四类吡啶化合物的合成与生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然吡啶类化合物广泛存在于烟草等植物中,具有广谱生物活性和结构多样性的特点。将烟草的提取物作为杀虫剂的研究与应用具有悠久的历史。然而,合成吡啶类化合物作为农药的研究在近10多年来才获得了迅速发展。近几年来,对天然烟碱类化合物的结构进行改造后,成功地合成出许多(新烟碱类化合物结构)较高活性的农药,如吡虫啉、吡虫清、氟虫腈、噻虫啉、吡氟磷,万亩定等。这一研究表明吡啶类化合物在杀虫剂、杀菌剂、除草剂等农药合成中取得了突破性的进展,吡啶类化合物在农药生物活性方面也起着重要的作用,吡啶类化合物的合成和生物活性研究,已成为化学界和生物界的研究热点之一。
     本文采用活性基团拼接法,将活性基团N-氧化和硝基取代后的吡啶环与活性基团二甲酰亚胺基进行拼接,设计合成了四类共45个吡啶类化合物。
     第一类:N-甲基-N-取代吡啶甲胺类化合物的合成。2-氯-5-胺甲基吡啶是甲胺吡啶类化合物重要的中间体。合成方法是由邻苯二甲酰亚胺、碳酸钾和2-氯-5-氯甲基吡啶发生Gabriel一步法缩合反应,其缩合产物先在强碱性溶液中水解,水解产物经过水蒸汽蒸馏,重结晶得2-氯-5-胺甲基吡啶。中间体2-氯-5-胺甲基吡啶再经过5-位甲胺基的烷基化、酰基化,合成了N-甲基-N-取代吡啶甲胺类化合物11个,经IR、MS、~1H NMR、~(13)C NMR谱图解析和元素分析确证了合成化合物的结构。
     第二类:N-(6-氯-3-吡啶甲基)二甲酰亚胺类化合物的合成。二甲酰亚胺钾盐是吡啶基二甲酰亚胺类化合物重要的中间体。合成方法是由起始原料尿素在熔融状态下放出氨气,再与二元酸酐制成二甲酰亚胺,该亚胺与强碱作用合成亲核试剂二甲酰亚胺钾盐,该盐与2-氯-5-氯甲基吡啶发生亲核取代反应,合成二甲酰亚胺化合物7个,经IR、MS、~1H NMR、~(13)C NMR谱图解析和元素分析确证了化合物的结构。
     第三类:N-(6-氯-1-氧-3-吡啶甲基)二甲酰亚胺类化合物的合成.合成方法是以2-氯-5-氯甲基吡啶为原料,以双氧水为氧化剂,在三氯乙酸存在下将吡啶环的N原子氧化得2-氯-1-氧-5-氯甲基吡啶。2-氯-1-氧-5-氯甲基吡啶与亲核试剂二甲酰亚胺钾反应,合成目标产物N-(6-氯-1-氧-3-吡啶甲基)二甲酰亚胺类新型吡啶化合物7个,经IR、MS、~1H NMR、~(13)C NMR谱图解析和元素分析确证了化合物的结构.
     第四类:N-取代基多取代吡啶胺类化合物的合成。合成方法是以2-氨基-5-溴吡啶为原料,在浓硫酸、发烟硝酸中首先合成了N-硝基-2-氨基-5-溴吡啶,然后N-硝基-2-氨基-5-溴吡啶再硝化反应合成2-氨基-3-硝基-5-溴吡啶,2-氨基-3-硝基-5-溴吡啶的胺基烷基化、酰基化,设计合成新的多取代吡啶化合物20个,经IR、MS、~1H NMR、~(13)C NMR谱图解析和元素分析确证了化合物的结构.
     在上述四类化合物的合成过程中,本文对中间体和目标化合物的合成方法和试验条件进行了优化和筛选.采用常规合成和微波合成两种方法,对第二类和第三类化合物的亲核取代反应合成条件做了对比.试验结果表明,微波合成法能很好的促进亲核取代反应的进行,缩短反应时间,提高产率.目标化合物N-(6-氯-3-吡啶甲基)邻苯二甲酰亚胺的合成反应时间从常规方法的9 h缩短到20 min,产率从80%提高到97%.
     对合成目标化合物进行了杀虫和杀菌活性的生物活性测定。试验以小菜蛾、蚕豆蚜、朱砂叶螨、淡色库蚊和褐飞虱5种靶标生物,对目标化合物进行了杀虫活性筛选.结果如下:在药剂浓度为10μg/mL时,化合物Ⅲ_1、Ⅲ_7、Ⅳ_2、Ⅳ_3对淡色库蚊校正死亡率分别为92.6%、90.5%、94.6%、97.3%,化合物Ⅰ_1、Ⅱ_3、Ⅱ_7、Ⅲ_6、Ⅳ_6、Ⅳ_8、Ⅳ_(10)、Ⅳ_(11)、Ⅳ_(14)、Ⅳ_(15)、Ⅳ_(16)、Ⅳ_(19)、Ⅳ_(20)对淡色库蚊校正死亡率都为100%,与对照药剂吡虫啉的校正死亡率相当;在药剂浓度为1μg/mL下时,目标化合物Ⅱ_3、Ⅲ_7对淡色库蚊校正死亡率分别为97.5%、96.5%,目标化合物Ⅰ_1、Ⅱ_7、Ⅲ_1、Ⅲ_6、Ⅳ_(19)、Ⅳ_(20)对淡色库蚊校正死亡率都为100%,与对照药剂吡虫啉的校正死亡率相当.在药剂浓度为200μg/mL时,目标化合物Ⅰ_2、Ⅲ_1、Ⅲ_2对蚕豆蚜校正死亡率分别为93.8%、96.3%、90.5%,目标化合物Ⅰ_1、Ⅱ_7、Ⅲ_6、Ⅲ_7、Ⅳ_(20)对蚕豆蚜校正死亡率都为100%;在药剂浓度为20μg/mL时,Ⅰ_1、Ⅱ_7、Ⅳ_(20)对蚕豆蚜校正死亡率都为100%.在45个合成化合物中,有17个化合物的杀虫生物活性达到了A级,具有很好的杀虫活性。
     采用生长速率法,以小麦赤霉病菌、稻瘟病、番茄灰霉病、为测试对象,对目标化合物进行了抗植物病菌活性测定.结果表明,大部分目标化合物的抑菌活性不明显.
Natural pyridine compounds and their structurally related compounds,with broad spectrum of biological activities and variety of structure,are naturally included in nicotianaspp plants,and its abstractions from nicotianaspp as pesticides have been investigated and used for long time.However,synthetic pyridines compounds as pesticides have flourished only for the recent decades.In recent years,some more effective pesticides, such as imidacloprid,hcetamiprid,thiadoprid,pyroxidechlor,pyridinthion and denment, have been synthesized through chemical modification of natural compounds of nicotianaspp.This discovery showed that synthesized pyridine compounds have been successfully developed in insecticide,fungicide and herbicide,and will play an important part in synthesis and biological activity of pesticide aspect.The synthesis and bioactivity study of pyridine compounds have became one of active studied fields to the chemicals and biological scholars.
     By adopting the connection method of active structure base in this dissertation,for example,connection of pyridine N-oxide pyridine,Nitro substituted pyridine and dicarborimide,four classes pyridine compounds(total 45) have been synthesized.The main result is followed.
     Series N-methyl-N-substituted methylpyridineamine compounds are synthesized firstly (labeled classⅠ).The 2-Chloro-5-aminemethylpyridine is important intermediate in the synthesis process of N-methyl-N-substituted methylpyridineamine.Its synthesis steps starts from Gabriel condensation reaction by 2-Chloro-5-Chloro methylpyridine and K_2CO_3,and reacted production was hydrolyzed in basicity solution in the same time,then hydrolytic production was distilled by vapor.By crystallizing the distilled production,we finally got intermediate 2-Chloro-5-aminomethylpyridine.Then,the reaction of N-methyl and N-substituted of 2-Chloro-5-aminomethylpyridine gave series N-methyl-N-substituted methylpyridine compounds,i.e.,the 11 target compounds.The Elemental analysis was carried on and spectra of IR,GC-MS,~1H NMR,~(13)C NMR were presented.The structures of N-methyl-N-substituted methylpyridineamine agree with the IR,GC-MS,~1H NMR,~(13)C NMR spectroscopic data.
     Then series N-(6-Chloro-3-Pyridinemethy)-diearborimide compounds have been synthesised(labeled classⅡ).The dicarborimide salt of potassium is important intermediate in the synthesis process of N-(6-Chloro-3-Pyridinemethy)-dicarborimide.As the starting intermediate for the synthesis,diearborimide salt of potassium was generated through two step reactions.Firstly,reaction of raw diearboracid anhydride with carbamide produced intermediate diearborimide,then reactions of dicarborimide with KOH in methanol solution generated intermediate diearborimide salt of potassium in good yield.We researched a convenient synthesis method of target product of N-(6-Chloro-3-Pyridinemethy) -diearborimide be using the reaction of Nucleophilic substitution of diearborimide salt of potassium with 6-chloro-3-chloromethypyridine.The 7 compounds are synthesized.The Elemental analysis was carried out and spectra of IR, GC-MS,~1H NMR,~(13)C NMR were presented.The structures of N-(6-chloro-3-pyridinemethy)-diearbonylimides(Ⅱ_1-Ⅱ_7) agree with the IR,GC-MS,~1H NMR,~(13)C NMR spectroscopic data.
     Series N-(6-Chloro-1-oxide-3-methylpyridine) dicarborimide compounds are also synthesised(labeled classⅢ).The N-oxidepyridine is important intermediate in the synthesis process of N-(6-Chloro-1-oxide-3-methylpyridine ) dicarborimide.Its synthesis method starts with N atom was oxidegenated by raw hydrogen peroxide in trifluoro acetic acid.Then series N-(6-Chloro-1-oxide-3-methylpyridine ) dicarborimide compounds were obtained by Gabriel condensation reaction of 6-Chloro-1-oxide-3-methylpyridine with diearborimide salt of potassium,i.e.,the 7 compounds are synthesized.The Elemental analysis was carried on and spectra of IR,~1H NMR,~(13)C NMR,GC-MS were presented.The structures of series N-(6-Chloro-1-oxide-3-Pyridinemethy)-dicarborimide compounds agree with the IR,~1H NMR,~(13)C NMR and GC-MS spectroscopic data.
     Series N-substituted-base-multi-substituted pyridine compounds are finally synthesised(labeled classⅣ).The 2-amino-3-nitro-5-bromide-pyridine is important intermediate in the synthesis process of N-substituted-base-multi-substituted pyridine compounds.Raw material 2-amino-5-bromide-pyridine was added carefully into a mixture of concentrate sulfuric acid and fuming nitric acid,and N-nitro-2-amino-5-bromide-pyridine was crystallized in hot water.Then, N-nitro-2-amino-5-bromide-pyridine was added carefully into a mixture of concentrate sulfuric acid and fuming nitric acid,and 2-amino-3-nitro-5-bromide-pyridine was crystallized also in hot water.Finally,the reaction of N-methyl and N-substitution of 2-amino-3-nitro-5-bromide-pyridine gave series N-substituted-base-multi-substituted pyridine compounds,i.e.,the 20 compounds are synthesized.The Elemental analysis was carded on and spectra of IR,~1H NMR,~(13)C NMR,GC-MS were presented.The structures of N-methyl-N-formylamino-3-nitro-5-bromide- pyridine agree with the IR,GC-MS,~1H NMR, ~(13)C NMR spectroscopic data.
     The experimental circumstance and the synthetic methods of the intermediate and target compounds have been investigated and optimized in the synthesis progress.The synthesis condition of reaction of nucleophilie substitution between classⅡcompounds and classⅢcompounds are analyzed under normal synthesis method and microwave-assisted synthesis method.The contrast result shows that the microwave-assisted synthesis method can be carded on with better reaction conditions and gives higher yield than the normal synthesis procedure.The microwave-assisted synthesis method possesses several advantages,i.e,faster reaction rates and higher yields rate.The reaction time of target compound N-(6-chloro-3-pyridinemethyl) phthalimide reduces from 9 h to 20 min and yields rate rises from 80%to 97%when we takepIace the normal synthesis procedure with the microwave-assisted synthesis method.
     The pesticide activity and bactericidal activity of all the target compounds have been evaluated.The pesticide activity is evaluated under 5 target insects,i.e.,diamondback moth, xylostella,bean aphid,crαccivura,spider mite,nilaparvata lugens.The experimental result is followed that with the medicament concentration 10 ug/mL,the mortality ratio to C.pipiens of compoundsⅢ_1、Ⅲ_7、Ⅳ_2、Ⅳ_3 are respectively 92.6%、90.5%、94.6%、97.3 %and the mortality ratio to pipiens ofcompoundsⅠ_1、Ⅱ3、Ⅱ7、Ⅲ_6、Ⅳ_6、Ⅳ_8、Ⅳ_(10)、Ⅳ_(11)、Ⅳ_(14)、Ⅳ_(15)、Ⅳ_(16)、Ⅳ_(19)、Ⅳ_(20) are all 100%,i.e.,nearly equal mortality rate to the contrasted drug imidacloprid;with the medicament concentration 1 ug/mL,mortality rate to C.pipiens of the compoundⅡ_3 andⅢ_7 are 97.5%and 96.5%,and the mortality rate to C.pipiens of compoundsⅠ_1、Ⅱ_7、Ⅲ_1、Ⅲ_6、Ⅳ_(19)、Ⅳ_(20) are also 100%,i.e,nearly equal mortality rate to the contrasted drug imidacloprid.With the medicament concentration 200 ug/mL,the mortality ratio to A.craccivura of compoundsⅠ_2、Ⅲ_1、Ⅲ_2 are 93.8%、96.3% and 90.5%,and the mortality rate to A.craccivura of compoundsⅠ_1、Ⅱ_7、Ⅲ_6、Ⅲ_7、Ⅳ_(20) are also 100%,With the medicament concentration 20 ug/mL,the mortality ratio to A.craccivura of compounds ofⅠ_1、Ⅱ_7、Ⅳ_(20) are also 100%.Mortality ratio shows that 17 compounds of total 45 compounds are A grade activation of suppressing insecticide activities.
     By using growing speed method,the bactericidal activity of all synthesized compounds have been evaluated under tested objection of botryris cinerea pers,fusarium qraminearum and pyricularia oryzae.The experimented result indicates that all the compounds don't present distinct activity of restraining bactericide.
引文
1.艾歇尔,S.豪普特曼.杂环化学[M].北京,化学工业出版社,2005
    2.陈文滨,金桂玉.含稠杂环新农药的研究进展[J].农药学学报,2000,2(4):1-10
    3.陈景文,陆国元.取代氮杂环类化合物对大型蚤的定量结构-活性关系研究[J].农药,1996,35(5):21-23
    4.高任君,白建军,刘西莉,李金玉.吡虫啉的合成研究[J].农药,1997,5:13-14
    5.金建平,陈龙,陈虎魁,邱甬生.2-氯-5-氨甲基吡啶在农药合成中的应用[J].应用开发,2004,1:24-25
    6.金建平,陈虎魁.农药中间体2-氯-5-氨甲基吡啶的合成研究[J].上海化工,2000,22(2):15-17
    7.金建平,陈虎魁.中间体2-氯-5-氯甲基吡啶在农药合成中的应用[J].江苏化工,2001,28(1):25-26
    8.焦耳,K.米尔斯.杂环化学[M].北京,科学出版社,2004
    9.刘长令.选择发明在新农药创制中的应用[J].农药,1999,38(1):7-9
    10.刘长令.新颖三唑稻田除草剂-CH-900[J].农药译丛,1996,18(1):11-13
    11.刘刚,恽榴红,王建新.组合化学、分子库与新药研究[J].化学进展,1997,9(3):223-238
    12.吕兆萍,李国华,杨红.N-(6-氯-1-氧-3-吡啶甲基)邻苯二甲酰亚胺的合成[J].精细化工,2006,23(3)307-309
    13.吕兆萍,郭华,杨红.N-(6-氯-5-硝基-3-吡啶甲基)邻苯二甲酰亚胺的合成[J].南京航空航天大学学报,2006,38(3)387-392
    14.吕兆萍,罗金香,杨红.农药中间体2-氯-5-氨甲基吡啶的新合成方法研究[J].农药,2005,10,406
    15.李正名.新农药创制的现状和发展趋势[J].世界农药,1999,21(6):1-4
    16.慕长炜,覃兆海.吡啶类农药的研究进展[J].现代农药,2003,2(2):1-9
    17.钱旭红,徐晓勇,宋恭华,李忠.二十一世纪新农药研发趋势[J].贵州大学学报,2003,01:65-69
    18.钱旭红,唐军,陈卫东.新型三氟甲基吡啶类衍生物的合成及生物活性测试研究[J].高等学校化学学报,1994,15(2):224-246
    19.尚尔才,刘长令,杜英娟.吡啶类农药的研究进展[J].化工进展,1996,5:11-15
    20.孙荫辉.吡啶类化合物的合成与应用[J].江苏化工,1996,24(5):13-14
    21.覃兆海,赵铭杰.吡啶衍生物的研究(Ⅲ):异烟腙类化合物的合成及其生物活性[J].中国农业大学学报,1999,4(5):1-5
    22.覃兆海,王明安,李明磊.吡啶衍生物研究(Ⅰ)3-(4-吡啶基)-4-烷(芳)基-1,2,4-三唑啉-5-硫酮的NMR研究[J].波普学杂志,1999,6:259-264
    23.覃兆海,吴厚斌,金淑惠,任晓东.吡啶衍生物研究(Ⅴ):2-[(2-氯吡啶)-4-基]-5-芳胺基-1,3,4-噻二唑的合成及杀菌活性[J].农药学学报,2000,9:8-12
    24.唐除痴.农药化学[M].天津:南开大学出版社,1998
    25.王大翔,柏再苏.农药新论[C].中国化工学会农药专业委员会,1995,北京
    26.王大翔,柏再苏.新农药论丛(第一册)[M].沈阳:中国化工学会农药专业委员会,1995
    27.吴霞.多杀菌素-以天然产物开发新农药的范例[J].农药译从,2001,23(1):24-28
    28.吴清来,毛淑芬,慕长炜,覃兆海.吡啶衍生物研究(Ⅵ)[J].农药学学报,2002,4(1):76-78
    29.吴厚斌,金淑惠,毛淑芬,覃兆海.吡啶衍生物研究(Ⅷ):2-[(2-氯吡啶)-4-基]-5-烷氨基-1,3,4-噻二唑的合成及其除草活性[J].中国农业大学学报,2004,9:63-66
    30.徐晓勇,陈刚,钱晓红.吡啶甲基亚氨基噻(噁)唑烷的合成及生物活性[J].农药学学报,2003,5:27-33
    31.徐尚成.溴虫腈及其类似的2-芳基吡咯类化合物的合成研究[D].2003,4:1-2
    32.徐克勋.精细有机化工原料及中间体手册[M].北京,化学工业出版社,1998,443-445
    33.袁环.N-氧化吡啶工艺路线的改进[J].化学世界,1995,11:580-581
    34.朱良天.农药[M].化学工业出版社,北京,2004
    35.张一宾,张怿.农药[M].北京:中国物资出版社,1997
    36.张敏恒.国外农药品种手册[M].沈阳:化工部农药信息总站,1996
    37.钟滨,李正名,刘长令,赵卫光.新多取代吡啶类化合物的合成及生物活性[J].有机化学,2004,5:1304-1306
    38.Ada R,Carina G,Aldnori H.Identification of Novel Synthetic Octopamine Receptor Agonists [J].Pestic Biochem,1999,65(3):194-204
    39.Anderson J C,Ley S V,Santafianos D,Sheppard R N.Chemistry of insect antifoedants fromazadirachat indica and synthesis of hydroxidedihydrofuran acetal fragments for biological evaluation and azadirachtin total synthesis studies[J].Tetrahedron,1991,47:6813-6822
    40.Aoki L,Tabachi T,Minamida L.EP 381130,1990
    41.Axel K,David M,Bipin P.[P].WO 9422833,1994
    42.Bcudaklen M.Process for oxidizing halopyridines to halopyridlne-N-oxides[P].EP 0090486,1983
    43.Bhawsar S B,Shah R G,Parikh A R.Studies on hydralazines.Part Ⅱ:2-Aryl-5-H /methyl/arboxidemethy-4-thiazolidinone-3-yl-amino-phthalazine[J].J Inst Chem(Indian),1992,64(2):62-64
    44.Benner J P.Pesticidal compounds from higher plants[J].Pestic Sci,1993,39:95-102
    45.Bhawsar S B,Shah R G,Parikh A R.Studies on hydralazines:2-Aryl-5-H / methyll/carboxidemethy-4-thiazolidinone-3-yl-amino-phthalazine[J].J Inst Chem(Indian),1992,64(2):62-64
    46.Chandra U,Sharma R C.Synthesis and antimicrohial studies of some 2-(2-thienylcarbonyl)-3-aryl-4-thiazolidinonews[J].J Med Chem,1994,37(19):3071-3078
    47.Cox J M,Clough J M,Barnes N J.Preparation of substituted pyrolidones,thlazolidones,or oxazolidones as herbicides[P].WO 33 719,1995
    48.Desal N C,Shukla H K,Thaker K A.Some new 2-aryl-3-isonicotinamido-4-tiazolidinones and 5-carboxidemethyl homologs potential amitubercular and antibacterial[J].J Indian Chem (Indian),1984,56(3):124-126
    49.Drewes M W,Mueller P,Santel H J.[P].DE4025338,1993
    50.Dwivedi V,Aggarwal R K.Synthesis of fungicidal activities of some 2-furyl-3[5-aryloxidemethy]-1,3,4thiadiazol-2-yl]thiazolidin-4-ones[J].Asian J Chem,1992,2(4):780-784
    51.Eiichi K,Lias H,Yasuhiro Sasama S.[P].JP[P]10101647,1998
    52.Either T,Hauptmann S.The Chemistry of Heterocycles[M].2005,251-253
    53.Fontenas C,Bejan E,Ait Haddou H,and Balavoine G.Synth.Cornmun.[M].1995,629-632
    54.Fumiaki T,Yoshihiro S,Masatoshi T.[P].WO9207846,1992
    55.Hansch C.Interrelation between the extended Hammett equations for correlation of hetercyclic reactions[M].Chem Ind,1969,294
    56.Hansch C,Clayto J M.Lipophlic character and biological activity of drags[J].J Pharm Sci,1973,62:1-12
    57.Hashimoto Masaki,Niwata Shinjiro,Fukami Harukazu[J].Biosci Biotechnol Biochem ,1992,56(4):620-623
    58.Hisashi K,Yoichi K,Kazuhiko S.[P].WO9829391,1998
    59.Hiroyuki I,Chiaki I,Takeshi T.Preparation of 5-(m-cyanobenzyl amino)pyrazole derivatives as fungicides for a agricultural and horticultural use.WO 2002008196,2002
    60.Itaru O,Eiji T,Toshiki F.Preparation of pyridazinone derivatives as insecticides and aearicides[W].JP[P]2002003479,2002
    61.Ishikawa T,Soeda M.JP[P],0543549,1993
    62.Ingo S,Oiaf M,Michael R.Preparation of 3-arylisothiazoles as herbicides,desiccants,and defoliants[W].WO 2001087863,2001
    63.Javier B,Manuel A,Elena C.[P].ES 2024349,1992
    64.Jan I J,Lee B B.Preparation of 2-aryl-D2-1,3,4-diazoline derivatives as insecticides and caricides.US6235762,2001
    65.Joule JA,Mills K.Heterocyclic Chemistry[M].2004,79-81.John W P
    66.Walter D T.Process for the preparation of chiral nicotinic,quinolinic or benzoic acid imidazolinone herbicides[W].US 6339158,2002
    67.Junji S,Tatsuya I,Yasuo K,Yoshiaki I.Synthesis and Activity of Novel acaricidal/Insecticidal 2,4-Diphenyl-1,3-oxazolines[J].Pesticide Sci,2002,27:1-8
    68.John W P,Walter D T.Process for the preparation of chiral nicotinic,quinolinic or benzoic acid imidazolinone herbicides[W].US 6339158,2002
    69.Katsushi M,Masatoshi O,Hiroyuki F.[P].JP[P]10251255,1998
    70.Katz S.Process for oxidizing halopyridines to halopyridine-N-oxides.European P 0090177,1983
    71.Kaku S,Kawahara N,Sendo M.JP[P],05 294 931,1993
    72.KagabuS,MoriyaK,ShibuyaK.1-(6-Halonicotinyl)-2-nitromethylene-imidazolidines as potential new insecticides[J].Biosci Biotech Biochem,1992,59:362-363
    73.Kaku S,Ichihara R.JP[P],03223252,1991
    74.Kuwano E,Shimizu M,Shimazu K.Measurement and simulation of herbicide transport in macroporous soils[J].Pestic Sci,1999,52,3:251-257
    75.Koji K,Soichiro N.[P].JP[P]2000109461,2000
    76.Kuwano E,Shimizu M,Shimazu K.Synthesis of biologically active 4-aminoantipyrone derivatives with thiazolidine and oxethiazolane rings[l].Pestic Sci,1999,52(4):251-257
    77.Klans P,Waldemar P,Gavin H.Preparation offungicidal 5-phenyl-2-(eyanoamino)pyrimidines[w].WO 2001096314,2001
    78.Kul R E,Rae K H,Jenn D J.Preparation of herbicidal 5-benzyloxidemethyl-1,2-isoxazoline derivatives for weed control in rice[w].WO 2002019825,2002
    79.Levitt G,Plneg H L,Weigel R C,Fitzgerald D J.2-Chloro-N-[(4-methoxide-6-methyl-1,3,5-triazin-2-yl)aminocarbonyl]benzenesulfonamide as a new herbicide[J].J Agrlc Food Chem,1981,29(2):416-418
    80.Losey J E.Transgenic pollen harms monarch larvae[J].Nature,1999,399:214-225
    81. Lzumi T, Katsuhiko M, Shigemicht A. [P].JP[P] 04117362,1992
    
    82. Lowper A J, Astik R R, Thaker K A. Preparation of 4-thiazolidinones as potential dyugs (part I )[J]. J Inst Chem Sci, 1981, (1):53-58.
    
    83. Masaya S, Toshio N, Noryasu S. [P]. IPO 8208551,1996
    
    84. Maienfisch P, Gsell L, Rindlisbacher A. Synthesis and iuscelicidal activity of a novel broad spectrum insecticide[J]. Pestic Sic, 1999, 55: 343-355
    
    85. Mikkel T R. The risk of crop transgene spread[J]. Nature, 1996, 380: 31-37
    
    86. Minamida L, Lawanaga K, Okanchi T. EP 302389, 1989
    
    87. Merce B, Jesus A, Janme P. Synthesis of Phenoxidephenyl Pyridine and Pyrazine Carboxamides[J]. J Agric Food Chem, 2000, 48(1): 83-87
    
    88. Muller M J. Signal in the elicitation process is mediated through the actadecanoid pathway leading to jasmonicacid[J]. Proc Nail Aazd Sci (USA), 1993, 90: 7490-7494
    
    89. Myazaki T,Maejima C.[P].JP[P],07188170, 1995
    
    90. Mitsuhiro C, Michi M , Hideyuki T. Structure and fungicidal activities of methoxideiminophenylacetamide derivatives [J]. Pestic Sci, 1999, 55, 3: 347-349
    
    91. Neem A P. Chemical: The pieces fall in place[J]. Science, 1992, 258-893
    
    92. Nobuo O, Yoshiya I, Kaneko O. [P]. JP[P] 10053583,1998
    
    93. Noriyasu S.Akira S, HiroshiK. [P]. JP[P]04342568, 1992
    
    94. Norio S.Masahito I, Yoshihiro T. [P]. JP[P]05286937,1993
    
    95. Oian X H, Liu Z, Li Z B. Synthesis and quantitative structure- activity relationships of fluorine-containing4.4-dihydroxidelmcthyl-2-aryliminooxazo(thiazo)lidines as Trchalasc inhibitors[J]. J Agri Food Chem, 2001, 49: 5279-84
    
    96. Pillmoor J B.Wright K,Terry A S.Natural products as a source of agrochemicals and leads for chemical synthesis [J].Pestic Sci,1993,39:131-140
    
    97. Robbins W E. Ecdysones and analogs: effects on development and reproduction of insects[J]. Science, 1968, 161: 1158-1160
    
    98. Richard B J, Dilon D J, Deborah F A. [P]. WO 9636633,1996
    
    99. Ronald.H E, Peter J L, Glen J P. [P]. WO 9305050, 1993
    
    100. Stefan H, Ituedigel K W, Kristian K. Preparation of hetercyclylalkylamino-1, 3, 5-triazines as herbicides. WO 2002010160, 2002
    
    101. Scott B J, Emily C, David C H. [P]. WO 9833772,1998
    
    102. Smith P L. Preparation of 1, 2, 4-triazole derivatives as insecticides or acaricides and processes. US 20020019370, 2002
    103.Service R F.Combinatorial chemistry hits the drug market[J].Science,1996,272:1266-1268
    104.Thomas S.[P].WO 9840379,1998
    105.Trivedi B,Shah V H.Synthesis of substituted indolylthiazolidinones and indolyllazetidionnes[J].J Indian Chem Soc,1993,70(6):537-538
    106.Takuma J,Kasuga J,Matsumoto M.JP[P],0853418,1996
    107.Takuma J,Sekine M,Tanaka T.JP[P],0853417,1996
    108.Uneme H,Minamida I.JP[P],05286936,1993
    109.Vladimiskaya E V,Novikevich O T,Demchuk O G.Synthesis of biologically active4-aminoantipyrone derivatives with thiazohdine and oxethiazolane rings[J].Farm Riview,1991,(6):67-69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700