熔体处理对易拉罐用铝材热变形行为的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对目前我国铝材生产与研究中对内在冶金缺陷的影响作用重视不足、液态(熔体)处理与各种固态处理均是按各自系统独立进行研究的现状,作者结合本课题组的前期研究基础,以具有实用价值且量大面广的易拉罐用铝材(Al-Mn-Mg合金)作为研究对象,提出从改善铝材冶金质量这一关键技术入手,将铝材的处理状态(熔体处理和均匀化)与热变形加工有机地结合起来进行研究的新思路。借助光学显微镜(OM)、扫描电镜(SEM)、透射电镜(TEM)、能谱仪(EDAX)、X射线衍射(X-Ray)、电子拉伸机等先进的分析测试手段,系统深入地研究熔体处理与均匀化退火工艺对易拉罐用铝材微观组织与力学性能的影响规律,在此基础上采用动态热/力模拟试验技术,全面深入地探讨了易拉罐用铝材的熔体处理、热处理工艺、热塑性变形行为三者之间的相互关系,深化了对铝熔体处理的基本理论、冶金缺陷的作用机理以及铝材高温塑性变形理论的认识,对进一步挖掘易拉罐用铝材的性能潜力具有重要意义,可为实际热轧工艺的确定和优化提供试验依据与理论指导。主要研究结果如下:
    1.以自行开发的高效排杂熔剂净化为主的铝熔体综合处理工艺显著改善了易拉罐用铝材的冶金质量。该工艺在提高铝基体纯净度、细化结晶组织以及改善析出相形态等方面均起到关键的作用。合适的铝熔体综合处理可有效减少材料中裂纹萌生源的数量,改变易拉罐用铝材在铸态下的断裂方式,从而显著提高该铝材的铸态力学性能(尤其是塑性)。
    2.揭示了均匀化退火对易拉罐用铝材析出相形态的影响规律,同时发现,均匀化退火难以消除铸锭原始组织中杂气等冶金缺陷,对经常规熔体处理的易拉罐用铝材的力学性能与断裂方式影响不大。然而,试验条件下的均匀化优化工艺表明:铝熔体综合处理有利于降低均匀化处理过程中的能耗,与该类材料常用的均匀化工艺相比,在温度降低100~120K、保温时间减少4~12h的条件下即可获得较为理想的组织与性能。
    3.热模拟试验研究表明易拉罐用铝材属负温度敏感性和正应变速率敏感性材料。在高温热变形条件下,易表现出明显的动态软化并最终进入稳态变形,且均匀化态铝材相对铸态铝材具有更明显的动态软化曲线特征。当T = 573~773K、ε&≤5. 0s?1时,σ~ε曲线以单峰值的连续动态再结晶曲线特征为主; 而当T = 673K、ε& = 10. 0s?1时,则表现为多峰值的非连续动态再结晶曲线特征。热变形条件对流变应力的影响大于处理状态(熔体处理和均匀化)的影响,低Z值(升高T或降低ε& )的热变形条件削弱了处理状态对铝材热变形性能的影响。回归分析表明,易拉罐用铝材的高温流变应力与应变速率、变形温度及热变形激活能之间满足用双曲正弦函数形式修正的Arrhenius关系,所建立的关系式进一步证明易拉罐用铝材的热变形是受热激活控制的塑性变形过程。
Aiming at the current existing problems of study and fabrication of national aluminum sheet used for easy-open can without being pay more attention to the effects of intrinsic metallurgical defects, a new idea to link organically with hot deformation process in the study of the aluminum sheet used for easy-open can has been put forward by author. Influence of melt-treatment and homogenization on microstructure and mechanical properties has been studied systematically and deeply with the aids of some modern analytical and testing techniques, such as OM, SEM, TEM, EDAX, XRD and INSTRON material testing machine, etc. Moreover, hot deformation behavior has been fully studied by adopting dynamic thermal/mechanical simulation technique, and their relationships with melt-treatments and heat treatment process have been well discussed. The results can deepen the understanding of basic theories of aluminum melt-treatment, influence of metallurgical defects and theory of hot deformation. It is far reaching importance of excavating the potential properties of the sheet, which provides the experimental and the theory base for determination and optimization of actual hot rolling. The main conclusions are as follows:
    1. The synthesis technology of aluminum melt-treatment which gives priority to the purification of using the high-efficient removing-inclusion flux self-developed can effectively improved the metallurgy quality of the aluminum sheet used for easy-open can. The key role is on enhancing the purification of aluminum matrix, grain refinement and the modification of precipitating phases Also, it can reduce effectively the quantity of crack initiation source in the material and change the fracture form of the sheet and then improve the mechanical properties (especially the plasticity).
    2. The influence rule of homogenization on the precipitating phase’s shapes of the aluminum sheet used for easy-open can has been revealed in this paper. The results show that the metallurgical defects, such as inclusions and gas pores, cannot be eliminated by homogenization, so there is little influence on the mechanical properties and fracture form of the aluminum sheet prepared by routine melt-treatment technology. However, the synthesis technology of aluminum melt-treatment is in favor of reducing the energy consumption during homogenization. The ideal microstructure and the properties can be obtained under the condition of temperature reduction 100~120K and holding time decrease 4~12 hours comparing with the common technology used for this material.
    3. The results of thermal simulation tests indicate that the aluminum sheet used for easy-open can is a kind of material with the negative temperature sensitivity and the positive strain rate sensitivity. Under the condition of hot deformation at elevated temperature, it is easy to occur dynamic softening in the sheet and reaches the steady-state deformation stage finally. The softening effect of the homogenized materials’ is more obvious than that of the as-cast material. Under the hot deformation condition of T=573~773K and ε& ≤ 5. 0s?1, the feature of σ ~ ε curves is primarily the continuous dynamic recrystallization of single peak; while the curves’ feature of multi-peak is discontinuous dynamic recrystallization under the condition of T=673K and ε& = 10. 0s?1. Effect of hot deformation condition on the flow stress is greater than that of the processing states such as melt-treatment and homogenization. The influence of processing states on the hot deformation properties of aluminum sheet can be weakened under the condition of low Z value (increasing T or reducing ε& ). The regression results show that the relationship of flow stress of the sheet with deformation temperature and strain rate can be expressed more suitably with the Arrhenius equation modified by hyperbolic sine function, which means that the hot deformation of the sheet is the plastic deformation controlled by thermal activation. 4. Multivariate regression method has been successfully adopted to solve the hot deformation material constants (Q ,m ,n ,α and A ). The results indicate that this method is much more simple and accurate compared with the conventional graphical construction or iteration. The values of the material constants have been disclosed by incorporating the hot deformation condition (including the strain) and processing states of the sheet, and the more explicit and reasonable explanation in the physics significance of the constants has been given. The results show that the synthesis technology of high-efficient aluminum melt-treatment (particularly the purification) plays the key role on reducing the hot deformation activation energy of the sheet. The tiny circle-entire and uniformly distributing inclusions and precipitating phases as well as the even diffusion solute atoms can weaken the hindrance effect on the dislocation’s movement, which is in favor of the hot deformation. 5. The flow stress equations of the aluminum sheets deformed at elevated temperature have been constructed on the basis of Laasraoui-Jonas peak-front stress model and JMA recrystallization kinetic model by considering fully the softening mechanism of hot deformation before and after the peak stress, incorporating the activation energies of each deformation stage can determine the corresponding Z parameter values (Z0.2, Zp and Zs). The fitting curves agree with the actual curves very well, which can be used to describe accurately the relationship between flow stress of the aluminum sheet at elevated temperature and the hot
    deformation condition. 6. Effects of melt-treatment and homogenization on the hot deformation microstructure of the sheets have been disclosed. Firstly, it is pointed out that both melt-treatment and homogenization have the promoting effect to improve the morphology of hot deformation grains, but the effect of latter process depends on the former. Secondly, the dynamic softening mechanism of the sheet has been reasonably explained. It is indicated that the nucleating mechanism of dynamic recrystallization of the sheet is primarily the subgrain congregation, and the subgrains’ growth also plays a role to the extent. Additionally, the other recrystallization nucleating modes are also observed, that is, bowing by the primitive grain boundary and geometry dynamic recrystallization that occurs at the high strain rate. Thirdly, the influence of metallurgical defects on dynamic softening of the sheets has been fully analyzed. It is pointed out by observing the microstructure feature that the original grain boundary (the edge of three grains), dislocation pile section and surface of massive inclusions or precipitated phases all can become the preferential nucleating position of dynamic recrystallization, the grain size before hot deformation influences relatively greater on the nucleating ratio (N) of dynamic recrystallization, and the quantity and existing morphology of the precipitating phase particles and solute atoms influence much more on the rate of the growth of grain nucleus (G). Finally, the prediction models have been created by regression, which can clearly reflect the relationship of the average size of recrystallization grains and hot deformation condition (Z parameter) or the flow stress at steady-state stage. Moreover, the critical condition at which the ideal dynamic recrystallization structure of the sheet is obtained has been established by incorporating the feature of σ ~ ε curves and microstructure observation. The results are useful for counting load, establishing and optimizing the hot working process parameter during the hot working production. 7. It is indicated by hot rolling simulation that the enhancement effect of prolonging the interval time on softening is far weaker than increasing temperature. When the strain (50%) remains constant, the stress level of the last pass is dropping gradually with increment of the pass number. Increasing the strain of the former passes properly is in favor of enhancing the strain cumulative effect of the following passes, which can obtain the fine recrystallization structure during the last interval time and reduce the inhomogeneity of hot deformation. The coexistent structure of dynamic recrystallization and the static recrystallization grains can be obtained after the multi-pass hot deformation, and the subgrains’ congregation and growth are also the primary nucleating mechanism. When the hot rolling process parameters of the sheet are achieved, that is, the temperature is 673K, the strain rate is 0.5s-1, the interval time is about
    1 to 3 minutes and the strain assignment is “→10%→30%→50%→water cooling”, the relatively ideal microstructure and properties can be obtained.
引文
[1]江鸿,向群.铝罐生产技术和市场发展[J].金属世界,2004,(6):7~9.
    [2]王医冶.全铝易拉罐的新进展与我国制罐工业的发展(1)[J].轻金属,1995,(8):50~55.
    [3]韩向东,李志见.铝质易拉罐轻量化技术探讨[J].轻工机械,2003,(4):29~32.
    [4]戴德美.我国铝易拉罐产业的发展[J].有色金属加工,1998,(6):11~15.
    [5]叶凯,林明山.铝质易拉罐罐技术研究与应用[J].中国包装工业,2002,(93):6~9.
    [6]吉川克之 著,张林平 译.3004 合金的巨大化合物[J].轻合金加工技术,1988,(5):31~35.
    [7]Hutchinson W B, Oscarsson A, Karlsson ?.Control of microstructure and earing behavior in aluminium alloy AA3004 hot bands[J]. Materials Science and Technology, 1989, .5(11):1118-1127
    [8]Shigeniori A, Takeyoshi D, Keisuke Y. Rcrystallization behavior during hot rolling of 3004 aluminium alloy[J]. Light Metal (Japan), 1989,39(2):94~99
    [9]蒋显全,张新明.3004铝合金铸锭均匀化过程中的组织变化[J].铝加工,1992,(5):44~47.
    [10]Sanmoto, Kamat R G. Microstructure and texture evolution in hot rolled AA3004 aluminium alloy[J].Material Science Technology, 1992, 8(10):869-874.
    [11]温熙宇,包耳.3004 易拉罐特薄带材生产技术发展和理论研究现状[J].轻金属,1994,(9):59~64.
    [12]沈健.3004 铝合金退火过程中的形核行为[J].材料科学与工艺,1995,3(4):67~70.
    [13]梁忠华,李念奎,邱纪微.3004 合金罐体板材部分退火+轻度轧制工艺的探讨[J].轻金属,1995, (2):53~54,57.
    [14]佟长清.3004 合金铸锭锰偏析及均匀化处理[J].轻合金加工技术.1997,25(1):31~36.
    [15]Murakami T. Cube texture in AA3004 alloy sheet processed by partial annealing and light rolling method[J]. Materials Science Forum, 2000,331(II):823~828.
    [16]Sun D L, Kang S B, Koo H S. Characteristics of morphology and crystal structure of a-phase in two Al-Mn-Mg alloys [J].Materials Chemistry and Physics,2000,63:37~43.
    [17]Chung Y H, Kim H D, Jeong H T, et al. Evolution of texture and microstructure in AA 3004 sheets during continuous confined strip shearing deformation and subsequent annealing[J]. Materials Science Forum,2002,396-402(1):475~480.
    [18]Xiao Ya-qing, Zhang Xin-ming, Tang Jian-guo, et al. Textures in high purity aluminum foils and AA3004 sheets[J]. Transactions of Nonferrous Metals Society of China,2003,13(3):491~498.
    [19]傅高升,陈文哲,陈鸿玲,等.铝熔体高效净化的理论及净化处理技术的现状分析[J].铸造技术,2004,25(4):290~292.
    [20]傅高升,康积行.铝熔体中杂气关系初探[J].福州大学学报(自然科学版),1995,23(2):48~52.
    [21]傅高升,康积行.铝及其铝合金中杂气来源及存在形态分析[J].福建冶金,1996,(1):7~12.
    [22]傅高升,康积行,魏喆良.用于纯铝高效净化的熔剂及其效果分析[J].福州大学学报(自然科学版),1998,26(1):73~77.
    [23]傅高升,康积行.采用活性熔剂过滤净化废铝的研究[J].特种铸造及有色合金,1996,(1):12~15.
    [24] 傅 高 升 , 康 积 行 , 陈 文 哲 , 等 . 高 效 排 杂 熔 剂 过 滤 净 化 工 业 纯 铝 [J]. 中 国 有 色 金 属 学报,2001,11(3),:433~437.
    [25]傅高升.罐用铝材的冶金质量与变形行为研究:[博士学位论文].长沙:中南工业大学材料系,2001.
    [26]孙峰山.熔体处理对提高高性能铝材冶金质量和力学性能的作用研究:[硕士学位论文].福州:福州大学机械工程系,2002.
    [27]陈永禄.经高效熔体处理的易拉罐用铝材微观组织与力学性能研究:[硕士学位论文].福州:福州大学材料科学与工程学院,2002.
    [28]广南.世界易拉罐主要消费地区产需趋势[J].世界有色金属,2003,(1):21.
    [29]世界铝制易拉罐的用量正在逐年增长[EB]. http://www.resource.com.cn/magazine/2004/zk/zk-44.htm.
    [30]杨映芬.我国高精铝板带产品的生产现状及发展趋势[J].有色金属设计,1997,24(1):55~57.
    [31]林明山.降低成本是国产铝质易拉罐发展的必然趋势[J].轻合金加工技术,1999,27(6):39,34.
    [32]天可汗.罐头包装:硬软兼施[J].中国食品工业,2003,(12):18~20.
    [33]刘玉石,王荣堂.铝易拉罐轻量化的动向[J].铝加工,1994,17(6):46~50.
    [34]我国易拉罐行业发展初探[EB]. http://www.foodqs.com/news/spbz01/2003825152235.htm. 中国食品产业网,2003.8.25.
    [35]颜金科.全铝两片罐的发展趋势[J].轻合金加工技术,1993,21(7):1~4.
    [36]王医治.全铝易拉罐的新进展与我国制罐工业的发展(2)[J].轻金属,1995,11:48~50
    [37]广东省包装技术协会. 广东省包装行业结构调整概况[J].中国包装工业,2003,(104):4~8.
    [38]宁洪囤.易拉罐用国产铝材的现状[J].铝加工,1994,17(4):40~43.
    [39]陆礼谦.深冲纯铝板的组织性能及其生产工艺[J].有色金属加工,1995,(2):47~54.
    [40]佟伟元,任继嘉.易拉罐的生产[J].铝加工,1989,(1):22~26.
    [41]汪凌云,黄光杰,骆少明.饮料罐体铝材的现状、问题和对策[J].材料导报,1994,(5):25~29.
    [42]黄明辉,唐俊龙.我国铝板带箔加工业现状与展望[J].轻合金加工技术,2003,31(9):6~11.
    [43]2003 年中国铝板带箔发展综述[EB]. http://www.alu.cn/displaynews.asp?id=2864. 中国铝业网,2004.1.29
    [44]陈凤初.综述易拉罐板材的生产[J].铝加工,1988,(6):20~25.
    [45]张君尧.铝合金材料的新进展[J].轻合金加工技术,1998,26(7):1~6.
    [46]切尔涅茄 Д Ф 著,黄良余,严名山 译.有色金属及其合金中的气体[M].北京:冶金工业出版社,1989.
    [47]周昆.铝合金熔体净化技术及发展趋势[J].世界有色金属,1997,(11):4~8.
    [48] 李沛勇 , 贾均 , 郭晶杰 , 等 . 亚共晶铝硅合金熔体处理的研究进展 [J]. 特种铸造及有色合金,1997,(2):36~39.
    [49]杨长贺.面向 21 世纪的铝液除氢净化技术[J].特种铸造及有色合金,1999,Suppl.1:109~111.
    [50]路贵民,柯东杰,许光明 编著.铝合金熔炼理论与工艺[M].沈阳:东北大学出版社,1991.
    [51]Sun Bao-de, Ding Wen-jiang, Shu Da, et al.Purification technology of molten aluminum[J]. Journal of Central South University of Technology,2004,11(2):134~141.
    [52]疏达,孙宝德,王俊,等.铸造铝合金洁净度-性能关系[J].特种铸造及有色合金,1999,(2):52~55.
    [53]Prince N Anyalebechi. An updated review of techniques for determination of the hydrogen content in aluminum and its alloys (Part I)[J].Foundry Trade Journal,1993.5:258~270.
    [54]Prince N Anyalebechi. An updated review of techniques for determination of the hydrogen content in aluminum and its alloys (Part II)[J].Foundry Trade Journal,1993.6:320~330.
    [55]熊艳才,黄志光,王文清.铝及铝合金含氢量直接测定的研究与进展[J].特种铸造及有色合金,1995,(4):12~15.
    [56]日本轻金属协会,董守信 译.铝合金中氧化夹杂物的测定[J].轻金属,1990,(12):23,56~59.
    [57]羊健,高洪吾,张国梁,等.铝液夹杂检测 DMIRT-Ⅲ法的试验研究[J].特种铸造及有色合金,1994,(6):5~9,21.
    [58] 黄良余,张少宗.铝合金精炼理论要点和工艺原则[J].特种铸造及有色合金,2000,(3):40~42.
    [59]Clumpner J A, Hershey R E, Hoffmann W L. MINT-an in-line melt purification system: predicting commercial performance with aluminum alloys[J]. Metallurgical Soc of AIME, 1986,(2):815-819.
    [60]丛红日,边秀房.铝合金熔体中夹杂物与含氢量的关系[J].特种铸造及有色合金,2000, (3):21-22.
    [61]董志敏.铝合金熔液净化技术[J].铸造技术.2000,(6):13~16.
    [62]印飞.铝硅合金中富铁相的形貌与行为研究:[博士学位论文].上海:上海交通大学材料科学与工程系,2001.
    [63]刘相法,边秀房,张国华,等.铝合金铁相团球化熔剂的研制[J].特种铸造及有色合金,1994,(5):13~16.
    [64]傅高升,康积行.工业纯铝中铁和硅的作用分析[J].特种铸造及有色合金,1999,Suppl.1:29~32.
    [65]Couture A. Iron in aluminum casting alloys――a literature survey[J]. AFS International Cast Metals Journal, 1981,6(4):9-17.
    [66]Fu Gao-sheng, Sun Feng-san, Ren Li-ying, et al. Modification behavior of trace rare earth on impurity phases in commercial purity aluminum[J].Journal of Rare Earths,2002,20(1):61~66.
    [67]Sigworth G K. Theoretical and practical aspects of the modification of al-si alloys. Transactions of the American Foundrymen's Society,1983,91:7~16.
    [68]Ho C R, Cantor B. Modification of hypoeutectic Al-Si alloys[J]. Journal of Materials Science, 1995,30(8):1912~1920.
    [69]黄良余.铝硅合金变质机理的新发展和新观点(上)[J].特种铸造及有色合金,1995,(4):30~32.
    [70]黄良余.铝硅合金变质机理的新发展和新观点(下)[J].特种铸造及有色合金,1995,(5):19~22.
    [71]Wang L, Shivkumar S. Influence of Sr content on the modification of Si particles in Al-Si alloys[J]. Zeitschrift fuer Metallkunde, 1995, 86(6):441.
    [72]Nogita, K, McDonald S D, Dahle A K. Eutectic modification of Al-Si alloys with rare earth metals[J]. Materials Transactions, 2004,45(2):323~326.
    [73]Shabestari S G, Gruzleski J E. Gravity segregation of complex intermetallic compounds in liquid aluminum-silicon alloys[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1995,26(4):999~1006
    [74]Narayanan L A, Samuel F H, Gruzleski J E. Dissolution of iron intermetallics in Al-Si alloys through nonequilibrium heat treatment[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science,1995,26A(8):2161~2174.
    [75]Samuel A M, Samuel F H, Doty H W. Observations on the formation of β-Al5FeSi phase in 319 type Al-Si alloys[J]. Journal of Materials Science, 1996,31(20):5529~5539.
    [76]陈越.稀土在铝及铝合金中的应用[J].上海有色金属,1998,19(3):136~141.
    [77]马永庆,杨道正.稀土铝合金综合变质处理的研究[J].特种铸造及有色合金,1993,(1):22~24,18.
    [78]张卫文,郁鸽,尹志民,等.稀土在过共晶 Al-Si 合金中的变质特点[J].稀土,1997,18(3):35~38.
    [79]王庆良,郑雪萍.稀土导电铝合金的铸态组织与相组成[J].稀土,1998,19(1):53~56.
    [80]Backerud L, Vainik R. Method for optimized aluminum grain refinement[J]. Light Metals: Proceedings of Sessions, TMS Annual Meeting (Warrendale, Pennsylvania), 2001:951~954.
    [81]张景祥,张忠华,边秀房.变形铝合金晶粒细化的进展[J].轻合金加工技术,2000,28(7):1~4,12.
    [82]Horita Z, Furukawa M, Nemoto M, et al.Grain refinement of aluminum using equal-channel angular pressing[J]. Materials Research Society Symposium-Proceedings,2000,601:311~322
    [83]高泽生.铝晶粒细化机理研究的进展(1)[J].轻合金加工技术,1997,25(6):1~5.
    [84]Li Pei-jie, Kandalova E G, Nikitin V I.Grain refining performance of Al-Ti master alloys with different microstructures[J]. Materials Letters, 2005,59(6):723~727.
    [85]Venkateswarlu K, Chakraborty M, Murty B S.Influence of thermo-mechanical processing of Al-5Ti-1B master alloy on its grain refining efficiency[J]. Materials Science and Engineering A,2004,364(1-2):75~83.
    [86]黄良余.铝及其合金的晶粒细化处理[J].特种铸造及有色合金,1997,(3):41~43,54.
    [87]马洪涛,李建国,张柏清,等.AlTiC 中间合金细化铝时结晶核心的研究[J].金属热处理,1999,(10):1~3.
    [88]谭敦强,黎文献. Al-Ti-C 晶粒细化剂对工业纯铝的晶粒细化[J]. 特种铸造及有色合金,2003,(2):1~3.
    [89]Vinod Kumar G S, Murty B S, Chakraborty M. Development of Al-Ti-C grain refiners and study of their grain refining efficiency on Al and Al-7Si alloy[J]. Journal of Alloys and Compounds, 2005,396(1-2):143~150.
    [90]Zhang Bai-qing, Li Jian-guo, Ma Hong-tao, et al.New development of Al-Ti-C grain refining master alloys[J]. Transactions of Nonferrous Metals Society of China,2000,10(3):298~303.
    [91]Brinkman H J, Zupanic F, Duszczyk J, et al. Production of Al-Ti-C grain refiner alloys by reactive synthesis of elemental powders: Part II. Grain refining performance of alloys and secondary processing[J].Journal of Materials Research, 2000,15(12):2628~2635.
    [92]Vandyoussefi M, Worth J, Greer A L. Effect of instability of TiC particles on grain refinement of Al and Al-Mg alloys by addition of Al-Ti-C inoculants[J]. Materials Science and Technology, 2000, 16: 1121~1128.
    [93]姜文辉,韩行霖. Al-Ti-C-B 中间合金细化剂的研究[J].特种铸造及有色合金,1997,(1):19~22.
    [94]方旭升.铝钛硼稀土中间合金的研制与生产[J].特种铸造及有色合金,1996,(2):18~19.
    [95]李双寿,吴群虎,曾大本,等.中间合金对 A356.2 合金细化的效果[J].特种铸造及有色合金,2000,(1):23~25.
    [96]Banerji A, Reif W. Grain refinement of aluminum by TiC[J]. Metallurgical Transactions A (Physical Metallurgy and Materials Science),1985,16A(11):2065~2068
    [97]Guzowski M M, Sigworth, G K, Sentner D A. Role of boron in the grain refinement of aluminum with titanium[J]. Metallurgical Transactions A (Physical Metallurgy and Materials Science), 1987, 18A(4):603~619.
    [98]Mohanty P S, Gruzleski J E.Mechanism of grain refinement in aluminum[J]. Acta Metallurgica et Materialia, 1995,43(5):2001~2012.
    [99]冯鹏发,唐靖林,李双寿,等.铝晶粒细化机制的研究进展[J].铸造技术,2005,26(3):220~223.
    [100]Fang Wen-bin, Geng Yao-hong, An Ge-ying, et al. Composite purification technology and mechanism of recycled aluminum alloys[J].Transactions of Nonferrous Metals Society of China, 2002,12(2):277~279.
    [101]蒋海燕,孙宝德,倪红军,等.铝合金熔体净化工艺[J].特种铸造及有色合金,2001,(2):48~50.
    [102]张发明,王祝堂.联合移动式高效熔剂喷射旋转搅拌处理系统[J].轻合金加工技术,1997,25(1):5~8.
    [103]傅高升,康积行.铝熔体中熔剂的净化作用特性分析[J].铸造技术,1995,(6):23~26.
    [104] 陈鸿玲, 傅高升 ,陈永禄 , 等 .高效排杂熔剂对 6063 铝合金的净化效果试验 [J]. 铸造技术,2004,25(4):259~261.
    [105]陈永禄,傅高升,孙锋山,等.高效排杂熔剂净化处理对电工圆铝杆组织与性能的影响[J].福州大学学报(自然科学版),2002,30(1):73~77.
    [106]陈鸿玲,傅高升,王连登,等.高效熔剂净化对提高 A356 铝合金冶金质量和性能的作用[J].福建工程学院学报,2004,2(1):12~16,32.
    [107]王祝堂,田荣璇 编.铝合金及其加工手册[M].长沙:中南工业大学出版社,1989.
    [108]陈斯杰.罐体 3004 铝合金板材的工艺控制特点[J].轻金属,1993,(8):48~50.
    [109]Raybould D Sheppard T. Axisymmetric Extrusion: The effect of temperature rise and strain rate on the activation enthalpy and material constants of some aluminum alloys and their relation to recrystallization substructure and subsequent mechanical properties[J].Inst.Metals,1973,101:65~72.
    [110]Fressengeas C, Molinari A. Inertia and thermal effect on the localization of plastic flow[J].Acta Metal,1985,33:387.
    [111]Rao K P, Prasad Y V R K. High temperature deformation kinetics of Al-4Mg Alloy[J]. Mech Work. Technol,1986,13:83~95.
    [112]Kannan K, Vetrano J S, Hamilton C H. Effects of modification and thermomechanical processing on recrystallization of Al-Mg-Mn alloys[J]. Metallurgical and Materials Transaction A,1996,27A:2947~2957.
    [113]张辉.铝合金多道次热轧显微组织演变的模拟研究:[博士学位论文].长沙:中南工业大学材料系,2000.
    [114] 彭 大 暑 , 张 辉 , 杨 立 斌 , 等 . 铝 合 金 热 轧 过 程 中 显 微 组 织 演 变 的 模 拟 研 究 [J]. 材 料 导报,2000,14(12):9~11.
    [115]Fu Gao-sheng,Qian Kuang-wu,Chen Wen-zhe,et al. Feature of flow stress of aluminum sheet used for can during hot compression[J].The Chinese Journal of Nonferrous Metals,2000,10(5):671~674.
    [116]赵林桦.铸轧加工率对工业纯铝板织构和深冲性能的影响[J].轻合金加工技术,1989,(3):9~14.
    [117]李赛毅,张新明.深冲用板材的制耳现象及其控制途径[J].铝加工,1996,19(2):36~38,51.
    [118]沈健,张新明.深冲用铝板的织构和各向异性[J].轻合金加工技术,1994,22(7):27~33,40.
    [119]Hibino A. Earing and texture of aluminum can body sheet[J]. Keikinzoku/Journal of Japan Institute of Light Metals,2002,52(11):530~535.
    [120]Luff R, Wright J C. Statistical analysis of process variables affecting the earing characteristics of aluminum[J]. J Inst Metals,1970, 98(9):280-288.
    [121]李赛毅,张新明.一种预测织构板材制耳倾向的新方法[J].金属学报,1996,32(8):884~890.
    [122]Oscarsson A, Hutchinson W B, Ekstrom H E. Influence of initial microstructure on texture and earing in aluminium sheet after cold rolling and annealing[J]. Materials Science and Technology,1991,7(6): 554~564.
    [123]Saxena A, Shukla S K, Chaudhuri S K. Microstructure and texture formation in high strength cold rolled and annealed sheet and their correlation with formability property[J]. Journal of Materials Engineering and Performance, 2003,12(3):317~323.
    [124]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994
    [125]王轶农.电场退火对金属再结晶织构的影响:[博士学位论文].沈阳:东北大学材料与冶金学院,1999.
    [126]Barrett C S. Recrystallization texture of aluminum after compression[J]. Trans. AIME.,1940,137:128~145.
    [127]Ferran L G, Doherty D R, Cahn R W. The kossel line determination of the orientation of new grains formed by recrystallization of aluminium[J]. Acta. Metall., 1971,19(10):1019~1028.
    [128]Duggan B J, Lucke K, Koehlhoff G, et al. On the origin of cube texture in copper[J]. Acta Metall. Mater, 1993, 41(6):1921~1927.
    [129]Dingley D J, Longden M, Weinbren J, et al. On-line analysis of electron back scatter diffraction patterns. I. texture analysis of zone refined polysilicon[J]. Scanning Micros, 1987,1(2):451~456.
    [130]Petkovic R A, Luton M J, Jonas J J. Recovery and recrystallization of carbon steel between intervals of hot working[J]. Canadian Metallurgical Quarterly, 1975,14(2):137~145.
    [131]Yoshie A, Morikawa H, Onoe Y, et al. Formulation of static recrystallization of austenite in hot rolling process of steel plate[J]. Transactions of the Iron and Steel Institute of Japan,1987,27(6):425~431.
    [132]Raghunathan N, Sheppard T. Evolution of structure in roll gap when rolling aluminum alloys[J]. Materials Science and Technology, 1989,5(2):194~201.
    [133]McQueen H J. Substructural influence in the hot rolling of Al alloys[J]. JOM, 1998,50(6):28~33.
    [134]Sakai T, Jonas J J. Flow stress and substructural change during transient dynamic recrvstallization of nickel[J]. Acta Met.,1984,2(7):659~665.
    [135]Kassner M E, Myshlyaev M M, McQueen H J. Large-strain torsional deformation in aluminum at elevated temperatures[J]. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 1989,A108(1-2):45~61.
    [136]林均品,程荆卫.Al-2Mg 合金的动态再结晶[J].中国有色金属学报,1999,9(3):510~514.
    [137]Zhou Jian, Zhang, Ting-jie, Zhang, Xiao-ming et al. Influence of strain rate and solution treatment on dynamic recrystallization for 7075 aluminum alloy[J]. Rare Metal Materials and Engineering, 2004,33(6): 580~584.
    [138]McQueen H J, Evangelista E, Bowles J, et al. Hot deformation and dynamic recrystallization of Al-5Mg-0. 8Mn alloy[J]. Metal Science, 1984,18(8):395~402.
    [139]Sakai T, Jonas J J. Dynamic recrystallization: mechanical and microstructural considerations[J]. Acta Metallurgica,1984,32(2):189~209.
    [140]Luton M J, Sellars C M. Dynamic recrystallization in nickel and nickel-iron alloys during high temperature deformation[J]. Acta Metallurgica,1969,17(8):1033~1043.
    [141]Stuwe H P, Ortner B. Recrystallization in hot working and creep[J]. Metal Science Journal, 1974,8(6):161~167.
    [142]Ding R, Guo Z X. Coupled quantitative simulation of microstructural evolution and plastic flow during dynamic recrystallization[J]. Acta mater,2001,49(16):3163~3175.
    [143]蒋树农,刘楚明,李慧中,等.高纯多晶铝的动态再结晶[J]. 中南大学学报(自然科学版),2004, 35(6):935-940.
    [144] Yamagata H, Ohuchida Y, Saito N, et al. Effect of temperature on the continuous dynamic recrystallization of 99.99mass% aluminum[J]. Materials Transactions, 2001,42(11):2440~2445.
    [145]杨觉先.金属塑性变形的物理基础[M].北京:冶金工业出版社,1988.
    [146]McQueen H J, Knustad O, Ryum N, et al. Microstructural evolution in al deformed to strains of 60 at 400 degree C[J]. Scripta Metallurgica, 1985,19(1):73~78.
    [147]Blum W, Zhu Q, Merkel R, et al. Geometric dynamic recrystallization in hot torsion of Al-5Mg-0.6Mn (AA5083)[J]. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing,1996,A205(1-2):23~30.
    [148]Kassner M E. New developments in geometric dynamic recrystallization[J]. JOM, 2004,56(11):220.
    [149]林启权,彭大暑,张辉,等.2319 铝合金热压缩变形过程的动态与静态软化行为[J]. 中南大学学报(自然科学版),2005,36(2):183~187.
    [150]Kwon O, DeArdo A J. On the recovery and recrystallization which attend static softening in hot-deformed copper and aluminum[J]. Acta Metallurgica,1990,38(1):41~54.
    [151]McQueen H J, Evangelista E, Farah H. Static recrystallization in Al alloys after hot working[J]. TMS Annual Meeting, 2003:71~86.
    [152]Verlinden B, Wouters P, McQueen H J, et al. Effect of different homogenization treatments on the hot workability of aluminium alloy AA2024[J].Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing,1990,A123(2):229~237.
    [153]McQueen H J, Ryum N.Hot working and subsequent static recrystallization of Al and Al-Mg alloys[J]. Scandinavian Journal of Metallurgy,1985,14(4):183~194.
    [154]Rao K P, Prasad Y K D V, Hawbolt E B. Study of fractional softening in multi-stage hot deformation[J]. Journal of Materials Processing Technology,1998,77(1-3):166~174.
    [155]Jonas J J, Sellars C M, McG Tegart W J. Strength and structure under hot-working conditions[J]. Metallurgical Review,1969,130(14):1~24.
    [156]哈富宽.金属力学性质的微观理论[M].北京:科学出版社,1991,5.
    [157]Sellars C M, McG Tegart W J. Hot workability[J]. Int Met Reviews, 1972,(17):1~24.
    [158]Poirier J P, 关德林 译.晶体的高温塑性变形[M].大连:大连理工大学出版社,1989.
    [159]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. J.Appl. Phys,1944, 15(1):22~32.
    [160].Klepaczko J R. A practical stress-strain-strain rate-temperature constitutive relation of the power form[J]. J.Mech.Work Technol.,1987(15):143~165.
    [161]Sah J P, Richardson G J, Sellars C M. Quantitative correlation between high temperature strength & the kinetics of dynamic recrystallization[J]. Indian Journal of Technology,1973,11(10):445~452.
    [162]Voce E. The relationship between stress and strain for homogeneous deformation[J] Inst Metals, 1948, (74):537~562.
    [163]Puchi E S, Staia M H. High-temperature deformation of commercial-purity aluminum[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science,1998,29A (9):2345~2359.
    [164]Lassaroui A, Jonas J J. Prediction of steel flow stress at high temperatures and strain rates[J]. Metallurgical Transactions A,1991,22A:1545~1558.
    [165]Bergstrom Y. Dislocation model for the stress-strain behaviour of polycrystalline Fe with special emphasis on the variation of the densities of mobile and immobile dislocations[J]. Mater Sci Eng,1970,5(4):193~200.
    [166]Avrami M. Kinetic of phase change (I) -General theory[J]. Journal of Chemical Physics, 1939,(7):1103~1112.
    [167]金蕾,徐有容.C-Mn 钢热变形行为及其流变应力模型的研究[J].上海大学学报(自然科学版),1999,5(2):123~127.
    [168]牛济泰.材料和热加工领域的物理模拟技术[M].北京:国防工业出版社,1999,9
    [169] 郑芳 , 宋红梅 .Gleeble 3800 热模拟试验机在宝钢的典型应用与功能开发 [J]. 宝钢技术,2003,(5):29~32,59.
    [170]张士宏, Arentoft M,尚彦凌.金属塑性加工的物理模拟[J].塑性工程学报,2000,7(1):45~49.
    [171]Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling[J]. Metal Science,1978,13(3-4):187~194.
    [172]Roucoules C, Pietrzyk M, Hodgson P D. Analysis of work hardening and recrystallization during the hot working of steel using a statistically based internal variable model[J]. Materials Science and Engineering A,2003,339(1-2):1~9.
    [173]Kim Sung-Il, Lee Youngseog, Jang Byoung-Lok. Modeling of recrystallization and austenite grain size for AISI 316 stainless steel and its application to hot bar rolling[J]. Materials Science and Engineering A,2003, 357(1-2):235~239.
    [174]刘相华,王国栋.热轧带钢新技术的发展[J].钢铁研究,2000,9(5):1~4.
    [175]窦晓峰,鹿守理,赵辉.Q235 低碳钢静态再结晶模型的建立[J].北京科技大学学报,1999, 21(1):20~22.
    [176]窦晓峰,鹿守理,赵辉.Q235 钢动态再结晶模型的建立[J].北京科技大学学报,1998,20(5):467~470.
    [177]窦晓峰,鹿守理,赵辉,等.Q235 钢亚态再结晶模型的建立[J].钢铁,1999,34(4):34~37.
    [178]徐洲,酒井拓.Fe-32Ni 合金动态再结晶奥氏体的静态软化[J].金属热处理,1997,(1):11~14.
    [179]曲锦波,王昭东,刘相华,等.HSLA 钢板控轧控冷生产中组织性能的预测模型[J].钢铁,1999, 34(1):35~39.
    [180]Vatne H E, Wells M A. Modelling of the recrystallization behaviour of AA5XXX aluminum alloys after hot deformation[J]. Canadian Metallurgical Quarterly,2003,42(1):79~88.
    [181]Wang Lin-yun, Fan Yong-ge, Huang, Guang-Jie, et al. Flow stress and softening behavior of wrought magnesium alloy AZ31B at elevated temperature[J]. Trans. Nonferrous. Met Soc. China, 2003, 13(2): 335~338.
    [182]Tan J C, Tan M J. Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet[J]. Materials Science and Engineering A,2003,339(1-2):124~132.
    [183]罗丰华,尹志明,左铁镛.CuZn(Cr,Zr)合金的热变形行为[J].中国有色金属学报,2000,10(1):12~16.
    [184]Gronostajski, Z. A general model describing flow stress of copper alloys in different deformation conditions[J]. Journal of Materials Processing Technology,2003,142(3):684~691.
    [185]曾卫东,周义刚,俞汉清.Ti-17 合金的热压缩变形行为研究[J].材料科学与工艺,1996,4(2):20~24.
    [186]Xiong A M, Li M Q, Huang W C, et al. Analysis of high flow stress and microstructural evolution of TC6 titanium alloy during isothermal forging[J]. Materials Science and Technology,2004, 20(10):1257~1260.
    [187]罗守靖,姜巨福,祖丽君,等.SiCp/2024 复合材料在半固态下流变行为的研究[J].机械工程学报,2002,38(12):603~610,594.
    [188]沈健.热压缩 2091 Al-Li 合金的流变应力行为[J].稀有金属,1998,(1):47~50.
    [189]Srivatsan T S, Hoff T, Sriram S, et al. Effect of strain rate on flow stress, strength and ductility of an Al-Li-Mg alloy[J].Journal of Materials Science Letters,1990,9(3):297~300.
    [190]杨立斌,张辉,彭大暑,等.7075 合金高温流变应力行为的研究[J].热加工工艺,2002,(1):1~5
    [191]Shen J, Song Y Q, Xie S S, et al. Modeling hot deformation of Al-Zn-Mg alloy[J]. Materials Science Forum,2003,426-43(5):3843~3848.
    [192]万菊林,孙新军,顾家琳,等.Al-Cu-Mg-Zn-Cr 合金热扭转变形中连续动态再结晶机理[J].金属学报,1999,35(10):1031~1035.
    [193]To Suet, Lee, W B, Ralph B. Deformation and recrystallization in cross-rolled Al-Cu precipitation alloys[J]. Journal of Materials Science,1994,29(1):269~275.
    [194]Vatne H E, Marthinsen K O, Roar N E. Modeling recrystallization kinetics, grain sizes, and textures during multipass hot rolling[J].Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1996,27A(12):4133~4144.
    [195]任立英.经高效熔体处理的压力罐用铝材高温塑性变形的研究:[硕士学位论文].福州:福州大学材料科学与工程学院,2001.
    [196]王火生.易拉罐用铝材高温变形的流变应力行为及微观组织特征:[硕士学位论文].福州:福州大学机械工程学院,2003.
    [197]王志强,沈健,张新明.Al-Li 合金热压缩时的不均匀变形现象[J].稀有金属,1999,23(6):466~470.
    [198]庄楚强,吴亚森.应用数理统计基础[M].广东:华南理工大学出版社,1993.
    [199]龚羽,郑芳,焦四海.热模拟圆柱形压缩试样上金相观测点的选取[J].理化检验-物理分册,2004,40(6):282~285.
    [200]《轻金属材料加工手册》编写组 编.轻金属材料加工手册(上册)[M].北京:冶金工业出版社,1979.
    [201]孙伟成,张淑荣,侯爱芹 编著.稀土在铝合金中的行为[M].北京:兵器工业出版社,1892.
    [202]任登义.稀土对高碳钢焊缝中碳化物的变质作用[J]. 中国稀土学报,1998,16(2):154~157.
    [203]Snyder V A, Alkemper J, Voorhees P W. Transient Ostwald ripening and the disagreement between steady state coarsening theory and experiment [J]. Acta Mater, 2001, 49: 699~709.
    [204]李金文,沈时英,李章存,等.稀土对铝的细化变质和除气作用[J].轻金属,1989,(7):31~34.
    [205]马书伟,李嘉荣,侯淑娥. Re 对γ’相粗化行为的影响[J]. 航空材料学报,2000,20(3):11~15.
    [206]石霖 编著.合金热力学[M].北京:机械工业出版社,1992.
    [207]陈国良,林均品.有序金属间化合物结构材料[M].北京:冶金工业出版社,1999.
    [208]Narayanan L A, Samuel F H, Gruzleski J E. Crystallization behavior of iron-containing intermetallic compounds in 319 aluminum alloy[J]. Metallurgical and Materials Transactions,1994,25A(8):1761~1773.
    [209]Bansack W. Iron——the problematic factor in quality of aluminum alloy die casting[J].AFS Transactions,1961, 69:712~720.
    [210]杨留栓,王汝耀.用稀土和锰复合合金化消除活塞铝合金中针状铁相的研究[J].洛阳工学院学报,1990,11(2):14~21
    [211]Furrrer P, Hausch G. Recrystallization behavior of commercial Al-1%Mn alloy[J]. Metal Science, 1979,(3-4):155-162.
    [212]李松瑞,周善初 编.金属热处理[M].长沙:中南大学出版社,2003.
    [213]CreaPeau P N. Effect of iron in Al-Si casting alloys :a critical review[J]. AFS Transactions,1995,110: 361~366.
    [214]肖纪美 编著.合金能量学[M].上海:上海科学技术出版社,1985.
    [215]傅高升,任立英,陈文哲,等.熔体处理对压力罐用铝材力学性能的影响[J].矿冶,2001,(1):53~58.
    [216]汪大年.金属塑性成型理论[M].北京:机械工业出版社,1984.
    [217]沈健,唐京辉,谢水生.Al-Zn-Mg 合金的热变形组织演化[J].金属学报,2000,36(10):1033~1036.
    [218]韩冰.7075z铝合金高温塑性变形行为研究:[硕士学位论文].广州:广东工业大学材料与能源学院,2003.
    [219]谢建新,刘静安.金属挤压理论与技术[M].北京:冶金工业出版社,2001.
    [220]Polyak Ye I, Breygin V D. Investigation of thermally activated processes during high-temperature deformation of engineering steel[J]. Physics of Metals and Metallography,1989,67(4):172~180.
    [221]柳永宁,宋小龙,林君山.钢的屈服强度与激活能[J].兵器材料科学与工程,1995,18(6):10-14.
    [222][苏]葛列里克 S S 著.金属和合金的再结晶[M].北京:机械工业出版社,1985.
    [223]陈嘉亮.3004 铝合金中动态应变时效现象的研究:[硕士学位论文].福州:福州大学材料科学与工程学院,2005.
    [224]沈健.AA7005 铝合金的热加工变形特性[J].中国有色金属学报,2001,11(4):593~597.
    [225]Evangelista E M. Strength of Metals and Alloys[M]. ICSMA~8,Kettumen.P.O.ed.Programon .Oxford press,1988.
    [226]Clough R B, Demer L J. Stress relaxation and the activation energy for plastic flow in solids commercially-pure aluminum[J]. Phys Status Solidi,1969,36(1):221~229.
    [227]Estrin Y, Mecking H. Unified phenomenological description of work hardening and creep based on one-parameter models[J].Acta Metallurgica,1984,32(1):57~70.
    [228]杜随更,吴诗,段立宇,等.初始动态再结晶过程中的位错动态行为[J].西北工业大学学报,1997,15(3):333~337.
    [229] Beck P A, Sperry P R, Hu H The orientation dependence of the rate o f grain boundary migration[J]. Appl. Phys,1950,21(5):420~425.
    [230]Cottrell A H 著, 葛庭燧 译.晶体的位错和范性[M].北京:科学出版社,1960.
    [231]Burgers W G, Louwerse P C. The connection of deformation procedure and recrystallisation texture of alumimium[J].Z. Phys.,1931,67:605–678.
    [232]Bollman W. Crystal Defects and Crystalline Interfaces[M]. New York:Springer-Verlag,1970.
    [233]Li J C M. Possibility of subgrain rotation during recrystallization[J]. J. Appl. Phys.1932 33(40): 2958~2965.
    [234]Bay B, Hansen N, Kuhlmann-Wilsdorf D. Deformation structures in lightly rolled pure aluminium[J]. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing,1989, A113(1-2):385~397.
    [235]石德珂.位错与材料强度[M].西安:西安交通大学出版社,1986.
    [236]朱志远,杨扬,杨军军.高速变形条件下的动态再结晶机制的研究进展[J].铝加工,2000,23(3):43~47.
    [237]Zener C. Theory of growth of spherical precipitations from solid solution[J]. J.Appl. Phys., 1949, 20:950~953.
    [238]杨平, Engler O. A1-Mn 合金中粒子促进形核及初期再结晶织构(II): 粒子与其它形核位置的交互作用及初期再结晶织构[J].金属学报,1998,34(8):793~801.
    [239]Brooks C R 著,丁夫 译.有色金属的热处理组织与性能[M].北京:冶金工业出版社,1988.
    [240]Truszkowski W, Pawlowski A, Dutkiewicz P. Dynamic recrystallization in Al-Mg alloy[J]. Bull. Acad. Pol. Ser. Sci. Tech.,1979,19:55~64.
    [241] Perrymsn E C W. Stress-Corrosion of Magnesium Alloys[J]. The Jour. Inst. Metals,1951,78(6): 621~642.
    [242]王泾文.高速钢晶粒碎化方式动态再结晶[J].热加工工艺,1997,(6):12~14.
    [243]Sakai T, Takahashi C. Flow softening of 7075 aluminum alloy under hot compression[J]. Materials Transactions, JIM,1991, 32(4):375~382.
    [244]许勇顺,柳建韬,聂明,等.金属热变形应力-应变曲线数学模型的研究与应用[J].应用科学学报,1997,(12):379~384.
    [245]张红梅,刘相华,王国栋.采用累积大压下方法细化铁素体组织[J].2001,13(1):36~39.
    [246]王火生,傅高升,陈文哲,等.压力罐用铝材多道次热压缩变形的软化规律探讨[J].福州大学学报(自然科学版),2003,31(1):52~56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700