RT42/聚合物纳米相变胶囊乳液研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球经济和工业的迅速发展,能源短缺日益凸显。相变储能技术利用相变潜热来实现能量的储存和利用,有助于提高能源利用效率,节约能源。胶囊化技术将相变材料固定在微-纳米容器中能够改善相变材料本身存在的相变过程流动性、相容性差及腐蚀性等不足。
     本文采用超声波乳化、细乳液原位聚合工艺,以苯乙烯聚合物为壳体,工业级石蜡RT42为芯材,制备出RT42/聚苯乙烯纳米胶囊相变乳液。系统考察超声参数、聚合反应条件、引发剂、分散剂、乳化剂、亲水性共聚单体、核/苯乙烯单体比等因素对聚合反应影响。采用纳米激光粒度仪、透射电子显微镜(TEM)、傅里叶红外光谱(FTIR)、差示扫描量热(DSC)、热失重(TG)、热常数分析仪、旋转粘度计及高低温实验等分析手段对纳米胶囊及其乳液形貌、组成及热物性等进行表征。
     研究表明,采用油溶性引发剂偶氮二异丁腈(AIBN)制备的纳米胶囊相变潜热明显高于水溶性引发剂过硫酸钾(KPS)的;分散剂聚乙烯吡咯烷酮(PVP)能够改善RT42的分散性和乳液稳定性;可聚合型乳化剂(DNS-86)与传统乳化剂【(十二烷基硫酸钠(SDS)和辛烷基酚聚氧乙烯醚-10(OP-10)】复合有助于形成大小均一、性能稳定的纳米胶囊乳液;亲水性共聚单体加入可以改善胶囊囊壁性能,提高胶囊稳定性;核/苯乙烯单体质量比影响纳米胶囊的稳定性能和热性能。
     适宜的RT42/聚合物纳米相变胶囊乳液制备条件为:超声波功率调整值55%,超声时间15min,聚合时间6h,聚合温度60℃。PVP为0.4%(油相质量比,下同);复合乳化剂(DNS-86:SDS:OP-10=2:1:1)总量为9%;AIBN0.4%;亲水性共聚单体丙烯酸乙酯EA3%;RT42与苯乙烯质量比为3:5。制备的纳米胶囊平均粒径为80.8nm,相变潜热达60.14kJ/kg,RT42包封率达92.9%,纳米胶囊粉末的比热容峰值达10.99kJ/kg·℃。制备的乳液比热容峰值5.29kJ/kg·℃,导热系数0.83W/m·K(42℃时),粘度低(质量分数20%乳液40℃为8.35cP)。此外,多次高低温循环后乳液的储热能力没有明显下降。表明合成的纳米胶囊相变乳液适宜作为潜热型功能热流体。
With the rapid development of global economy and industry, the energy shortage hasbecome increasingly prominent. The technology of phase change energy storage, taking useof the latent heat during phase change process to realize thermal energy storage andutilization, is helpful to improve the efficiency of energy utilization and save energy.However, there are some disadvantages for phase change materials themselves, such as thefluidity during phase change process, the corrosivity and the poor compatibility.Encapsulation technology which fixes phase change materials into micrometer or nanonmetercontainers is expected to solve the above shortcomings.
     In this paper, the nanoencapsulated phase change materials (NEPCMs) with paraffinwax of RT42as core and polystyrene as shell were synthesized by ultrasonic technique andminiemulsion in-situ polymerization. The influences of ultrasonic parameters and reactionconditions, initiator, dispersant, surfactants, co-monomers, and the mass ratio of RT42andstyrene on polymerization were systematically investigated. The morphology, compositonand the thermo-physical properties of synthesized nanoencapsulated phase change materialsand latex were characterized by particle size analyzer, transmission electron microscope(TEM), fourier transform infrared spectroscopy (FTIR), differential scanningcalorimeter(DSC), thermogravimetric analyzer (TG), rotational viscometer and high-lowtemperature cycle test.
     The experimental results showed that, the latent heat of NEPCMs with2,2-azobisisobutyronitrile (AIBN) as initiator was obviously higher than that with potassiumpersulfate (KPS). The stability of emulsion and the dispersion of RT42were enhanced usingpolyvinylpyrrolidone (PVP) as dispersant. The combination of polymerizable emulsifier andtraditional emulsifier (sodium dodecylsulfate (SDS) and poly-(ethyleneglycol) monooctyl-phenyl ether (OP-10)) help to improve the stability of emulsion and produce uniformly sizedNEPCMs. Adding hydrophilic co-monomer was usful to improve the shell performance andform core-shell structure. The mass ratio of RT42and St determined the thermo-physicalperformance and the stability of NEPCMs.
     The optimal polymeriztion conditions of NEPCMs were that:55%power adjusted value, 15min ultrasonic time,6h reaction time,60℃reaction temperature,0.4%polyvinylpyrrolido-ne (PVP, mass fraction of the oil phase liquid, the same as follows),9%composite emulsifierwhich constituted by polymerizable emulsifier DNS-86, sodium dodecyl sulfate (SDS) andpoly-(ethylene glycol) monooctylphenyl ether(OP-10) with2:1:1mass ratio,0.4%AIBN,3%EA and3:5mass ratio of RT42and St. The average particle size of prepared nanocapsuleswas80.8nm and the phase change enthalpy was60.14kJ/kg. During the melting process,the peak of the specific heat capacity of powder sample reahed10.99kJ/kg·℃,and theencapsulation rate of RT42was92.9%. The tesed results of the synthesized latex showed that,the viscosity was only8.35cP at20%mass fration and40℃, and the thermal conductivitycoefficient and the specific capacity was0.83W/m·K and5.29kJ/kg·℃at42℃, respectively.In addition, after many times for high-low termperature thermal cycling experiment, the heatstorage capacity of emulsion was not significantly decreased. It suggests that the synthesizedNEPCMs emulsion was a potential candidate as latent functionally thermal fluid.
引文
[1] Pasupathy A, Velraj R, Seeniraj R V. Phase change material-based building architecturefor thermal management in residential and commercial establishments [J]. Renewable andSustainable Energy Reviews,2008,12(1):39-64
    [2]兰孝征.凝胶化、微胶囊化低温相变储能材料研究[D].中国科学院大连化学物理研究所,2003
    [3]徐祖耀.相变原理[M].第一版.北京:科学出版社,2000:116-122
    [4]凌双梅,高学农,尹辉斌.低温相变蓄热材料研究进展[J].广东化工,2007(3):48-51
    [5] Sharma A, Tyagi V V, Chen C R, et al. Review on thermal energy storage with phasechange materials and applications[J]. Renewable and Sustainable Energy Reviews,2009,13(2):318-345
    [6]Belen Zalba A M Marin, Luisa F. Cabeza, et al. Review on thermal energy storagewith phase change: materials, heat transfer analysis and applications[J]. Applied ThermalEngineering,2003,23(3):251-283
    [7] Khudhair A M, Farid M M. A review on energy conservation in building applicationswith thermal storage by latent heat using phase change materials[J]. Energy Conversion andManagement,2004,45(2):263-275
    [8] Nagano K, Ogawa K, Mochida T, et al. Thermal characteristics of magnesium nitratehexahydrate and magnesium chloride hexahydrate mixture as a phase change material foreffective utilization of urban waste heat[J]. Applied Thermal Engineering,2004,24(2–3):221-232
    [9]王华,王胜林,饶文涛.高性能复合相变蓄热材料的制备与蓄热燃烧技术[M].2006:4-45
    [10]周建伟,刘星.相变储能材料的研究及应用新进展[J].河南化工,2007(10):7-10
    [11]张焘,张东.无机盐高温相变储能材料的研究进展与应用[J].无机盐工业,2008(4):11-14
    [12] Farid M M, Khudhair A M, Razack S A K, et al. A review on phase change energystorage: materials and applications[J]. Energy Conversion and Management,2004,45(9–10):1597-1615
    [13] Py X, Olives R, Mauran S. Paraffin/porous-graphite-matrix composite as a high andconstant power thermal storage material[J]. International Journal of Heat and Mass Transfer,2001,44(14):2727-2737
    [14] Nelson G. Application of microencapsulation in textiles[J]. International Journal ofPharmaceutics,2002,242(1–2):55-62
    [15]尚红波.微胶囊相变材料的制备[D].南京工业大学,2006
    [16]洪宗国.微型胶囊在胶粘剂中的应用[J].中国胶粘剂,2000,10(3):38-42
    [17]张巨松,金亮,吴晓丹.相变材料发展及在建筑节能工程中的应用[J].辽宁建材,2010(2):38-45
    [18]颜家桃,高学农,唐亚男,等.复合相变材料的制备及其在地板采暖中的应用[J].新型建筑材料,2010(10):6-9
    [19]崔海亭,杨锋.蓄热技术及其应用[M].北京:化学工业出版社,2004
    [20]高希银,张兴祥,韩娜,等.含相变材料微胶囊的丙烯腈-丙烯酸甲酯熔纺纤维的结构与性能[J].高分子材料科学与工程,2010(10):48-51
    [21]杨骁博,袁卫星,姜军.不同温区相变微胶囊的制备及研究进展[J].制冷,2009(4):49-57
    [22]李桦,马晓光,张晓林,等.相变材料的复合及其调温纺织品[J].纺织学报,2007(1):68-72
    [23] Fang X, Zhang Z. A novel montmorillonite-based composite phase change material andits applications in thermal storage building materials[J]. Energy and Buildings,2006,38(4):377-380
    [24]文越华,张公正,王正刚. Na2SO4·10H2O复合相变储冷体系的热力学性质[J].北京理工大学学报,1999,19(6):778-781
    [25]黄金,柯秀芳.熔融自发浸渗制备多孔陶瓷复合相变储能材料(英文)[J].材料科学与工程学报,2007(3):336-340
    [26]张峻,齐崴,韩志慧.食品微胶囊、超微粉碎加工技术[M].化学工业出版社,2005:1-2
    [27] Koh K., Ohno K., Tsujii Y., et al. Precision synthesis of organie/inorganie hybridnanocapsules with a silanol-functionalized micelle template[J]. Angew Chem Int Edit,2003,42(35):4194-4197
    [28]孙兰萍,许晖,张斌,等.食品成分微胶囊制备技术及发展趋势展望[J].农产品加工(学刊),2008(5):12-17
    [29] Landfester K. Polyreactions in Miniemulsions[J]. Macromolecular RapidCommunications,2001,22(12):896-963
    [30] Antonietti M., Landfester K. Polyreactions in miniemulsions[J]. Progress in PloymerScience,2002,27(4):689-757
    [31]刘硕,张东.纳米胶囊相变材料研究进展[J].化学通报,2008(12):906-911
    [32] Ni K F, Shan G R, Weng Z X, et al. Synthesis of Hybrid Core Shell Nanoparticles byEmulsion (Co)polymerization of Styrene and-Methacryloxypropyltrimethoxysilane[J].Macromolecules,2005,38(17):7321-7329
    [33] Alkan C, Sari A, Karaipekli A. Preparation, thermal properties and thermal reliability ofmicroencapsulated n-eicosane as novel phase change material for thermal energy storage[J].Energy Conversion and Management,2011,52(1):687-692
    [34] Tiarks F, Landfester K, Antonietti M. Preparation of Polymeric Nanocapsules byMiniemulsion Polymerization[J]. Langmuir,2001,17(3):908-918
    [35]孟翠翠,赵晓鹏,陈姗.细乳液聚合法制备双相核材料的电子墨水纳米胶囊[J].功能材料,2012(6):696-699
    [36] Luo Y W, Zhou X D. Nanoencapsulation of a hydrophobic compound by a miniemulsionpolymerization process[J]. Journal of Polymer Science Part A: Polymer Chemistry,2004,9(42):2145-2154
    [37]方玉堂,匡胜严,张正国,等.纳米胶囊相变材料研究[J].太阳能学报,2008(3):295-298
    [38] Fang Y T, Kuang S Y, Gao X N, et al. Preparation and characterization of novelnanoencapsulated phase change materials[J]. Energy Conversion and Management,2008,49(12):3704-3707
    [39]郑媛媛.采用可聚合表面活性剂超声辐照乳液聚合制备高纯共聚物纳米胶乳[D].四川大学,2006
    [40] Freedman H H, Mason J P, Medlia A I. Polysoaps. II. The Preparation of VinylSoaps1[J]. The Journal of Organic Chemistry,1958,23(1):76-82
    [41]卢志敏,李国明.反应性乳化剂存在下MMA/BA微乳液聚合[J].广东化工,2005(8):21-22
    [42]张华洁,陈明凤,瞿金东,等.可聚合乳化剂在核壳乳液及耐沾污外墙涂料中的应用[J].化学建材,2006(6):13-14
    [43]宋林勇,何雪涵,葛学武,等.反相乳液原位界面聚合制备聚合物药物胶囊(英文)[J].中国科学技术大学学报,2008(6):680-686
    [44] Amalvy J I, Unzué M J, Schoonbrood H A S, et al. Reactive Surfactants in HeterophasePolymerization.11. Particle Nucleation[J]. Macromolecules,1998,17(31):5631-5638
    [45]陈金莲,瞿金清,陈焕钦.新型可聚合乳化剂及其在乳液聚合中应用[J].中国胶粘剂,2005(3):46-50
    [46]赵世民.表面活性剂-原理、合成、测定及应用[M].北京:中国石化出版社,2005:19-40
    [47]张洪涛,任天斌.可聚合乳化剂的类型及乳液聚合(续)[J].粘接,1999(3)
    [48] Reb P, Margarit-Puri K, Klapper M, et al. Polymerizable and non polymerizableisophthalic acid derivatives as surfactants in emulsion polymerization[J]. Macromolecules,2000(33):7718-7723
    [49]万波,王得宁.反应型乳化剂的合成及其在乳液聚合中的应用[J].合成橡胶工业,2003(2):94-97
    [50]王慧珺,李大松,彭懋.可聚合阴离子表面活性剂微乳液聚合制备多孔高分子材料[J].高分子材料科学与工程,2008(12):70-73
    [51]殷武,孔志元,朱柯,等.丙烯酸树脂无皂乳液的研究[J].涂料工业,2002(8):1-3
    [52] Michael Dreja, Wim Pyckhout-Hintzen, Bernd Tieke. Copolymerization Behaviour andStructure of Styrene and Polymerizable Surfactants in Three-Component CationicMicroemulsion[J]. Macromoleculars,1998,31:272-280
    [53] Sanchez-Silva L, Tsavalas J, Sundberg D, et al. Synthesis and Characterization ofParaffin Wax Microcapsules with Acrylic-Based Polymer Shells[J]. Industrial&EngineeringChemistry Research,2010,49(23):12204-12211
    [54] Sundberg D C, Casassa A P, Pantazopoulos J, et al. Morphology development ofpolymeric microparticles in aqueous dispersions: I. Thermodynamic considerations[J].Journal of Apploed Polymer Science,1990,7-8(41):1425-1442
    [55] Winzor C L, Sundberg D C. Conversion dependent morphology preditions for compositeemulsion polymers:2. Artificial lattices.[J]. Polymer,1992,33(20):4270-4279
    [56] Chen Y C, Dimonie V, EI-Aasser MS. Particle morphology in artificial compositepolymer latex systems[J]. Journal of Applied Polymer Science,1992,46(4):691-706
    [57] Torza S, Mason S. G. Three-phase interactions in shear and electrical fields[[J]. Journalof Colloid and Interface Science,1970,33(1):67-83
    [58] Gonzalez-ortiz L J, Asua J M. Development of Particle Morphology in EmulsionPolymerization.1. Cluster Dynamics[J]. Macromolecules,1995,28(9):3135-3145
    [59] Gonzalez-ortiz L J, Asua J M. Development of Particle Morphology in EmulsionPolymerization.2. Cluster Dynamics in Reacting Systems[J]. Macromolecules,1996,29(1):383-389
    [60] Gonzalez-ortiz L J, Asua J M. Development of Particle Morphology in EmulsionPolymerization.3. Cluster Nucleation and Dynamics in Polymerizing Systems[J].Macromolecules,1996,29(13):4520-4527
    [61]曹同玉,刘庆普,胡金生.聚合物乳液合成原理性能及应用[M].化学工业出版社,1997:210-215
    [62] Angelopoulos P, Evangelaras H, Koukouvinos C. Small, balanced, efficient and nearrotatable central composite designs[J]. Journal of Statistical Planning and Inference,2009,139(6):2010-2013
    [63] Alvarado J L, Marsh C, Sohn C, et al. Thermal performance of microencapsulated phasechange material

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700