原理(杨葭荪译),北京:电子工业出版社,2009
    [23]Birks T A, Knight J C, Russell P S J, Endlessly single-mode photonic crystal fiber, Opt.Lett. 1997,22(13): 961-963
    [24]William Reeves, J.Knight, P.Russell et al., Demonstration of ultra-falttened dispersion in photonic crystal fibers,Opt.Express,10(4):609-613
    [25]Jay E.Sharping, Marco Fiorentino, Prem Kumar et al., Optical parametric oscillator based on four-wave mixing in microstructure fiber, Opt.Lett.,27(19): 1675-1677
    [26]刘卫华,宋啸中,王屹山等,飞秒激光脉冲在高非线性光子晶体光纤中产生超连续谱的实验研究,物理学报, 2008,57(2):917-921
    [27]张驰,胡明列,宋有建等,自由耦合输出的大模场面积光子晶体光纤锁模激光器,物理学报,2009, 58 (11):7727-7734
    [28]姜跃进,施伟华,李培丽等,新型THz波超平坦色散光子晶体光纤,物理学报,2010, 59(8): 5559-5563
    [29]Lu J H, Meng Z M, Liu H Y et al., Modification of spontaneous emission rate of micrometer-sized light sources using hollow-core photonic crystal fibers, Chinese Physics B, 2009,18(10): 4333-4338
    [30]Kazunori S, Hirokazu K, Satoki K et al., Optical properties of a low-loss polarization-maintaining photonic crystal fiber, Opt.Express,2001, 9(13): 676-680
    [31]Kunimasa S, Masanori K, Single-polarization single-mode photonic crystal fibers, IEEE Photonics Technology letters, 2003,15(10):1384-1386
    [32]Folkenberg J R, Nielsen M D, Jakobsen C, Broadband single-polarization photonic crystal fiber,Opt.Lett.,2005,30(12):1446-1448
    [33]Chen D R, Shen L F, Ultrahigh Birefringent Photonic Crystal Fiber with Ultralow Confinement Loss, IEEE Photonics Technology Letters,2007, 19(4): 185-187
    [34]Chen D R,Vincent Tse M.L., Tam H.Y., Optical properties of photonic crystal fibers with a fiber core of arrays of subwavelength circular air holes:birefringence and dispersion,Progress In Electromagnetics Research,2010,105:193-212
    [35]Saitoh K, Koshiba M, Single-polarization single-mode photonic crystal fibers, IEEE Photonics Technology Letters,2003,15(10):1384-1340
    [36]Jin Y S, Kim G J,Jeon S G, Terahertz Dielectric Properties of Polymers, J. Korean Phys. Soc.,2006,49: 513-517
    [37]A.Hassani, A.Dupuis, M.Skorobogatiy, Porous polymer fibers for low-loss terahertz guiding,Opt.Express, 2008,16(9):6340-6351
    [38]S.Atakaramians, S.Afshar V, B.M.Fischer et al., Porous fibers: a novel approach to low loss THz waveguides, Opt.Express,2008,16(12):8845-8854
    [39]J.A.Harrington, R.George, P.Pedersen et al., Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation, Opt.Express,2004, 12(21):5263-5268
    [40]L.J. Chen, H.-W. Chen, T.-F. Kao et al., Low-loss subwavelength plastic fiber for terahertz waveguiding,Opt.Lett.,2006, 31(3):308-310
    [41]J.-Y. Lu, C.-P. Yu, H.-C.Chang et al., Terahertz air-core microstructure fiber, Appl.Phys.Lett. ,2008,92(6):064105
    [42]C.-H.Lai, Y.-C. Hsueh, H.-W.Chen et al., Low-index terahertz pipe waveguides , Opt.Lett.,2009,34(21): 3457-3459
    [43] A. W. Snyder, J. D. Love, Optical Waveguide Theory, London: Kluwer academic publisher, 2000
    [44]Goto M, Quema A, Takahashi H et al., Teflon photonic crystal fiber as terahertz waveguide, Jap. J. Appl. Phys. 2004,43: 317-19
    [45]Shaghik A, Shahraam A V, Heike E H et al.,THz porous fibers: design, fabrication, and experimental characterization,Opt. Express,2009,17:14053-14062
    [46]Alireza H, Alexandre D, Maksim S, Low loss porous terahertz fibers containing multiple subwavelength holes Appl. Phys. Lett.,2008,92:071101-071103
    [47]Alexandre D, Jean F A, Denis M et al., Fabrication and THz loss measurements of porous subwavelength fibers using a directional coupler method,Opt. Express, 2009, 17 8012-8028
    [48]Shaghik A, Shahraam A V, Bernd M F et al., Low loss, low dispersion and highly birefringent terahertz porous fibers, Opt. Commun. ,2009, 282:36-38
    [49]Chen H, Chen D ,Hong Z,Squeeezed lattice elliptical-hole terahertz fiber with high birefringence, Appl. Opt.,2009,48:3943-3947
    [50]Chen D,Tam H Y,Highly birefringent Terahertz fibers based on super-cell structure, J. Lightw. Technol. ,2010,28:1858-1863
    [1]T.Okoshi, K.Oyamada, Single-polarization single-mode optical fiber with refractive-index pits on both sides of core, Electron.Lett., 1980,16(18):712-713
    [2]T.Okoshi, Single-polarization single-mode optical fibers, IEEE J.Quantum Electron, 1981,QE-17(6):879-884
    [3]J.R.Simpson, R.H.Stolen, F.M.Sears et al., A single polarization fiber, J.Lightw. Technol.,1983, LT-1(2): 370-373
    [4]K.Okamoto, Single-polarization operation in highly birefringent optical fibers, Appl.Opt., 1984, 23(15):2638-2642
    [5]H.Suganuma, T.Myogadani, H.Yokota, Characterization of sidetunnel single polarization optical fiber, in Proc.Eur.Conf.Optical Communications, Venice, Italy, 1985, 139-142
    [6]K.S.Chiang, Stress-induced birefringence fibers designed for single-polarization single-mode operation, J.Lightw.Technol., 1989,7(2):436-441
    [7]K.Tajima, M.Ohashi, Y.Sasaki, A new single-polarization optical fiber, J.Lightw. Technol, 1989,7(10):1499-1503
    [8]Y.W.Lee, J.Jung, B.Lee, Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter, IEEE photon.Technol. Lett. 2004, 16(1):54-56
    [9]J.Zhang, S.Guo, W.Jung et al., Determination of birefringence and absolute optic axis orientation using polarization-sensitive optical coherence tomography with PM fibers, Opt.Express, 2003, 11(24):3263-3270.
    [10]Y.J.Song, L.Zhan, S.Hu et al., Tnable multiwavelength Brillouin-erbium fiber laser with a polarization-maintaining fiber Sagnac loop filter, IEEE Photon. Technol.Lett, 2004, 16(9):2015-2017
    [11]Pierluigi Debernardi, Heiko J.Unold, Juergen Maehnss et al., Single-mode, single-polarization VCSELs via elliptical surface etching: experiments and theory, IEEE Journal of selected topics in quantum electronics,2003,9(5): 1394-1404
    [12]M.J.Messerly, J.R.Onstott, R.C.Mikkelson, A broad-band single polarization optical fiber, J.Lightw.Technol., 1991,9(7):817-820
    [13]John M. Fini, Design of solid and microstructure fibers for suppression of higher-order mode, Optics Express, 2005, 13(9):3477-3490
    [14]Ming-Yang Chen, Bing Sun, Yong-Kang Zhang, Broadband single-polarization operation in square-lattice photonic crystal fibers, J.Lightw.Technol., 2010,28 (10) :1443-1446
    [15]Hiirokazu Kubota, Satoki Kawanishi, Shigeki Koyanagi et al., Absolutely single polarization photonic crystal fiber, IEEE Photonics Technol. Lett., 2004,16(1): 182-184
    [16]K.Suzuki, H.Kubota, S.Kawanishi et al., High-speed bi-directional polarisation division multiplexed optical transmission in ultra low-loss (1.3dB/km) polarization-maintaining photonic crystal fibre,Electron.Lett.,2001, 37(23): 1399-1401
    [17]Bin Hu, Min Lu, Weinan Li et al., High birefringent rhombic-hole photonic crystal fibers, Applied Optics, 2010,49(31):6098-6101
    [18]T.A.Birks, J.C.Knight, P.St.J.Russel, Endlessly single-mode photonic crystal fiber, Optics Letters, 1997,22(13):961-963
    [1]Marvin J.Weber,Handbook of optical materials,New York:CRC PRESS, 2003
    [2]Samoc,A, Dispersion of refractive properties of solvents: Chloroform, toluene, benzene,and carbondisulfide in ultraviolet, visible,and near-infrared, J.Appl.Phys., 2003,94:6167-6174
    [3]李学金,于永芹,洪学明等,基于液体填充的光子晶体光纤温度传感特性分析,中国激光, 2009,36(5):1140-1144
    [4]Yongqin Yu, Xuejin Li, Xueming Hong et al., Some features of the photonic crystal fiber temperature sensor with liquid ethanol filling,Opt.Express,2010,18(15): 15383-15388
    [5]Yonghao Xu, Xianfeng Chen, Yu Zhu, High sensitive temperature sensor using a liquid-core optical fiber with small refractive index difference between core and cladding materials, Sensor,2008,1872-1878
    [6]Niels Asger Mortensen, Effective area of photonic crystal fibers, Opt.Express, 2002,10(7):341-348
    [7]J.H.Chong, M.K.Rao, Development of a system for laser splicing photonic crystal fiber, Opt.Express,2003,11(12):1365-1370
    [8]J.H.Chong, M.K.Rao, Y.N.Zhu et al., An effective splicing method on photonic crystal fiber using CO2 laser, IEEE Photon. Technol. Lett., 2003,15(7):942-944
    [9]B.H.Park, J.Kim, U.C.Peak et al., The optimum fusion splicing conditions for a large mode area photonic crystal fiber, IEICE Trans.Electron.,2005,E88-C(5): 883-888
    [10]O.Frazao, J.P.Carvalho,H.M.Salgado, Low-loss splice in a microstructured fiber using a conventional fusion splicer, Microw. Opt.Tech.Lett., 2005,46(2):172-174
    [11]J.T.Lizier, G.E.Town, Splice losses in holey optical fibers, IEEE Photon.Technol. Lett.,2001,13(8):794-796
    [12]Y.L.Hoo, W.Jin, J.Ju et al., Loss analysis of single-mode fiber/photonic-crystal fiber splice, Microw.Opt.Technol.Lett., 2004,40(5):378-380
    [13]K.Nakajima, K.Hogari, J.Zhou et al., Hole-assisted fiber design for small bending and splice losses, IEEE Photonol.Tech.Lett.,2003,15(12):1737-1739
    [14]A.D.Yablon, R.T.Bise, Low-loss high-strength microstructured fiber fusion splices using GRIN fiber lenses, IEEE Photon.Technol.Lett.,2005,17(1):118-120
    [15]L.X.Xiao, W.Jin, M.S.Demokan, Fusion splicing small-core photonic crystal fibers and single-mode fibers by repeated arc discharges, Opt.Lett., 2007, 32(2):115-117
    [16]Francisco R. Villatoro, Pablo Udias de la Mora, Numerical analysis of the heat transfer within photonic crystal fibre performs, SPIE,2005,5840:397-408
    [17]付广伟,毕卫红,金娃,待熔光子晶体光纤中的热传导特性,中国激光,2009,36(9):2372-2379
    [18]付广伟,毕卫红,金娃,光子晶体光纤熔接过程中的空气孔力学特性,中国激光,2009,36(11):2966-2971
    [19]付广伟,郭璇,毕卫红,光子晶体光纤熔接机理的研究,燕山大学学报,2007, 31(2)117-120:
    [20]J.H.Chong, M.K.Rao, Y.N.Zhu et al., Investigations of photonic crystal fiber splicing,IEEE, ICICS-PCM 2003,11:164-166
    [21]方宏,娄淑琴,任国斌等,光子晶体光纤接续损耗的理论分析,光学学报, 2006,26(6):806-811
    [22]L.M.Xiao, M.S.Demokan, W.Jin et al. Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect, J.Lightw.Technol., 2007,25(11):3563-3574
    [23]J.Ju, W.Jin,Y.L.Hoo et al., A simple method for estimating the splice loss of photonic crystal fiber/single-mode fiber, Microw.Opt.Technol.Lett.,2004,42(2): 171-173
    [24]B.Bourliaguet, C.Pare, F.Emond et al., Microstructured fiber splicing, Opt. Express, 2003,11(25):3412-3417
    [25]付广伟,光子晶体光纤熔接理论及其关键技术的研究,[博士学位论文],燕山大学,2009
    [26]P.J.Bennett, Tanya M.Monro, D.J.Richardson, Toward practical holey fiber technology: fabrication, splicing, modeling and characterization, Opt.Lett., 1999,24(17):1203-1205

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700