γ-TiAl合金C及C+Nb激光表面合金化及其耐磨与高温抗氧化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
γ-TiAl合金具有低密度、较高的比强度和比刚度,以及优良的
    高温性能,被认为是一种极具应用潜力的新型高温结构材料。如何
    改善TiAl合金的高温抗氧化问题,是提高TiAl合金使用温度的关键
    问题之一,同时,当TiAl合金用作高温运动部件时,还必须提高其
    高温耐磨损性能。
    本文利用激光表面合金化技术,用高纯C和C+Nb粉作为合金
    元素,在Ti-46Al-2Cr-1.5Nb-1V铸态合金表面“原位”生长出TiC
    颗粒,使其表面形成了以TiC颗粒为增强相的复合材料表面改性层,
    并利用光学金相(OM),X射线衍射(XRD),扫描电镜(SEM)
    等实验手段,对激光表面改性层的显微组织、相组成进行了观察,
    并分析了显微组织与激光工艺参数的影响。对经激光表面改性后的
    试样在高温(870℃)抗氧化性能进行研究,同时还对激光表面改性
    层的室温耐磨损性能进行了研究,得出了以下主要结论:
    (1)C+Nb表面合金化后,在TiAl合金表面“原位”生长出
    TiC颗粒,TiC颗粒在合金表面是梯度分布,其体积分数由外向里逐
    渐减少,表面改性层与基体呈完全的冶金结合。
    (2)激光表面改性层的显微组织受到激光工艺参数的影响,如
    在功率和束斑直径相同的条件下,随着扫描速率的增加,生成的TiC
    颗粒形态由颗粒状逐渐向针片状过渡。
    (3)在870℃条件下,经激光表面处理后的试样抗氧化性能明
    显提高,经C+Nb合金化的试样表现出较高的抗氧化性能。
    (4)在870℃条件下,经100小时氧化后,TiC颗粒会发生分
    解。
    (5)激光表面改性层的显微硬度由外向里连续降低,其最大硬
    度值与变化梯度受激光工艺参数的影响,扫描速率越慢,功率越大,
    其改性层的平均硬度值越高,硬度变化梯度越平缓。
    (6)经C+Nb表面合金化试样室温滑动耐磨性明显提高,其耐
    
    辛艳辉
    湘潭大学硕士论文
    磨机理表现为显微切削,
    轻微的粘附转移和碳化汤雨丽面氰
γ-TiAl alloy is considered as one of the promising light-weight structural materials at elevated-temperature due to its excellent combination of low density, high specific strength and stiffness, and superior high elevated-temperature properties. How to improve high temperature oxidation resistance of TiAl alloy is one of keys to enhance the temperature for its application. At the same time, and the wear resistance of this alloy also must be improved when it is used as moving tribological components.
    In the paper, laser surface alloying with C and C+Nb powders with high purity was used to modify the surface properties of Ti-46Al-2Cr-1.5Nb-lV alloy, and a composite surface layer reinforced by "in-situ" titanium carbide was formed in the alloy. The microstructures of modified layer were observed, and the compositions were determined by using X-ray , SEM,Optical Microscope (OM) etc. The effects of laser process parameters on the microstructure of the modified surface were analyzed. The Oxidation behavior of the alloy with the modified surface was studied at 870癈 high temperature, and the wear properties of the modified layer at room temperature was investigated. The primary results are as follows:
    1. By laser surface alloying with C and C+Nb powders, a composite layer reinforced by "in-situ" TiC particles was produced at the surface of the alloy. TiC particles distribute at the surface in the gradient. The volume fraction of the particles decreased with the increase of the depth. No interface between modified layer and substrate was observed, indicating that they are in metallurgical bond.
    2. The microstructure of the modified layer was strongly dependent on the laser process parameters. At the conditions of the same power
    
    
    
    and beam diameter, TiC changed in shape from the particle to the needle with the increase of the scanning rate.
    3. By laser surface alloying with C and C+Nb powders, the oxidation resistance at 870℃ of alloy improved obviously after, and the sample alloying with C+Nb exhibits the best oxidation resistance.
    4. At 870℃, TiC can decompose after oxidation for l00h.
    5. Micro-hardness of laser modified layer decreased continuously with the increase of the depth. Its highest hardness value and gradient were associated with laser process parameters, namely, slower scan rate and greater laser power result in a higher average hardness value and a smoother gradient.
    6. By laser surface alloying with C+Nb, the gliding wear resistance of the alloy at room temperature was improved greatly. The wear resistant mechanisms are mainly micro-cutting, slight adhesive transfer and fragmentation and spalling of the reinforcing phases resulting from partial cracking.
引文
[1] H. Q. Ye. Recent developments in Ti_3Al and TiAl intermetallics research in China, Materials Science and Engineering A263(1999), 289~295
    [2] Y. M. Kim. Gamma titanium aluminide alloy technology: status and future, Acta Metallurgica Sinica, 12(4) (1999), 334~339
    [3] J. C. Chesnutt. Titanium aluminides for aerospace applications, Superalloys, 1992, ed. By Antolovich S. D. Stusrud R. W., Khan T., et al, TMS, 1992, 381~389
    [4] 山口正治,马越佑吉著,丁树深译,金属间化合物,科学出版社,北京,1991
    [5] J. Triantafillou, J. Beadoes, L. Zhao and W. Walllace. Creep properties of near γ-TiAl+W with a laminar microstructure, Metall. Mater. Trans. A; 25A(1994), 1667~1679
    [6] D. M. Dimiduk. Gamma titanium aluminide alloys-an assessment within the competition of aerospace structural materials, Materials Science and Engineering, A263(1999), 281~288
    [7] 林栋梁,有序金属间化合物研究的新进展,机械工程材料,18(1)(1994),8~15
    [8] 国家自然科学基金委员会,金属材料科学,科学出版社,北京,1995
    [9] M. A. Morris, Y. G. Li, and M. Leboeuf. Variation of the phase distribution in a Ti-44Al-2Mo alloy by annealing: influence on its strength and ductility, Scripta Metallurgica et Materialia, 30(1994), 449~455
    [10] D. M. Dimiduk. Gamma titanium aluminides-an emerging materials technology in gamma titanium aluminides, TMS, 1995, 3
    [11] J. C. Chesnutt, J. A Hall and H. A. Lipsitt. Titanium intermetallics-present and future, In:paper present at the 8th World Conference on Titanium, Birmingham, U.K., 1995, 22~26
    [12] M. J. Blackburn and M.P. Smith. Improved toughness alloys based on titanium aluminides, Report WPDC-TR-89-4133, 1989
    [13] Y. W. Kim et al.. Microstructural evolution and mechanical
    
    properties of a forged gamma titanium aluminide alloy, Acta Metall. Mater, 40(6)(1992), 1121~1127
    [14] Y. W. Kim. et al.. Intermetallic alloys based on gamma titanium aluminide, JOM, 41(7)(1989), 24~27
    [15] H. A. Lipsitt et al..The deformation and fracture of TiAl at elected temperature, Metall. Trans., 6A(1975), 1975~1978
    [16] 成天一,章守华,快速凝固技术与新型合金,宇航出版社,北京,1990
    [17] M. Yoshihara, K. Miura and Y. W. Kim. Oxidation behavior of structure-controlled TiAl, In: Y. W. Kim, T Wagner and M. Yamaguchi Gamma titanium aluminides, TMS, 1995, 93~100
    [18] D. Xu, Z. Zhang, X. Liu, S. Zou, I. Shibata and I. Yamada. Improvement of oxidation resistance of TiAl by ion-beam-enhanced deposition coatings, Surface & Coatings Technology, 66(1994), 486~494
    [19] S. Laniguchi, T. Shibata, Y. Toshio, T. Yamada and X. Liu. High temperature oxidation of TiAl improved by IBEM Si_3N_4 coating, ISIJ International, 33(1993), 869~876
    [20] I. Credic, M. Latanovic and W. D. Munz. Plasma nitriding of Ti and TiAl coatings. Surface & Coatings Technology, 61(1993), 338~345
    [21] B. Huang, Y. He, Y. Qu and G. Kong. Surface Carboning of TiAl based alloy, Transactions of Nonferrous Metals Societv of China. 4(1994), 59~61
    [22] Y. G. Zhang, X. Y. Li, C. Q. Chen, W. Wang, J. Vincent. The influence of Nb ion implantation upon oxidation behavior and hardness of a Ti-48at.%Al alloys, Surafce & Coatings Technology, 100-101(1998), 214~218
    [23] M. Yoshihara, T. Suzuki and R. Tanaka. Improvement of oxidation resistance for TiAl by surface treatment under a low partial pressure oxygen atmosphere and Al diffusion coatings, ISIJ International, 31(1991), 1201~1206
    [24] J. M. Larsen, B. D. Worth, S. J. Balsone and A. H. Rosenberger. Reliability issues affecting the implementation of gamma titanium aluminides in turbine engine applications, In: Paper presented at the 8th World Conference on Titanium,
    
    Birmingham, U.K.,1995, 22~26
    [25] S.E.Hantfield-Wunsch, A. A. Sperling, R.Monison, W.E.Powling and J.E.Allison. Titanium aluminide automotive valves, In: Gamma Titanium Aluminides, Y.W.Kim, T. Wagner And M.Yamaguchi eds. TMS, 1995, 41~52
    [26] A.R.Rastkar, A.Bloyce and T. Bell. Sliding wear behavior of two gamma-based titanium aluminides, Wear, 240(2000), 19~26
    [27] 李向阳.γ-TiAl基合金的高温氧化行为及离子注入防护研究,北京航空航天大学,博士学位论文,1997
    [28] 王薇.γ-TiAl基合金的高温循环氧化行为及离子注入防护研究,北京航空航天大学,博士学位论文,1999
    [29] B. Y. Huang, Y. M. He and J. N. Wang. Improvement in mechanical and oxidation properties of TiAl alloys with Sb additions, Intermetallics, 7(1999), 881~888
    [30] G. H. Meier. Oxidation of High Temperature Intermetallics, T. Grobstein and J. Doychak, eds.(TMS, Warrendae, PA), 1989, 1~16
    [31] G. Welsch, A. I. Kahveei. In Oxidation of High-Temperature Intermetallics, T. Grobstein and J. Doychak eds.(The Minerals and Materials Society),1989, 207~218
    [32] Z. D. Xiang, S. R. Rose and P. K. Datta. Codeposition of Al and Si to form oxidation-resistant coatings on γ-TiAl by the pack cementation process, Materials Chemistry and Physics, 80(2)(2003), 482~489
    [33] Z. D. Xiang, S. Rose and P. K. Datta. Pack deposition of coherent aluminide coatings on γ-TiAl for enhancing its high temperature oxidation resistance, Surface and Coatings Technology, 161(2-3)(2002), 286~292
    [34] M. Schiitze and M. Hald. Improvement of the oxidation resistance of TiAl alloys by using the chlorine effect, Materials Science and Engineering A, 239-240(1-2)(1997), 847~858
    [35] Y. Wu, S. K. Hwang, S. W. Nam and N. J. Kim. The effect of yttrium addition on the oxidation resistance of EPM TiAl-based intermetallics, Scripta Materialia, 48(12)(2003), 1655~1660
    [36] 唐兆麟,王福会等.Cr对Tial金属间化合物高温氧化性能的影响,金属学报,33(10)(1997),1028~1033
    
    
    [37] Z. L. Tang, E H. Wang, W. T. Wu. The effects of several coatings on cyclic oxidation resistance of TiAl intermetallics, Surface & Coatings Technology, 110(1998), 57~61
    [38] U. Homauer, E. Richter, W. Matz and H. Reuther. Microstructure and oxidation kinetics of intermetallic TiAl after Si- and Mo- ion implantation, Surface and Coatings Technology, 128-129(2000), 418~422
    [39] Y. G. Zhang, X. Y. Li, C. Q. Chen, W. Wang and V. Ji. The influence of Nb ion implantation upon oxidation behavior and hardness of a Ti-48 at.% Al alloy, Surface and Coatings Technology, 100-101(1-3)(1998), 214~218
    [40] 郑传林,徐重等.NiCrMoNb合金化层对TiAl金属间化合物抗氧化性能的影响,稀有金属材料与工程,32(1)(2003),32~35
    [41] 彭晓,唐兆麟,李铁藩等.Ni-La_2O_3复合镀层对γ-TiAl抗氧化性能的影响,金属学报,34(3)(1998),319~324
    [42] S. Taniguchi, T. A. Shibata, S. Sakon. Oxidation resistance of TiAl significantly improved by combination of preoxidation and Hf addition. Materials Science and Engineering A198, 1995, 85~90
    [43] 何秀丽,王华明,郑启光等.TiAl合金碳元素激光表面合金化显微组织研究[J].金属学报,34(9)(1998),983~986
    [44] 何秀丽.TiAl及钛合金激光表面合金化组织与性能的研究,北京航空航天大学,硕士学位论文,1998
    [45] 刘秀波.γ-TiAl金属间化合物合金激光熔覆高温耐磨复合材料涂层组织与性能研究,北京航空航天大学,博士学位论文,2001
    [46] 石建东.钛铝金属间化合物组织与性能关系及韧化研究,冶金部钢铁研究总院,博士学位论文,1994
    [47] T.C.Lei, J.H.Ouyang, T.T Pei. Microstructure and wear resistance of laser clad TiC particle reinforced coating, Materials Science and Technology, 11(5)(1995), 520~526
    [48] J.H.Ouyang, Y.T.Pei, T.C.Lei et al..Tribological behavior of laser clad TiCp composite coating, Wear, 185(1-2)(1995), 167~172
    [49] 李强,王富耻等.激光熔覆Ni-Cr-B-Si-C合金的组织及其磨擦磨损特性,中国有色金属学报,8(2)(1998),201~2105

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700