W_nC~(0,±)(n=1-6)团簇的密度泛函理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
团簇是纳米材料结构的基本结构单元之一,纳米材料的性质可以通过改变团簇的尺寸、结构、组成而设计。因此,对团簇基态结构、稳定性和电子特性的理论研究是新材料微观结构设计中的重要课题之一,对于设计具有特定性能的新材料意义重大。本文采用密度泛函理论中的B3LYP方法在LANL2DZ基组水平上对W_nC~(0,±)(n=1-6)团簇进行了研究,其内容及主要结果如下:
     (1)首先对W_nC~(0,±)(n=1-6)团簇各种可能的构型进行了全面几何结构优化,得到了W_nC~(0,±)(n=1-6)团簇的基态结构,发现同尺寸中性、阴阳离子团簇的基态结构比较相似,且大多数基态结构的自旋多重度都较低,这与纯Wn团簇具有较低的自旋多重度类似。当W原子数n>3时,稳定构型从平面转变成立体结构,同时掺入的C原子更趋向于表面最稳定。通过平均结合能和能量二阶差分分析表明,C原子的掺入使得Wn团簇的稳定性增强,当n>1时,同尺寸团簇中阳离子团簇稳定性最强,中性团簇最弱。W_3C团簇稳定性最高,可看作W_nC~(0,±)(n=1~6)团簇的结构基元;
     (2)在获得W_nC~(0,±)(n=1-6)团簇基态结构的基础上,我们用DFT的杂化密度泛函B3LYP方法对W_nC~(0,±)(n=1-6)团簇基态结构的物理化学性质作了深入分析,通过自然键轨道(NBO)分析了W_nC~(0,±)(n=1-6)团簇的电子分布以及W-C之间的相互作用,并与纯钨团簇的得失电子能力比了比较;在磁性方面,通过电子自旋密度图和前线分子轨道能级图揭示了W_2C~(0,±)和W_4C~(0,±)团簇磁性的主要来源;分析W_nC~(0,±)(n=1-6)团簇的红外振动光谱特征频率的振动模式,并对相关的红移、蓝移现象给出了解释;通过对极化率的分析,展示了团簇对外电场的响应情况。
     综上所述,本论文首次对W_nC~(0,±)(n=1-6)团簇的结构及物理化学性质进行了系统的理论研究,可为理解富钨情况下的碳化钨提供理论依据,同时也为寻找新的功能材料具有一定的理论指导意义。
It is known to us that cluster is a basic constitutional unit of nanomaterials whose properties could be designed by controlling the size, geometry structures and compositions. Therefore, it is an important step to study the ground state structures,stablility and electronic properties of cluster for designing micro structures of a new nanomaterial with prescribed properties. In this article, we have applied density functional theory (B3LYP method) to study W_nC~(0,±)(n=1~6)clusters at Lanl2dz level,the results are as follow:
     Firstly, The possible equilibrium geometries of W_nC~(0,±)(n=1~6)clusters are optimized ,and the ground state structures obtained. The calculated results show that: The ground state structure of neutral、anionic and cationic are similar at the same size,and most ground state structure have low spins which is similar with pure Wn clusters ; When n>3, the clusters undergo a transition from two-dimensional structure to three-dimensional structure, and the carbon atom remains on the surface of clusters. Through the average binding-energy and second-order difference of energy analysis, the stability of Wn cluster is increased alone with doped carbon atom. Moreover W_3C is the most stable of W_nC~(0,±)(n=1~6)clusters, so that it takes as the basic structure.
     After getting the ground state structures of W_nC~(0,±)(n=1-6) clusters, we carefully analysis various properties of them at the B3LYP/LANL2DZ level. For examples, through natural bonding orbital (NBO) analyzed the electronic distribution and interaction mechanism between W atom and C atom; compared the ability of gain and lose electronic with the pure Wn clusters; in magnetic aspects, electronic spin density figures and the energy level of frontier molecular orbital were used to show the main magnetic origin of W_2C~(0,±) and W_4C~(0,±)clusters; analyzed the infrared vibration features and relevant vibration modes , the red-shift and blue-shift were also explained and exhibited the response of external electric field by analyzing polarizability.
     Above all, it is the first time to study the physical and chemical properties of the ground state of W_nC~(0,±)(n=1-6) clusters. All of these cluster researches will play an important role in understanding the rich tungsten cases of tungsten carbide and finding new functional materials.
引文
[1]王广厚.团簇物理学[M].上海:上海科技出版社. 2003. 1-2.
    [2] H. S. Nalwa. Encyclopedia and Nanotechnology [M]. New York: American Scientific. 2004, 33.
    [3]阎守胜.固体物理基础[M].北京:北京大学出版社.2000. 350-351.
    [4] L. Hohugven and A. Rosén, Vanadium clusters: Reactivity with CO, NO, O2 and N2 [J]. J. chem.phys. 1999, 110: 2629-2636.
    [5] M. P. Jigato, et al. Vibrational frequencies for NO chemisorbed on different sites: DFT calculations on Pd clusters [J]. Surf. Sci. 1997, 380: 83-90.
    [6] A. N. Andriotis, M.Menon, and G. Froudakis, Catalytic action of Ni atoms in the formation of carbon nanotubes: A molecular dynamics study [J]. Phys. Rev. Lett. 2000, 85:3193-3196.
    [7] S. A. Majetich, Y. Jin. Magnetization Directions of Individual Nanoparticles [J].Science. 1999, 284: 470-473.
    [8] R. H. Kodama. J. Magn.Magn.Mater. Magnetic nanoparticles[J].1999, 200: 359-372
    [9] Y. Volokitin, et al. Thermodynamic properties of nm-sized Pd and Ni particles [J]. Z. Phys. D.1997, 40:136-139.
    [10] I. M. L. Billas, J. A. Becker, et al. Magnetic moments of iron clusters with 25 to 700 atoms and their dependence on temperature [J].Phys. Rev.Lett. 1993, 71: 4067-4070.
    [11] D. C. Douglass, J. P. Bucher, L. A. Bloomfield. Magic numbers in the magnetic properties of gadolinium clusters [J]. Phys. Rev. Lett. 1992, 68:1774-1777.
    [12] P. Ballone, R. O. Jones. Structure and spin in small iron clusters [J].Chem. Phys.Lett. 1995, 233: 632-638.
    [13] B. V. Reddy, S. K. Nayak, S. N. Khanna, et al., Electronic structure and magnetism of Rh_n (n=2-13) clusters [J]. Phys. Rev. B. 1999, 59: 5214-5222.
    [14] L. Lian, C.–X, Su, and P. B. Armentrout, Collision-induced dissociation of Ni_n~+ (n=2-18) with Xe: Bond energies, geometrical structures, and dissociation pathways [J]. J. Chem. Phys. 1992, 96: 7542-7554.
    [15] A. N. Andriotis, N. Lathiotakis, M. Menon, Magnetic properties of clusters of transition metal atoms [J]. Euro.phys. Lett. 1996, 36:37-41.
    [16] Lee G H, Huh S H, et al. Photoelectron spectra of small nanophase W metal cluster anions [J]. Chem. Phys .Lett. 1999, 299:309-314.
    [17] S J Oh, S H Huh, H K Kim, J W Park, G H Lee. Structural evolution of W nano clusters with increasing cluster size [J]. J .Chem. Phys.1999, 111: 7402-7404.
    [18]林秋宝,李仁全,文玉华,朱梓忠. Wn(n=3—27)原子团簇结构的第一性原理计算[J].物理学报, 2008,57(1): 181-185.
    [19] X. R. Zhang, X. L. Ding, J. L. Yang. Densiy Functional theory study of W2 and W4 clusters [J]. Journal of Molecular Structure: THEOCHEM. 2005, 757,113-118.
    [20] X. R. Zhang, X. L. Ding. Densiy Functional theory study of W5 clusters [J]. International Journal of Modern Physic B. 2005, 19(15):2427-2432.
    [21]白云.铝钨团簇的结构和电子特性计算[D].吉林大学硕士学位论文. 2008:28-29.
    [22]唐国艳.AlmWn (m+n=2~6)、AlWn (n=6~9)团簇的结构和电子特性的理论研究[D].吉林大学硕士学位论文.2006.
    [23] X. R. Zhang, X. L. Ding, Q. Fu, et al. Theoretical study of molecular nitrogen adsorption on Wn clusters [J]. Journal of Molecular Structure: THEOCHEM. 2008, 867:17-21.
    [24] Weidele H, Kreisle D, Recknagel E, et al .Thermionic emission from small clusters: direct observation of the kinetic energy distribution of the electrons [J]. Chem. Phys. Lett.1995, 237: 425-431.
    [25]张秀荣,高从花,吴礼清,唐会帅. W_nN_im(n+m≤7; m=1, 2)团簇电子结构与光谱性质的理论研究[J].物理学报, 2010,59 : 248-257.
    [26]张秀荣,刘小芳,康张李. W_nSi_2~(0,±)(n=1-5)团簇结构与光谱的理论研究[J].原子与分子物理学报. 2010, 27(5): 869-877.
    [27] Levy R B, Boudart M. Platinum-Like behavior of tungsten carbide in surface catalysis [J]. Science.1973, 181:547-549.
    [28] Bennett L H, Cuthill J R, McAlister A J, et al. Electronic Structure and Catalytic Behavior of Tungsten Carbide [J]. Science. 1974, 184: 563-565.
    [29] Richard J.C, Jan-Tsyu J.H, Rabalias.J.W. Electronic Structure of Tungsten Carbide and its Catalytic Behavior [J]. Chem. Phys .Lett.1975, 34:337-339.
    [30] Jingguang G.Chen.Carbide and nitride overlayers on early transition metal surfaces: preparation, characterization, and reactivities [J].Chem. Rev. 1996, 96:1477-1498.
    [31] David L, Price, Bernard R C. Total energies and bonding for crystallographic structures in titanium-carbon and tungsten-carbon systems [J]. Phys. Rev. B.1989, 39:4945-4957.
    [32] Haglund J, Guillermet A F. Theory of bonding in transition-metal carbides and nitrides [J]. Phys.Rev. B.1993, 48:11685-11691.
    [33] Guillermet A. F, Haglund J, Grimvall G, Cohesive properties and electronic structure of 5d-transition-metal carbides and nitrides in the NaCl structure [J]. Phys. Rev. B. 1993, 48:11673-11684.
    [34] J. A. Alonso. Electronic and Atomic Structure and Magnetism of Transition-Metal Clusters [J]. Chem. Rev. 2000, 100:637-677.
    [35] Suetin D V, Shein I R, Ivankii A L. Elastic and electronic properties of hexagonal and cubic polymorphs of tungsten monocarbide WC and mononitride WN from first-principles calculations[J].phys.stat.sol.(b).2008,245: 1590-1597.
    [36] Suetin D V, Shein I R, Ivanovskii A L. Structural, elastic and electronic properties and formation energies for hexagonal (W0.5Al0.5)C in comparison with binary carbides WC and Al4C3 from first-principles calculations Physica B .2008, 403:2654-2661.
    [37] Suetin D V, Shein I R, Ivanovskii A L. Structural, electronic properties and stability of tungsten mono- and semi-carbides: A first principles investigation [J]. Journal of Physics and Chemistry of Solids.2009, 70: 64-71.
    [38]马淳安.高活性碳化钨催化材料的制备、表征及电化学性能研究[D].上海大学硕士学位论文.2005.
    [39]刘兵发.纳米钨系粉体材料的制备研究[D].南昌大学硕士学位论文.2006.
    [40]谢海根.纳米碳化钨粉的制备及性能研究[D].中南大学硕士学位论文.2007.
    [41]胡林华.介空分子筛SAB-15组装碳化钨催化剂的制备、表征及催化性能研究[D].北京化工大学硕士学位论文.2007.
    [42]赵敏海,刘爱国,郭面焕. WC颗粒增强耐磨材料的研究现状[J].焊接.2006,11:26-29.
    [43]吴梅,沈培康,魏子栋.碳化钨增强Pt/C电催化剂上的析氢反应[J].电池.2007, 37:171-173.
    [44]朱全力,杨建等.过渡金属碳化物的研究进展.化学进展.2004, 16:382-385.
    [45]马淳安,黄烨,童少平,张维民.碳化钨在对硝基苯酚电还原过程中的电催化行为.物理化学学报.2005, 21:721-724.
    [46]曾江华,袁定胜等.碳化钨纳米晶合成及其电化学性能[J].催化学报.2008, 29:607-611.
    [47]张生生,朱红等.碳化钨用作质子交换膜燃料电池催化剂载体的抗氧化性能[J].催化学报.2007, 28:109-111.
    [48]王晓娟,马淳安等.碳化钨/碳纳米管纳米复合材料的制备及其对硝基苯的电催化活性[J].化工学报.2008, 59:2904-2909.
    [49]徐庆荣,黎先财,王燕.超细碳化钨的制备及其性能研究[J].稀有金属.2009,33:133-136.
    [50]张春华,郭亨群等.纳米碳化钨粉体的热稳定性研究[J].功能材料.2009,3:486-489.
    [51]李国华,竺金涛.介孔空心球状WC微球结构与晶相形成机理[J].无机化学学报.2007,23:2045-2048.
    [52]章永凡,林伟,王文峰,李俊.3d过渡金属碳化物相稳定性和化学键的第一性原理研究[J].化学学报.2004,62:1041-1048.
    [53] Qi F, Sheng L S, Gao H, Zhang Y W. Bond dissociation energies of the diatomic transition metal carbides CrC+, MoC+ and WC+[J]. Acta Chim.-Phys.Sin.1999, 12:525-529.
    [54]谢小光.5d-过渡金属双原子碳化物和氮化物的电子结构和光谱行为[D].吉林大学硕士学位论文.1999:32-35.
    [55] Balasubramanian K. Spectroscopic constants and potential energy curves of tungsten carbide [J].J.Chem.Phys. 2000, 112:7425-7436.
    [56] Shane M S, Adam W S, Michael D M. Optical spectroscopy of tungsten carbide WC[J].J. Chem. Phys.,2002,116: 993-1002.
    [57] David R, Ekram H. Tungsten carbide revisited: new anion photoelectron spectrum and density functional theory calculations [J]. J. Chem. Phys. 2008, 129: 114304.
    [58] Samuel J. Peppernick, K.D. Dasitha Gunaratne, A.W. Castleman Jr. Towards comprehending the superatomic state of matter [J]. Chem. Phys .Lett. 2010, 489: 1–11.
    [59] N. Keller, B. Pietruszka, V. Keller. A new one-dimensional tungsten carbide nanostructured material [J].Mater. Lett. 2006, 60:1774-1777.
    [60] Katharine Page, et al. Reciprocal-space and real-space neutron investigation of nanostructured MoC and WC [J]. Solid State Sciences. 2008, 10:1499-1510.
    [61] Wei A, C. Heath Turner. Electronic structure calculations of gas adsorption on boron-doped carbon nanotubes sensitized with tungsten [J]. Chem. Phys .Lett. 2009, 482: 274–280.
    [62] Changhai Liang, Ling Ding, et al. Microwave-Assisted Preparation and Hydrazine Decomposition Properties of Nanostructured Tungsten Carbides on Carbon Nanotubes [J]. Ind. Eng. Chem. Res. 2009, 48:3244–3248.
    [63]高程,贺跃辉,王世良.一维纳米结构碳化钨的研究进展[J].中国钨业.2008, 23:22-25.
    [64] Jinping Wang, Xiaobo Sun, Zhijian Wu. Theoretical Investigation of 5d-Metal Monocarbides [J]. Journal of Cluster Science. 2007, 18:333-344.
    [65] Wataru Y, Junichi M. Geometries of small tungsten clusters [J].Chem. Phys. 2005, 316: 45-52.
    [66]许勇,王贤龙,曾雉.中性和带电小钨团簇的第一性原理研究[J].物理学报.2009, 58:72-78.
    [67] Gennady L, Charles W. Interaction of carbon atoms with Fe_n, Fe_n~- and Fe_n~+ clusters (n =1–6) [J].Chem. Phys.2003, 291:27-40.
    [68] T. W. Scharf, M. C. Romanes, et al. Atomic-scale structure and composition of tungsten carbide reinforced diamondlike carbon films [J]. Appl. Phys. Lett. 2008, 93:151909(1-4).
    [69] V.G. Zavodinsky.Small tungsten carbide nanoparticles: Simulation of structure, energetics, and tensile strength [J]. Int. Journal of Refractory Metals & Hard Materials. 2010, 28: 446–450.
    [70] Parr R G, Donnelly R A, Levy M, Palke W E. Electronegativity: The density functional viewpoint [J].J. Chern. Phys.1978, 68:3801-3807.
    [71] Pan X M, Fu Z, Hong B, Zhao L, et al. Theoretical studies of the relative stabilities and electronic properties on B endohedral and exohedral fullerenes [J]. Synthetic Metals.2005, 152: 325-328.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700