菜园土壤铅污染的物理化学行为及生物学表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蔬菜是人们日常生活中不可缺少的食物,蔬菜的生产对保证城市经济发展、社会稳定和人们身体健康起着重要的作用。随着生活水平的提高,人们对清洁蔬菜、无污染蔬菜的要求日益强烈。城市郊区既是蔬菜的主要生产基地,又是城市固体废弃物(垃圾、淤泥等)的主要容纳场所,而且随着工业“三废”的污染和机动车尾气的排放,污水灌溉及农药、除草剂和化肥等的使用,污染了土壤,使蔬菜地铅污染加重,铅在植物根、茎、叶及果实中的大量积累,不仅影响植物的生长和发育,而且会进入食物链,危及人类的健康,因此菜园土壤的重金属铅污染日益受到人们的关注。本试验选用了当地有代表性的叶菜(小白菜)、茎菜(芹菜)、果菜(辣椒)各一种,采用了室内培养试验、溶液培养和土培试验,初步探讨了外源铅在两种菜园土壤的吸附-解吸特性和转化及pH对铅解吸的影响等铅在土壤中的物理化学行为;研究了铅对蔬菜作物生长发育的影响,包括根系形态及体内SOD、MDA,Pro及对铅胁迫的响应及蔬菜根系耐铅胁迫的机制;明确了铅在三种蔬菜体内的吸收积累规律及铅的植物毒性临界值和食品安全土壤临界指标,取得的主要结果如下:
     1.两种菜园土壤(青紫泥和黄松土)对铅的吸附等温线均可用Langmuir,Freundlich,Temkin方程来描述,相关系数均为0.90以上,达到极显著水平。由Langmuir方程求得青紫泥和黄松土对铅的最大吸附量分别为14285.7mg/kg,12500mg/kg。而且菜园土壤对铅的解吸量随其相应的吸附量的增加而增加,两者之间有很好的线性相关,相关系数为0.891,0.955,达到极显著水平。连续三次解吸过程中以第一、二次解吸为主,第三次解吸量很小。解吸液pH对两种菜园土壤的铅解吸有很大的影响,随着pH降低,铅的解吸量逐渐增加,当pH≤4时,铅的解吸量迅速增加。
     2.随着培育时间的推进,外源铅(Pb(NO_3)_2)的有效性不断降低,当培育12周以后,铅在两种菜园土壤中的转化基本达到了动态的平衡,有效铅含量不再减少。两种土壤对铅都有很强的吸附能力,达到平衡后,约有90%以上的铅不能被1mol/L中性NH_4NO_3浸提。
     3.生长介质中低浓度的铅(水培≤1mg/L,土培≤400mg/kg),促进小白菜与芹菜根系发育,增加地上部分的生物量,但随着处理浓度的提高,铅对蔬菜作物的毒性慢慢显现出来,表现为根系发育受阻,根尖发黑,侧根和根毛数减少,主根长,根表面积,根截面积,根体积下降,叶片失绿黄化,叶片容易脱落。辣椒花期延迟,三种蔬菜作物各器官
    
    的生物产量(鲜重)减少。当土壤外加铅浓度达到300om叭g时,辣椒已经枯萎死亡.
    三种蔬菜对铅的耐性表现为芹菜>小白菜>辣椒。
    4.三种蔬菜根系SOD酶活性随着铅处理浓度的提高表现为先上升,后下降。MDA含量
    在低铅处理浓度下积累不明显,随着铅处理浓度的升高逐渐上升,而根系脯氨酸的含量
    则随着铅处理浓度的提高持续的增加。
    5.铅在根细胞内主要与细胞壁结合,占了90%以上,并且盐酸提取态和醋酸提取态等难
    溶态占了绝大多数,二者合计也达到90%以上,减少了铅对细胞膜的直接毒害,限制了
    铅由根部分向地上部分的迁移,减少了对其它器官的毒害。蔬菜对铅的这种耐性,同时
    增加了铅对人类健康威胁。
    6.随着铅处理浓度的提高,三种蔬菜各器官中的铅含量逐渐升高,其中以根部含量最高,
    其次为叶、茎,果实中铅的含量最低,溶液培养和上培试验表明,随着铅处理浓度增加,
    根系铅含量远大于地上部含量,但由于地上部的生物产量远大于根系,因而地上部分吸
    收的铅总量大于根系。在相同处理浓度下,由于青紫泥铅的生物有效性大于黄松土,对
    蔬菜毒害也更大。在同样处理水平下,三种蔬菜作物,其可食部位铅的含量存在很大的
    差异,表现为小白菜>芹菜>辣椒。
    7.三种蔬菜作物可食部分的产量与水培铅处理浓度及两种土壤中铅浓度(全童或有效
    态)呈极显著的负相关。当小白菜地上部分,芹菜茎,辣椒果实减产10%时,通过相关
    方程计算,在水培条件下,小白菜、芹菜、辣椒的临界铅浓度分别为1 .56m留L、3.55m留L、
    0.slm叭。在盆栽条件下,小白菜、芹菜、辣椒在相应的青紫泥土壤全铅临界水平为
    goo.3mg/kg、936.2mg/kg、423.0m留kg;有效铅含量Zo.98mg/kg,、ZI.94mg/kg、l.55mg/kg;
    在黄松土上的全量铅临界值为1134.9m叭g、14%.sm叭g、443.6m留kg,有效态铅临界
    值为18.54mg/kg、30.78mg/kg、l.18mg/kg。
    8.蔬菜可食部位的产量与其组织中铅含量呈显著或极显著的负相关。当小白菜,芹菜,
    辣椒可食用部位减产10%时,在水培条件下,小白菜、芹菜、辣椒对应组织中铅的含童
    水平分别为24.71 mg/kg、28.25 mg/kg、0.567mg/kg;在青紫泥栽培条件下为13.1 mg/kg、
    3.83 mg/kg、0.734 mg/kg;在黄松土培养条件下为31.7 mg/kg、30.0 mg/kg、0.854 mg/kg。
    9.三种蔬菜作物可食部铅含量与水培溶液铅浓度及两种土壤铅浓度(全量或有效态)呈
    显著的正相关。以可食部位铅含量达到食品卫生标准(0 .Zmg/kg)为限值,在水培条件
    下,小白菜、芹菜、辣椒临界铅溶液浓度为0.320 mg/kg、1.42 mg/kg、0·397 mg/kg;
    土培青紫泥全量铅临界值为537.Zm眺g、595.sm留kg、314.sm留kg,有效态含量为
As indispensable food for people' s life, vegetables also play important roles for the health of human beings. With the improvement of people' s living standard, the demands for "clean vegetable" or "unpolluted vegetable" become stronger and stronger. Suburbs are areas for the production of vegetables and the disposal of solid refuse by means of landfill as well. And with the pollution of industry exhaust gas, waste residue, waste water and the let of the epilogue of the cars, soils are polluted by the irrigation of waste water, the pesticide, the herbicide and chemical fertilizers. Especially lead pollution in vegetable farm soils is more serious. The accumulation of the heavy metal-Pb in the root, stem, leaf and fruits not only affect the plant growth and development, but also can come into food chains to endanger the health of human beings. Therefore more and more attentions are paid to the heavy metal-Pb pollution in the graden soils. In this study, three representation vegetables-Chinese cabbage(leaf ve
    getable), Celery(stem vegetable), Pepper (fruit vegetable) were selected. We examined Pb's adsorption and desorption characteristics, the transformations and the influence of pH for Pb' s desorption-Pb physical chemistry action in the soil with the addition of Pb in two garden soils by the room culture experiments. Also, by hydroponic culture we studied lead' s influence on growth and development of vegetable crops, including of the root morphology and the change of SOD, MDA, Pro under Pb' s stress in the plant. And the thresholds for phytotoxicity or soil toxicity of Pb were studied by soil culture experiments. The main results obtained were summarized as follows: 1.The Isothermal curves of Pb of the adsorption on two garden soils(Qingzi garden soil and Huangsong garden soil)could both be described by either Langmuir, Freundlich or Temkin equation(R>0.90)for each equation, and arrived highly significant. Adsorption maxima calculated from the Langmuir equation were 14285.7 mg/kg, 12500mg/kg soil for Pb. Adso
    rption Pb by two garden soils increased with increasing adsorption respectively. There were highly positive linear relationships between adsorption and desorption(r=0.891, 0.955), arrived highly significant level.
    2.The phytoavailability of added Pb (Pb(NO3)2) deceased progressively with the incubation time. After 12 weeks, their transformations in two garden soils reached dynamic equilibrium,
    
    
    and their phytoavailability no longer decreased. After the equilibrium, about 90% Pb could not be extracted by 1 mol/L NH4NO3 (pH7.0)
    3. Lower concentration Pb in the medium accelerated the root development of Chinese cabbage and Celery, increased the biomass of the shoot. But with the increasing of the treatment concentration, Pb toxicity to vegetable crop gradually showed, and resulted in the inhibition of roots development. Root tip became black, the number of lateral root and root hair decreased, radical length, the root surface area, root volume decreased, leafs became yellow and easily fell off. Also, the florescence of Pepper declayed. All organs' biomass (fresh weight) of three vegetables decreased. Pepper died when adding 3000mg/kg Pb in soils. The tolerance of three vegetables for Pb is Celery>Chinese cabbage>Pepper.
    4. The activities of dismutase(SOD) of three vegetables in roots first rose, then declined. While the accumulation of melondialodehyde(MDA) content was not significant when lower Pb concentration. With increasing Pb concentration, MDA content increased gradually, while Pro content persistent increased.
    5 .The tolerance mechanisms of Pb mainly show that Pb in roots cell combined with cell wall, reached over 90%. Also, HCl-extractable Pb and HAc-extractable Pb became the dominative forms, reached over 90%, so decreased the Pb direct toxicity to cell membrane, restricted Pb transformation from roots to shoots, and decreased the toxicity for other tissues. 6.With the increasing of Pb treatment concentration, Pb content of all organs in three vegetables gradually improved, highest in ro
引文
1. A Husain. Z. Baroon, M. Al-khalafawi, T. Al-Ati et al. Toxic metals in imprted rruits and vegetables marketed in Kuwait[J].Environment International, 1995, 21 (6): 803-805.
    2. ADAS, Inorganic Pollution and Agriculture[M], Her Majestys Stationery office London, 1977.
    3. Adriano, D.C. In Trace elements in the terrestrial environment; Adriano, D.C., Eds.; Springer-Verlag Publisher: New York, 1986.
    4. Adriano, D.C., 《Trace Element in the Terrestrial Environment》 , 219-244, Springer-Verlay Inc., New York, 1988.
    5. A1ia-Saradhi, P.P.. Proline accumulation under heavy metal stress[J]. J.Plant Physiol. 1991 (138): 554-558.
    6. Allen DL and Jarrell WM. Proton and copper adsorption to maize and soybean root cell walls. Plant Physiology, 1989 (89) : 823-832.
    7. Aneta Piechalak, Barbara Tomaszewska, Danuta Baralkiewicz, et al. Accumulation and detoxification of lead ions in legumes[J]. Phytochemistry , 2002 (60): 153-162.
    8. Aneta Piechalak, Barbara Tomazewska, Danuta Baraliewicz et al. Accumulation and detoxification of lead ions in legmes[J]. Phytochemistry, 2002 (60): 153-162.
    9. Bao, S.D. In Methods for soil and agricultural chemistry. Bao, S.D., Eds.; Chinese Agric. Press: Beijing, 1999.
    10. Bargar, J.R.; Brown, G.E., Jr.; and Parks, G.A. Surface complexation of Pb (Ⅱ) at the oxide-water interfaces:Ⅱ. XAFS and bond-valance cetermination of mononuclear Pb (Ⅱ) sorption products and surface functional groups on iron oxides. Geochim. Cosmochim. Acta. 1997, 61, 2639-2652.
    11. Bargar, J.R.; Brown, G.E., Jr.; and Parks, G.A. Surface complexation of Pb (Ⅱ) at the oxide-water interfaces: Ⅰ. XAFS and bond-valance determination of mononuclear and polynuclear Pb (Ⅱ) sorption products on aluminum oxides. Geochim. Cosmochim. Acta. 1997, 61, 2617-2637.
    12. Barrow, N.J.; Bowden, J.W.; Posner, A.M.; and Quirk, J.P. Describing the adsorption of copper, zinc, and lead on a variable charge mineral surface. Australian J. Soil Res. 1981, 19 309-321.
    13. Basta, N.T.; and Tabatabai, M.A. Effect of cropping systems on adsorption of metals by soils: Ⅰ. Single-metal adsorption. Soil Sci. 1992a, 153, 108-114.
    14. Basta, N.T.; and Tabatabai, MA. Path-analysis of heavy metal adsorption by soil. Agron. J. 1993, 85, 1054-1057.
    15. Basta, N.T.; and Tabatabai. Effect of cropping systems on adsorption of metals by soils: Ⅲ. Effect of pH. Soil Sci. 1992, 153, 195-204.
    16. Bazzaz F A, Rolfe G L, Garlson R W. The effect of cadmium on photosynthesis and transpiration of excised leaves of corn and sunflower[J]. Physiol Plant1974 (32): 373-377.
    
    
    17. Berrow, M.L. Webber, J., .1972, 23 (1) : 92-100.
    18. Brown SL. The phytoavailability of cadmium to lettuce in long-term biosolids amended. Jenviron. Qual., 1998 (27):1071-1078.
    19. Bruemmer, G.W.; Gerth, J.; and Tiller, K.G.. Reaction kinetics of the adsorption and desorption of nickel, zinc, and cadmium by goethite. Ⅰ. Adsorption and diffusion of metals. J. Soil Sci. 1988, 39, 37-52.
    20. C.F. Aten, s.g. Gupta. On heavy metals in soil rationalization of extractions by dilute salt solutions, comparison of the extracted concentrations with uptake by ryegrass and lettuce , and the possible influence of pyrophosphate on plant uptake[J].The Science of the Total Environment. 1996 (178): 45-53.
    21. Canli M, Stagg RM, Rodger G. The induction of metallothionein in tissues of the Norway Iobster Nephrops norvegicus following exposure to cadmium, copper and zinc: Therelationships between metallothionein and the metal. Environment Pollution, 1997 (96):343-350.
    22. Chen T.B. , Wong W.C., Zhou H. Y. Assessment of trace metal distribution and contamination in surface soils of HongKONG[J]. Environmental Pollution, 1997, 96 (1): 61-68.
    23. Chen Y.X., He Y.F., Luo Y.M. Physiological mechanism of plant roots exposed to cadmium[J].Chemosphere, 2003 (50): 789-793.
    24. Chip Apple; and Lena Ma. Concentration, pH, and surface charge effects on Cadmium and Lead sorption in three tropical soils. J. Environ. Qual. 2002, 31, 581-589.
    25. Christina Siebe. Heavy metal availablilty to plants in soils irrigated with wastewater from Mexico city[J]. Wat. Sci. Tech. 1995, 32 (12): 29-34.
    26. D. J. Oyedele, I. B. Obioh, J.A. Adejumo, A. F. Oluwole et al.. Lead contamination of soils and vegetation in the vicinity of a lead smelter in Nigeria[J]. The Science of the Total Enviroment, 1995, (172): 189-195.
    27. D. VOUTSA, A. GRIMANIS, C. SAMARA. Trace elements in vegetables grown an industrial area in relation to soil and air articulate matter[J].Envionmental Pollution, 1996, 94 (3): 325-335.
    28. David B E. Inter-relationship between soil properties and the uptake of cadmium, copper, lead and zinc from contaminated soils by Radish Rahanus satius L. Water, Air and soil Pollution. 1992 (63):331-342.
    29. Davis, J.A.; and Leckie, J.0. Surface ionization and complexation at the oxide/ water interface:Ⅱ. Surface properties of amorphous iron oxyhydroxide and adsoption of metal ions. J. Coll. Interface Sci. 1978, 67, 90-107.
    30. Donghua L, Wusheng J, Wei, W, Fengmei Z, Cheng L. Effects of lead on root growty, celldivision, and nucleolus of AlliumCepa. Environmental Pollution. 1994 (86) : 1-4.
    31. Elsokkary HI, Amer AM, Shalaby EA. Assessment of inorganic lead specie and total organo-alkyllead insome Egyptian agriculural soils. Environmental Pollution, 1995 (87) : 225-233.
    32. F.A. Nicholson, S.R. Smith, B.J.Alloway et al. An inventory of heavy metals
    
    inputs to agricultural soils in England and Wales[J]. The Science of the Total Environment. 2003 (311): 205-219.
    33. F. Pinamonti, G. Stringari, F. Gasperi, et al. The use of compost: its effects on heavy metal levels in soil and plants[J].Resources, Conservation and Recycling. 1997 (21): 129-143.
    34. F. Queirolo, S. Strgen, M. Restovic, M. Paz, P. Ostapczuk, et al.. Total arsenic, lead, and cadmium levels in vegetables cultivated at the Andean villages of northern Chile[J].The Science of the Total Environment. 2000 (255): 75-84.
    35. Fendorf, S.E.; Eick, M.J.; Grossl, P.R.; and Sparks, D.L. Arsenate and chromate retention mechanisms on goethite. Ⅰ. Surface Structure. Environ. Sci. Technol. 1997, 31, 315-320.
    36. Forbes E.A.: Posner A.M.; and Quirk J.P. The specific adsorption of divalent cadmium, cobalt, copper, lead, and zinc on goethite. J. Soil. Sci. 1976, 27, 154-166.
    37. Gabbrielli R, Pandddfini T, Vergnano O, Palandui MR. Comparison of two serpentine species with different nickel tolerance strategies. Plant and soii. 1990 (122): 271-277.
    38. Gabrielle Tung, Patrick J. Temple. Uptake and localization of lead in corn (Zea mays L. ) seedlings, a study by histochemical and electron microscopy[J].The Science of the Total Environmental. 1996, (138): 71-85.
    39. Giovanni Gigliotti, Danjela Businelli, Pier Lodovico Giusquiani. Trace metals uptake and distribution in corn plants grown on a 6-year urban waste compost amended soil[J].Agriculture Ecosystems and Environment. 1996 (58): 199-206.
    40. Giannopolitis C.V., Ries S K.[J].Plant physiol., 1977 (59): 309-314.
    41. Gsbbtirlli at, Pandddfini T, Vergnano O, Palandri MR. Comparison of two serpentine species with different nickel tolerance strategies. Plant and Soil, 1996 (122): 271-277.
    42. Gunneriusson, L.; Lovgren, L.; and Sjberg, S. Complexation of Pb (Ⅱ) at the goethite (α-FeOOH)/water interface: The influence of chloride. Geochim. Cosmochim. Acta. 1994, 58, 4973-4983.
    43. Haghiri, F. Plant uptake of cadmium as influenced by cation exchange capacity, organic matter, zinc, and soil temperature. J. Environ. Qual. 1974, 3, 180-183.
    44. Harrison, R.m., Laxen, D.P.H., .Chapman and Hall Lid, London, 1981.
    45. Hassett, J.J. Capacity of selected Illinoes soils to remove lead from aqueous solution. Comm. Soil Sci. Plant Anal. 1974, 5, 499-505.
    46. Hayens R.J. Ion exchange properties of roots and ionic interactions within the root POPL sm: Their role in ion accumulation by plants. Botany Review, 1980 (46) : 75-99.
    47. Hayes, K.F.; and Leckie J.O. Modeling ionic strength effects on cation adsorption at hydrous oxide/ solution interfaces. J. Coll. Interface Sci.
    
    1987, 115,64-572.
    48. Heath RL., Packer L Arch Biochem, Biophys. 1968 (125): 189-198.
    49. Hohl, H.; and Stumm, W. Interaction of Pb~2 with hydrous Y-Al_2O_3. J. Coll. Interface Sci. 1976, 55, 281-288.
    50. Holmgren, G.G.S.; Meyer, M.W.; Chaney, R.L.; Daniels, R.B.J. Cadmium, Lead, Zinc, Copper, and Nickel in agricultural soils of the United States of America. Environ. Qual. 1993, 22, 335-348.
    51. Hrudey, S.E.; Chen, W.; and Rousseaux, C.G.. In Bioavailability in environmental risk assessment; Lewis Publ., Eds.; Boca Raton, FL, 1995.
    52. J. PICHTEL, K. KUROIWA, H.T. SAWYERR. Distrbution of Pb, Cd and Ba in soils and plants of two contanminated sites[J]. Environmental Pollution, 2000 (110): 171-178.
    53. Jackson PJ, Roth EJ, Merelure PR. Selection, isolation, and characterization of cadmium-resistant Datura innoxia suppension cultures. Plant Physiology. 1984, 75 (4) : 914-918.
    54. Jarvris, MD, Leung DWM. Chelated lead transport in Chamaecytisus proliferulinkssp. Proliferus var. palmensis: an ultrastrutural study. Plant Science. 2001 (161): 433-441.
    55. Jin Qian, Xiao-quan Shan, Zi-jian Wang et al. Distribution and plant availability of heavy metals in different particle-size fractions of soil[J].The Science of the Total Environment. 1996 (187): 131-141.
    56. Jinadasa K B P N, Milham P J, Hawkins C A, et al. Heavy metals in the environment-survey of cadmium levels in vegetables and soils of Greater Sydney, Australia[J].J Environ Qual, 1997, 26: 924-933.
    57. John J.Sansalone, Steven G. Buchberger, Souhail R. Al-Abed. Fractionation of heavy metals in pavement runoff[J]. The Science of the Total Enviroment. 1996 (190): 371-378.
    58. Jones, L.H.P., ea al., Plant and Soil, 1973, 38 (4): 610-619.
    59. Kalbitz. K; and Wennich, R. Mobilization of heavy metal in polluted wetland soil and its dependence on dissolved organic matter. The science of the total environment. 1998, 209, 27-39.
    60. Kastori,R, Plesnicar M, Sakac K, Pankovic D, Aresenihjevic-MaksimovicI. Effect of excess lead on sunflower growth and phtosyntheses. J plant Nutrtion. 1998, 21 (1): 75-85.
    61. Kloke, A., Riebartsoh, Naturerewissenschaften, 1964, 51 (3): 367-368.
    62. Kochian L V. Mechanisms of micronutrient uptake and translocation in plants. In Mordtvedt J, Cox J, Shuman FR, Welch, RN eds., Micronutrients in Agreculture, 2~(nd) ed. Madison, WI:Soil Science Society of America, 1972:229-296.
    63. Koppe, D.E., understanding the minimal toxicity of lead in plants, in Effect of Heavy Metal Pollution on Plants, Applied Science Publishers, London, 1981.
    64. Kuo, S.: and Baker A.S. Sorption of copper, zinc, and cadmium by some acid soils. Soil Sci. Soc. Am. J. 1980, 44, 969-974.
    65. Kupper H, Kupper P, Spiller M. Environmental relevance of heavy
    
    metalsubsituted chlorophylls using the example of water plants. Jexp Bot., 1996 (47): 259-266.
    66. Lakshamn K C, Virinder K G, Surinder K S. Effect of cadmium on enzyme of nitrogen metabolism in pea seedling[J].Phytochemitry, 1992, 31 (2): 395-400.
    67. Lane SD, MartinES, Garrod JF. Lead toxicity effects on imdole-3-acetic acid-induced cell elongation. Planta, 1978 (144): 79-84.
    68. Lee K C, Cunninghan B A, Paulsen G M et al. Effects of cadmium on respiration rate and activities of several enzymes in soybean seedings[J].Physiol Plant, 1976 (36): 4-6.
    69. Liu D, Jiang W, Liu C. Uptake and accumulation of lead by roots, hypocotyls and shoots of Indian mustard (Brassica juncea) [J].Bioresoure techonology, 2000, 71 (3): 273-277.
    70. Liu DH, Jiang WS, Wang W, Zhao FM, Lu C. Effect of lead on root growth, cell division, and nucleolus of Alliumcepa[J].Environment Pollution, 1994 (86): 1-4.
    71. Liu, G.; Jiang, N.; Zhang, L.; Liu, Z. In Methods of soil physicochemical analysis and profile description. Liu, G.; Jiang, N.; Zhang, L.; and Liu, Z., Eds.; Chinese Standard Press: Beijing, 1996.
    72. Luttage, Higenbotham, Transport in Plants, Springer verlag, Berlin, Heidelberg, 1979: 58-59.
    73. M.E. Lopez-Mosquera, C. Moiron, E. Carral. Use of dairy-industry sludge as fertilizer for grasslands in northwest Spain: heavy metal levels in the soil and plants[J].Resources, Conservation and Recycling. 2000 (30): 95-109.
    74. M.G.M. Alam, E.T. Snow, A Tanaka. Arsenic and heavy metal contamination of vegetables grown in Samta village, Bangladesh[J]. The Sciece of the Total Environment 2003 (308): 83-96.
    75. M.K. Chettri, C.M. Cook, E. Vardaka, T. Sawidis, T. Lanaras. The effect of Cu, Zn and Pb on the chlorophyll content o the lichens Cladonia Convoluta and Cladonia rangiformis[J]. Environmental and Experimental Botany, 1998 (39): 1-10.
    76. M. Kursad Turkdogan, Fevzi Kilicel, Kazim Kara, et al. Heavy metals in soil, vegetables and fruit in the endemic upper gastrointestinal cancer region of Turkey[J]. Environmental Toxicology and Pharmacology,2002 (13): 175-179.
    77. Ma, Q.Y.; Traina, S.J.; Logan, T.J. Effects of aqueousAl, Cd, Fe(Ⅱ), Ni, and Zn on Pb immobilization by hydroxyapatite. Environ. Sci. Technol. 1994, 28, 1219-1228.
    78. Malone C, Koeppe DE, Miller RJ. Localization of lead accumulated in corn plants[J].Plant Physiology, 1974 (53): 388-394.
    79. Mark A. Brennan, Michael L. Shelley. A model of the uptake, translocation, and accumulation of lead by maize for the prupose of phytoextraction[J]. Ecological Engineering, 1999 (12): 271-297.
    80. Martinez CE, Motto LH. Solubility of lead, zinc and copper added to mineral soils. Environmental Pollution, 2000 (107): 153-158
    81. Martinez CE, Motto LH. Solubility of lead, zinc and copper added to mineral
    
    soils. Environmental Pollution, 2000 (107) : 153-158.
    82. Martinez CE, Motto LH. Solubility of lead, zinc and copper added to mineral soils. Environmental Pollution, 2000 (107): 153-158.
    83. Matthew J. Eick: John D. Peak: Patrick V. Brady: and John D. Pesek. Kinetics of lead adsorption/desorption on goethite: residence time effect. Soil Sci. 1999, 164, 28-39.
    84. Mauricio Paulo F. Fontes, Paulo Cesar Gomes. Simultaneous competitive adsorption of heavy metals by the mineral matrix of tropical soils[J].Applied Geochemistry. 2003 (18): 795-804.
    85. McBride, M.B. In Environmental chemistry in soils. McBride., Eds.: Oxford Univ. Press: Oxford, 1994.
    86. Means A R, Dedman JR. Calmodulin--an yntracellular calcium receptor. Nature, 1980 (285): 73-77.
    87. Merry, R.H., et al, Plant and Soil, 1986, 91 (1): 115-128.
    88. Mielke, H.W. Lead in New Orleans soils: New imaged of an urban environment. [J] Environ. Geochem. Health. 1994, 16, 123-128.
    89. Milberg, R.P., et al. , 1980, 9 (1): 6-9.
    90. Monika Damek-Poprawa, Katarzyna Sawicka-Kapusta. Damage to liver, kidney, and teatis with reference to burden of heavy metals in yellownecked mice from areas around steelworks and zinc smelters in Poland[J]. Toxicology, 2003 (186): 1-10.
    91. Monserrat Belles, Angela Rico, Marta Schuhamacher, Jose L. Domingo. Reduction of lead concentrations in vegetables grown in tarragona Province, Spain, As a consequence of reduction of lead in gasoline[J]. Environment International. 1995, 21 (6): 821-825.
    92. Muhammad Sadiq, Water, Air, and Soil Pollution, 1985, 26 (2): 185-190.
    93. Mukherju S, Maitra P. Growth and metabolism of germinatiing rice seds as influenced by toxic concentration of lead. Z. Pflanze physiol, 1977 (81) 26-33.
    94. Müller, B; and sigg, L. Adsorption of Lead (Ⅱ) on the goethite: Voltametric evaluation of surface complexation parameters. J. Coll. Interface Sci. 1992, 148, 517-531.
    95. Naidu, R.; Kookana, R.S.; Sumner, M.E.; Harter, R.D.; and Tiller, K.G.. Cadmium sorption and transport in variable charge soils: A review. J. Environ. Qual. 1997, 26, 602-617.
    96. NISHIZONO H, ICHIKAWA H, SAZIKIS, ET AL. PLANT AND SOIL, 1987 (101): 15.
    97. Nishizono H. The role of the root cell wall in the heavy metal tolerance of Athyrium yokoscense[J].Plant and Soil.1987, (101): 15-20.
    98. Perez-Coll CS, Herkovits J, Fridman O, Daniel P, D Eramo JL. Metallothioneins and cadmiumuptake hy the liver in Bufoarenarun. Environmental Pollution, 1997, (97) : 311-315.
    99. Prasad DDK, Prasead ARK. Effect of lead and mercury on chlorophyll syntheses Ⅰ mung bean seedlings. Phytochemistry. 1987 (26): 881-883
    100. Qureshi J A, Hardwick K, Collin H A. Intraellular localization of lead in
    
    a lead tolerant and sensitive clone of Anthoxanthum odoratum[J].J Plant Physiol., 1986 (122): 357-364.
    101. Ranata Rucinska, Stefan Waplk, Edward A Gwozdz. Free radical formation and activity of antioxidant enzymes in Lupin roots exposed to lead[J]. Plant Physiol Biochem, 1999, 37 (3): 187-194.
    102. Raul S. Lavado, Claudia A. Porcelli, Roberto Alvarez. Nutrient and heavy metal concentration and distribution in corn, soybean and waheat as affected by different tillage systems in the argentine Pampas[J].Soil &Tillage Research, 2001 (62): 55-60.
    103. Rieuwerts J, FaragoM. Heavy metal pollution in the vicinity of a secondary lead smelter in the Czech Republic. Applied Geochemistry. 1996 (11): 17-23.
    104. Roe, A.L., et al. In-situ X-ray absorption study of lead ion surface complexes at the goethite-water interface. Langmuir, 1991, 7, 367-373.
    105. S. Sgardelis, C.M. Cook, J.D. Pantis, T. Lanaras. Comparison of chlorophyll fluorescence and some heavy metal concentrations in Sonchus spp. And Taraxacum spp. Along an urban pollution gradient[J]. The science of the Total Environment1994 (158): 157-164.
    106. Sauve S, McBride BM, Hendershot HW.Speciation of lead in contaminatecd soils. Environmetal Pollution, 1997, 98 (2): 149-155.
    107. Sauve, S.; McBride, M.B.; and Hendershot, W.H. Lead phosphate solubility in water and soil suspensions. Environ. Sci. Technol. 1998a, 32, 388-393.
    108. Sauve, S.; McBride, M.B.; and nendershot, W.H. Soil solution speciation of lead: Effects of organic matter and pH. Soil Sci. Soc. Am. J. 1998b, 62, 618-621.
    109. Schiewer S, Volesky B. Modeling multi-etal ion exchange in biosorption[J].Environ Sci. Technol. 1996, 30 (10): 2921.
    110. SBASTIEN SAUV; and MURRAY MCBRIDE. Lead phosphate solubility in water and soil suspensions. Environ. Sci. Technol. 1998, 32, 388-393.
    111. Shalini Verma, R.S. Dubey. Lead toxicity induces lipid peroxidation and alters the activies of antioxidant enzymes ingrowing rice plants[J]. Plant Science, 2003 (164): 645-655.
    112. Sharma, S.S.,Schat,H.,Vooijs,R..In vitro alleviation of heavy metal-induced enzyme inhibition by praline[J].Phytochemistry, 1998, 49 (6): 1531-1535.
    113. Sharpless, R.G.; Wallihan, E.F. and Peterson, F.F. Retention of zinc by some arid zone soil materials treated with zinc sulfate. Soil Sci. Soc. Am. Proc. 1969, 33, 901-904.
    114. Shuman, L.M. The effect of soil properties on zinc adsorption by soils. Soil Sci. Soc. Am. Proc. 1975, 39, 454-458.
    115. Singh SP, Tack FM, Verloo MG. Heavy metal fractionation and extractability in dredged sediment derived surface soils. Water Air Pollution, 1998 (102): 313-328.
    116. Sinha SK, Srivastava HS, Tripathi RD. Influence of some growth regulators and cations on the inhibition of chlorophyIIbiosyntheses by lead in maize. Bull Environ Contam Toxicol. 1993, (51): 241-246.
    
    
    117. Soldatini, G.F.; Riffaldi, R.; and Levi-Minzi, R. Pb absorption by soils. Water Air Soil Pollut. 1976, 6, 111-118.
    118. Sophie Cornu, Colin Neal, Jean-Paul Ambrosi, et al. The environmental impact of heavy metals from Sewage sludge in ferralsols[J]. The Science of the Total Environment, 2001 (271): 27-48.
    119. Sparks, D.L. In Environmental soil chemistry. Sparks, D., Eds.; L. Academic Press: New York, 1995.
    120. T.E. Bahemuka, E.B. Mubofu. Heavy metals in edible green vegetables grown along the sites of the Sinza and Msimbazi rivers in Dares Salaam, Tanzania[J]. Food Chemistry, 1999 (66): 63-66.
    121. T. Stercheman, A. Gomez, H. Ciesielski. Soil and waste analysis for environmental risk assessment in France[J].The Science of the Total Environment, 1996 (178): 63-69.
    122. Tatar E, Mihuca VG, Varga, A, Zaray GY, Fodor F. Determination of organic acids in xylem sap of cucumber: effect of lead contamination. Microchemical Journal, 1998 (58): 306-314.
    123. Tessier, A.; Campbell, P.G.C.; and Bisson, M. Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry. 1979, 51, 844-851.
    124. Tinsley, J. The determination of organic carbon in soils by dichromate mixtures. In Trans. 4th Int. Congr. Soil Sci. Hoitsema Brothers: Amsterdam, 1950, 161-164.
    125. Umit Tuncel, William J Clerici, Raleigh O. Jones. Differential ototoxicities induced by lead acetate and tetraethyl lead[J]. Hearing Rearch, 2002, (166): 113-123.
    126. Van Olphen. H. In An introduction to clay colloid chemistry; 2nd ed. John Wiley& Sons: New York, 1977.
    127. Wagner, R.H., Environment and Man (M). W.W. Norton&Company, New York, 1971:251-255
    128. Waigel HJ, Jager HJ, Subcellular distribution and chemical form of cadmium in bean[J].Plant Physiology, 1980 (65): 480-482.
    129. Wang, W.J. The study of Co, Cu, Pb and Zn adsorption affinity on red soil. J. Soil Science (in Chinese). 1999, 32, 167-177.
    130. Wierzbicka, M.. How lead loses its toxicity to plants. Act. Soc. Bot. Pol. 1995 (64): 81-90.
    131. World Health Organization. Technical Report Series No. 505. Geneva: WHO, 1972.
    132. World Health Organization. Technical Report Series No. 751. Geneva: WHO, 1987
    133. Woxny A, Krzeslowka M. Plant cell response to Pb. Acta Societatis BotanicorumPoloniae, 1993 (62) : 101-105.
    134. Yalagadda PY, Matsumoto MR, Vanbenschoten JE, Kathuria A. Chartcteristics of heavy metal in contaminated soils[J].J. Environ. Eng. 1995 (121): 276-286.
    135. Yu, S.; He, Z.L.; Huang, C. Y.; Chen, G.C.; Calvert, D. V. Adsorpton-desorption behavior of lead at contaminated levels in red soils from China. Environ. Quali. 2002, 31(4), 1129-1136.
    
    
    136. Zheljazkov V D, Nielsen N E. Effect of heavy metals on peppermint and cornmint[J].Plant and Soil, 1996, 178:59-66
    137. Zimdahl, R.L.; and Skogerboe, R.K. Behavior of lead in soil. Environ. Sci. Tech. 1977, 11, 1202-1207.
    138. Zofia Pietrzak-Flis, Malgorzata Skowronska-Smolak. Transfer of ~(210)Pb and ~(210)Po to Plants via root system and above - ground interception[J]. The Science of the Total Environment. 1995 (162): 139-147.
    139.曹立新 李惕川 刘莹等.公路边土壤和水稻中铅的分布、累积及临界含量[J].环境科学,1995,16(6):66-68.
    140.陈怀满 郑春荣 孙小华.影响铅的土壤环境容量的因素[J].土壤,1994,26(4):189-195.
    141.陈怀满 郑春荣.不同来源重金属污染的土壤对水稻的影响.农村生态环境,2001,17(2):35-40.
    142.陈维新.沈阳东郊沈抚公路两侧土壤铅含量分布规律的初步研究[J].农业环境保护,1990,9(2):10-13.
    143.陈晓婷,王果,张潮海等.石灰、泥炭对镉铅锌污染土壤上小白菜生长和元素吸收的影响[J].土壤与环境,2001,11(1):17-21.
    144.陈宜昌 任立松 高晓伟等.塑料大棚蔬菜镉污染的调查分析[J].中国公共卫生,1994,10(9):415-416.
    145.陈英旭,林琦,陆芳等.有机酸对铅、镉植株危害的解毒作用研究[J].环境科学学报,2000,20(4):467-472.
    146.程宏,戴军.蔬菜营养器官摄入铅的统计分析[J],生态学杂志,1992,11(2):14-17.
    147.崔康生 何金生 周慧敏等.含铅汽油对北京市土壤及植物铅含量的影响[J].中国儿科杂志,1998,36(3):180-181.
    148.丁素敏 何金生 周慧敏.无铅汽油对土壤、植物中铅含量及儿童血铅的影响[J].中国医刊,2001,36(7):416-417.
    149.窦争霞,胡荣梅.土壤中的铅对三种蔬菜的影响[J]环境科学学报,1987,7(3):367-370.
    150.杜应琼 何江华 陈俊坚等.铅、铬、镉在叶类蔬菜中的累积及对其生长的影响[J].园艺学报,2003,30(1):51-55.
    151.段敏 马往校 李岚.17种蔬菜中铅铬镉元素含量分析研究[J].干早区资源与环境.1999,13(4):74-80.
    152.段敏,马往校,李岚 陕西省部分城市蔬菜中重金属污染研究[J],西北农业大学学报,2000,28(4):89-93.
    153.菲尔汗.汉杰尔,潘丽英,陈勇等.汽车废气中的铅对城市土壤污染状况调查.干旱环境监测,2002,16(3):159-161.
    154.冯保民,麻密.植物络合素及其合成酶在重金属抗性中的研究进展[J].应用与环境生物学报,2003,9(6):657-661.
    155.冯恭衍,张炬,吴建平.宝山区蔬菜重金属污染研究[J].上海农学院学报,1993,11(1):43-50
    156.冯克亮编译.滥用含铅颜料、油漆可造成城市土壤铅污染[J].环境科学动态,1990(3):29-30.
    157.符建荣.土壤中铅的积累及污染的农业防治[J].农业环境保护,1993,12(5):223-226.
    
    
    158.顾淑华,红壤性水稻土铅环境容量研究[J].环境科学学报,1989,9(1):27-36.
    159.管建国 宋佩扬 潘如生等.蔬菜铅污染状况及其防治对策[J].南京农专学报.1998(9):22-27
    160.韩盛 努尔加义 刘雪梅.PH值对土壤中铅的缓冲影响[J].干旱环境监测,1999,13(2):116-118.罗金发夏增禄孟维奇.土壤重金属(镉、铅、铜)化学形态的地理分异研究[J].地理研究,1998,17(3):265-272.
    161.何冰.东南景天对铅的耐性和富集特性及其对铅污染土壤修复效应的研究.浙江人学博士论文,2002.
    162.何峰 涂从 苗金燕.土壤铅有效态临界含量的研究[J].农业环境保护,1992,11(2):84-87.
    163.何振立,周启星等主编.污染及有益元素的土壤化学平衡[M].中国环境科学出版社,北京,1998:276-303.
    164.胡迪琴.广州市近郊农田土壤及作物铅污染水平评价[J].生态科学,1997,16(1):71-74.
    165.黄晓华 周青 曹玉华等.La降低Pb、Cd在大豆植株内富集量的研究[J].应用化学,1998,15(5):92-94.
    166.江行玉,赵可夫.铅污染下芦苇体内铅的分布和铅胁迫相关蛋白[J].植物生理与分子生物学学报,2002,28(3):169-174.
    167.蒋定安 汤旭东.易兴市农田保护区重金属铅污染状况的研究[J].土壤,2002,(3):156-159.
    168.焦利珍 红壤性水稻土有效态铅的探讨,土壤环境容量[M],北京:气象出版社,1986:76-81.
    169.匡少平,张书圣.作物对土壤中环境激素铅的吸收效应及污染防治[J].农业环境保护,2002,21(6):481-484.
    170.李博文,谢建治,郝晋珉.不同蔬菜对潮褐土镉铅锌复合污染的吸收效应研究[J].农业环境科学学报,2003,22(3):286-288.
    171.李改平,席玉英,刘子川.太原地区食用蔬菜中有害重金属铅、镉含量的分析研究 [J].山西农业科学,2002,30(2):70—72.
    172.李海华,刘建武,李树人.土壤-植物系统中重金属污染及作物富集研究进展[J].河南农业大学学报,2000,34(1):30-33.
    173.李军 张玉龙 陈维新.有机质对土壤铅吸附特性的影响[J].沈阳农业大学学报,1992,23(专辑):38-42.
    174.李清报,罗样熙,杨良.土壤作物生态系统总的铅镉污染影响研究[J].云南环境科学,2002,21(2:)41-43.
    175.李书鼎.土壤水稻系统中铅和铋的行为及载体铅的影响[J].环境科学学报,1993,13(2):157-163.
    176.李树华,许兴,米海莉等.水分胁迫对牛心朴子植株生长及渗透调节物质积累的影响[J].西北植物学报,2003,23(4):592-596.
    177.李湘渊.机动车尾气对土壤铅累积的影响及分布格局[J].中南林学院学报,2001,21(4):35-39.王云徐启新袁建新.再生铅冶炼对土壤环境影响及其评价和环境管理[J].上海环境科学,2001,20(4):192-194.
    178.李湘渊.重金属铅和镉对土壤与作物的危害及防治[J].经济林研究,2000,18(4):12-13.
    179.李玉红,宗良纲,黄耀等.不同有机酸对水稻吸收铅的影响[J].南京农业大学学报,
    
    2002,25(3):45-48.
    180.利珀,农地中重金属控制技术[J],北京:科学出版社,1987:23-26.
    181.廖金凤.海南岛土壤中的铅[J].热带亚热带土壤科学,1992,1(1):17-22.
    182.廖敏,黄昌勇,谢正苗.pH对镉在土水系统中的迁移和形态的影响[J].环境科学学报,1999,19(1):81-86.
    183.凌婉婷,李学恒,贺纪正.土壤表面电荷特征与重金属吸附-解吸的相互关系[J].土壤通报,2002,33(6):456-450.
    184.刘春华,陈玉惠,吴锡南等.昆明西郊铅、镉、砷污染对儿童健康的影响[J].预防医学情报杂志,1998,14(1):1-3.
    185.刘芳,韩作振,郭良宗等.施灰田及所产蔬菜的镉汞砷铬铅和铝含量变化及影响评价[J].农业环境保护,2001,20(2):85-87.
    186.刘军,李先恩,王涛等.药用植物中铅的形态和分布研究[J].农业环境保护,2002,12(2):143-145.
    187.刘霞,刘树庆,唐兆宏.河北主要土壤中镉、铅形态与油菜有效性的关系[J].生态学报,2002,22(10):1688-1694.
    188.刘英对 王峰.珠江三角洲主要城市郊区公路两侧土壤和蔬菜中铅含量初探[J].仲恺农业技术学院学报,1999,12(4):51-54.
    189.刘云惠 魏显有 王秀敏等.土壤中铅镉的化学形态和有效态的提取与分离研究[J].河北农业大学学报,1998,21(4):44-47.
    190.龙新宪,倪吾钟,杨肖娥.菜园土壤锌的吸附、解吸特性的研究[J].七壤通报,2002,33(1):51-53.
    191.鲁如坤,土壤农业化学分析方法[M].中国农业科技出版社,北京,1999.
    192.栾兆坤,汤鸿霄.尾矿砂对重金属的吸附作用[J].环境化学,1993,12(5):356-364.
    193.马海燕 倪吾钟 龙新宪等.杭州市郊菜园土壤锌、铜、铅污染状况的调查[J].环境与健康杂志,2000,17(3):165-166.
    194.莫争,王春霞,陈琴.重金属Cu Pb Zn Cr Cd在土壤中的形态分布和转化[J].农业环境保护,2002,21(1):9-12.
    195.莫争,王春霞,陈琴等.重金属铜、铅、锌、铬、镉在土壤中的形态分布和转化[J].农业环境保护,2002,21(1):9-12.
    196.南忠仁,李吉均.城郊土壤共存元素对土壤作物系统镉、铅迁移的影响分析[J].城市环境与城市生态,2001,14(2):44-46.
    197.倪吾钟,龙新宪,杨肖娥.菜园土壤镉吸附-解吸特性的研究[J].广东微量元素科学,2000,7(10):11-15.
    198.潘如圭.火炼厂粉尘中重金属在环境中迁移及其对策[J].生物学杂志,1990,9(4):29-34.
    199.彭鸣,王焕校,吴玉树.镉、铅在玉米幼苗中的积累和迁移—X射线显微分析[J].环境科学学报,1989,9(1):61-67.
    200.秦普丰,铁柏清,周细红等.铅与镉对棉花和水稻萌发及生长的影响[J].湖南农业大学学报,2000,26(3):205-207.
    201.秦天才,吴玉树,王焕校.镉、铅及其相互作用对小白菜生理生化特性的影响[J].生态学报,1994,14(1):46-50.
    202.秦天才,吴玉树,王焕校等.镉、铅及其相互作用对小白菜根系生理生态效应的研究[J].生态学报,1998,18(3):320-325.
    203.任安芝 高玉葆 刘爽.铬、镉、铅胁迫对青菜叶片几种生理生化指标的影响[J].应
    
    用与环境生物学报,2000,6(2):112-116.
    204.任安芝,高玉葆,刘爽.铬、镉、铅胁迫对青菜叶片几种生理生化指标的影响[J].应用与环境生物学报,2000,6(2):112-116.
    205.荣湘民,岳振华,朱红梅.湖南省几种主要菜园土壤铅的化学行为及其作为效应的初步研究[J].热带亚热带土壤科学,1996,5(1):27-32.
    206.尚爱安,党志,漆亮等.两类典型重金属土壤污染研究[J].环境科学学报,2001,21(4):501-503.
    207.尚爱安,刘玉荣,梁重山,等.土壤中重金属的生物有效性研究进展[J]。土壤,2000,(6):294-300
    208.宋菲 郭玉文 刘孝义等.镉、锌、铅复合污染对菠菜的影响[J].农业环境保护,1996.15(1):9-14.
    209.宋菲 郭玉文 刘孝义等.土壤中重金属镉锌铅复合污染的研究[J].环境科学学报.1996,16(4):431-436.
    210.宋静.土壤重金属植物有效性评价及铜污染土壤修复的研究.中国科学院研究生院博士学位论文.2002
    211.苏德纯,黄焕忠,张福锁.印度芥菜对土壤中难溶态镉、铅的吸收著异[J].土壤与环境,2002,11(2):125-128.
    212.苏志富 徐景华 金阳.绍兴地区电池厂周围环境中铅的含量及其评价[J].绍兴文理学院学报,2002,22(3):66-69.
    213.孙卫玲,邓宝山.pH对铜在黄土中吸持及其形态的影响[J].环境科学,2001.22(3):78-83.
    214.索有瑞 黄雅丽.西宁地区公路两侧土壤和植物中铅含量及其评价[J].环境科学,1996,17(2):74-76.南忠仁.灰钙土中Cd、Pb的环境基准值及其应用[J].西北师范大学学报(自然科学版),1995,31(1):33-36.
    215.谭长银 罗槐林 岳振华.铅污染菜园土壤的改良初探[J].湖南农学院学报,1994.20(4):351-357.谢正苗黄昌勇.土壤-水稻体系中铅锌砷含量与水稻分蘖的关系[J].浙江农业大学学报,1994,20(1):67-71.
    216.谭长银 岳振华 罗槐林.菜园土对铅的吸持解吸特性研究[J].水土保持学报,2000,14(2):88-91.
    217.谭周磁,陈嘉勤,薛海霞.硒对降低水稻重金属铅、镉、铬污染的研究[J].湖南师范大学自然科学学报,2000,23(3):23-28.
    218.唐诵六,环境科学学报,1987,7(3):251-255.
    219.唐咏.铅污染对辣椒幼苗生长及SOD和POD活性的影响[J].沈阳农业大学学报,2001,32(1):26-28.
    220.土壤环境容量协作组.中国主要土壤类型Cd,Pb,Cu,As的主要生态学指标和临界含量[J].环境科学.1992,12(4):29-34.
    221.汪雅谷,王玮.土壤重金属的形态特征及其对蔬菜重金属含量的影响[J].上海农业学报,1991,7(4):54-60.
    222.汪雅谷,卢善玲,盛沛麟,等.蔬菜重金属低富集轮作[J].上海农业学报,1990,6(3):41-49.
    223.王丹丽,关子川,王恩德.腐殖质对重金属离子的吸附作用[J],黄金,2003,24(1):47-49.
    224.王凯荣.我国农田镉污染现状及其治理利用对策[J].农业环境保护,1997,16(6):274-278.
    
    
    225.王夔.生命科学中的微量元素[M].中国计量出版社.北京,1992:266-572.
    226.王丽凤,白俊贵.沈阳市蔬菜污染调查及防治途径研究[J].农业环境保护,1994,13(2):84-88.
    227.王秀丽,徐建民,姚槐应等.重金属铜、锌、镉、铅复合污染对土壤环境微生物的影响[J].环境科学科学学报,2003,23(1):22-27.
    228.王艳茹,魏永慧,李洵.吉林地产野生蔬菜中铅含量的测定[J].特产研究,2000(4):39-40.
    229.王云.土壤环境元素化学[M].中国环境科学出版社.北京,1995:193-212.
    230.魏秀国,何江华,王少毅.城郊公路两侧土壤和蔬菜中铅含量及分布规律[J].农业环境与发展,2002(1):39-40.
    231.夏增禄,穆从如,孟维奇等.Cd,Zn,Pb及其相互作用对烟草小麦的影响[J].生态学报,1984,4(3):231-236.
    232.夏增禄主编.土壤容量化学.北京,气象出版社,1988.63-65.
    233.谢正苗.土壤环境中铅的化学[J].广东微量元素科学.1996,3(11):24-28.
    234.徐宁彤,谷思玉,阎红.酸碱度对重金属镉、铜、锌在黑土中吸附解吸行为的影响[J].黑龙江水利科技,1998(4):62-64.
    235.许嘉琳,鲍子平,杨居荣等.农作物体内铅、镉、铜的化学形态研究[J].应用生态报,1991,2(3):244-248.
    236.杨崇洁.几种金素元素进入土壤后的迁移转化规律及吸附机理的研究[J]科学,1989,10(3):2-8.
    237.杨杰文 蒋新 徐仁扣等.砖红壤中Al和Pb的竞争吸附[J]化学,2003,22(1):9-13.
    238.杨居荣,鲍子平,张素芹.镉、铅在植物细胞内的分布及其可溶性结合形态[J],中国环境科学,1993,13(4):263-268.
    239.杨仁斌,曾清如,周细红等.植物根系分泌物对铅锌尾矿污染土壤中重金属的活化效应[J]环境保护,2000,19(3):152-155.
    240.杨亚提 白锦鳞 曹翠兰.陕西三种土壤对铅、镉吸附特性的研究[J]农业大学学报,1993,21(1):81-85.
    241.杨卓亚 张福锁.土壤-植物体系中的铅[J].土壤学进展,1993,2l(5):1-10.
    242.姚学良 廖远安.成都市金牛区土壤重金属污染状况[J].四川地质学报,2002,22(3):158-160.
    243.殷宗慧 刘虹 陈燕丰.铅在灰钙土土壤-植物系统与环境中的迁移和环境容量[J].地理研究,1993,12(3):100-106..
    244.余贵芬,蒋新,吴泓涛.镉铅在粘土上的吸附及受腐殖酸的影响[J].环境科学,2002,23(5):109-112.
    245.袁旭音 陶于祥 王润华等.湖州市不同土壤重金属的污染现状[J].上海地质,2002(3):6-11.部分土壤中的铅含量超标。
    246.岳振华,张富强,胡瑞芝等.菜园土中重金属和氟的迁移积累及蔬菜对重金属的富集作用[J].湖南农学院学报,1992,18(4):929-936
    247.张民,龚子同.我国菜园土壤中某些重金属元素的含量与分布[J].土壤学报,1996,33(1):85-93.
    248.张乃明 李保国 胡克林.污水灌区耕层土壤中铅、镉的空间变异特征[J].土壤学报,2003,40(1):151-154.
    249.张书海 林树生.交通干线铅污染对两侧土壤和蔬菜的影响[J].贵州环保科技,
    
    2000,6(4):21-23.
    250.张中一 朱长会.南京菜地土壤中铅的形态及其含量相关性研究[J].南京农专学报,1997(1):12-15.
    251.赵福庚,刘友良,章文华.大麦幼苗叶片Pro代谢及其耐盐性关系[J].南京农业大学学报,2002,25(2):7-10.
    252.郑春荣,陈怀满.土壤-水稻体系中污染重金属的迁移及其对水稻的影响[J].环境科学学报,1990,10(2):145-151.
    253.郑路 常江.合肥市菜园蔬菜和土壤的铅污染调查[J].环境污染与防治.1989,11(5):34-37.
    254.中国环境监测总站,《中国土壤元素背景值》,北京:中国环境科学出版社,1990.
    255.中国土壤农学会农业化学专业委员会主编.土壤农业化学常规分析方法[M].北京,科学出版社,1983.
    256.中华人民共和国卫生部。中华人民共和国国家标准(食品中铅允许量标准).1990.
    257.周根娣,汪雅谷,卢善玲.上海市农畜产品有害物质残留调查[J].上海农业学报,1994,10(2):45-48.
    258.周鸿,刘成运.玉米幼根对铅的吸收途径及有关的两种酶活性变化初探[J].环境科学学报,1986,6(1):66-71.
    259.周青,黄晓华,张建华.稀土配合物对大豆幼苗防护效应试验[J].上海环境科学,1998,17(5):16-17.
    260.周青,黄晓华,刘小林.酸雨对3种木本植物的胁迫效应[J].环境科学,2002,23(5):42-46
    261.周毅,李应学,戴碧琼等.土壤中的铅对作物的影响[J].农业环境保护,1986,5(2):9-12
    262.周艺敏,张金盛,任顺荣.天津市田园土壤和几种蔬菜中重金属含量状况的调查研究[J] 农业环境保护,1990,9(6):30-34.
    263.周泳,涂从,青长乐.铅在紫色土-水稻体系中的植物效应及形态[J].农村生态环境,1993(2):54-57.
    264.庄杰 张玉龙 刘孝义.土壤胶体表面重金属铅离子吸附特性的磁效应研究[J].1996,4(4):28-33.
    265.宗会,徐照丽,刘娥娥等.低温胁迫下氯丙嗪和氯化镧对水稻幼苗Pro的积累影响[J].热带亚热带植物学报,2003,11(3):241-244.
    266.祖艳群,李元,陈海燕等.蔬菜中铅镉铜锌含量的影响因素研究[J].农业环境科学学报,2003,22(3):289-292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700