孕妇外周血中单个胎儿有核红细胞在β地中海贫血无创性产前基因诊断中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
β地中海贫血(地贫)是由于β珠蛋白基因突变导致β珠蛋白的合成部分或完全受抑制而引起的慢性溶血性贫血,是世界上最常见的常染色体遗传病之一,目前治疗费用昂贵、效果不理想,降低地贫发病率的主要手段还是对高危胎儿进行产前诊断。但是常用的产前诊断取样方法具有创伤性,对母亲及胎儿均有一定的危害性,期望能代之以无创性诊断方法。广西是地贫高发省区,无创性产前诊断方法的建立对于我们尤其具有重大意义。本研究采用孕妇外周血中单个胎儿有核红细胞(nucleated red blood cell,NRBC)作为产前诊断的材料,试图建立一条可应用的β地贫无创性产前基因诊断途径。
     第一部分 联苯胺染色联合显微操作法分离孕妇外周血中有核红细胞
     目的 建立一种简单、快速、经济的孕妇外周血中NRBC的识别方法,便于显微操作法高效、准确地获取单个NRBC进行后续的细胞鉴定及β地贫无创性产前基因诊断。
     方法 采集28例孕龄9~34周,孕育β地贫高危胎儿的孕妇外周血各5ml,单密度梯度离心法富集,联苯胺染色识别母血中NRBC,显微操作单个获取。
     结果 联苯胺染色能有效识别NRBC,28例样本均能检出NRBC,检出率100%,每例发现NRBC4~13个/5ml,共获取298个。
     结论 联苯胺染色后母血中NRBC易于识别,熟练的显微操作能迅速获取单个NRBC,为应用单个胎儿NRBC进行产前基因诊断打下前期基础。
β thalassaemia is a hereditary chronic hemolytic anemia, results from a reduced output of the β-chains of adult haemoglobin. The disorder is characterized by a variety of geng mutations that either reduce or completely abolish the synthsis of β-globin . Since β thalassaemia is one of the most common autosomal recessive single gene disorders, and the treatment required is very expensive and unsatisfactory recently, the effective strategy for controlling the incidence of β thalassaemia is prenatal diagnosis, whose techniques rely on an invasive procedure to obtain fetal tissue . These invasive produres are associated with a small but significant risk to both mother and child, hence, there is a considerable need for a non-invasive alternative. β thalassaemia have particularly high incidences in Guangxi province, the investigation on non-invasive prenatal dignosis for β thalassaemia seems more crucial.
    In this study, single fetal NRBC from maternal blood was used for prenatal genetic diagnosis .Our aim is to construct a utility approach for non-invasive prenatal diagnosis of β thalassaemia.
    Part one Obtaining nucleated erythrocytes from maternal blood by benzidine staining and micromanipulation
    Objective To develop a simple, rapid and lowcost method for detection and isolation nucleated erythrocytes (NRBCs) from maternal blood, that allows the non-invasive prenatal genetic diagnosis for β thalassaemia by using a single fetal NRBC isolated from maternal blood.
引文
[1] Wachtel SS, Sammons D, Twitty G, et al. Charge flow separation: quantification of nucleated red blood cells in maternal blood during pregnancy. Prenat Diagn, 1998,18: 455-463.
    [2] Michihiro K, Kentaro S, Hiroko O, et al.New technique using galactose- specific lectin for isolation of fetal cells from maternal blood. Prenat Diagn,2002,22: 17-21.
    [3] Troeger C, Zhong XY, Burgemeister R, et al. Approximately half of the erythroblasts in maternal blood are of fetal origin. Mol Hum Reprod, 1999,5: 1162-1165.
    [4]Yang YH, Yang ES, Kwon JY,et al. Prenatal diagnosis of trisomy 21 with fetal cells in maternal blood using comparative genomic hybridization. Fatal Diagn Ther,2006,21(1): 125-133.
    [5] Zhao XX, Ozaki Y,Suzumori N, et al. An examination of different fetal specific antibodies and magnetic activated cell sorting for the enrichment of fetal erythroblasts from maternal blood. Congenit Anom(Kyoto), 2002,42(3):175-180.
    [6] Nagy GR, Ban Z, Sipos F, et al. Isolation of epsilon-haemoglobin-chain positive fetal cells with micromanipulation for prenatal diagnosis. Prenat Diagn,2005 ,25(5):398-402.
    [7] Di Naro E, Ghezzi F, Vitucci A, et al. Prenatal diagnosis of beta-thalassaemia using fetal erythroblasts enriched from maternal blood by a novel gradient. Mol Hum Reprod,2000 ,6(6): 571-574.
    [8] Wang JY, Zhen DK, Zilberstein ME, et al. Non-invasive exclusion of fetal aneuploidy in an at-risk couple with a balanced translocation. Mol Hum Reprod, 2000 ,6(2): 103-106.
    [9] Takabayashi H, Kuwabara S, Ukita T,et al. Development of non-invasive fetal DNA diagnosis from maternal blood. Prenat Diagn, 1995,15(1): 74-77.
    [10] Sekizawa A, Taguchi A, Watanabe A,et al. Analysis of HLA-DQ alpha sequences for prenatal diagnosis in single fetal cells from matemal blood. Hum Genet, 1998,102(4):393-396.
    [11] Simpson JL, Elias S. Isolating fetal cells in the matemal circulation. Hum Reprod Update. 1995,1(4):409-418.
    [12] Simpson JL, Lewis DE, Bischoff FZ, et al. Isolating fetal nucleated red blood cells from maternal blood: the Baylor experience--1995. Prenat Diagn,1995,15(10):907-912.
    [13] Smits G, Holzgreve W, Hahn S. An examination of different Percoll density gradients and magnetic activated cell sorting (MACS) for the enrichment of fetal erythroblasts from matemal blood.Arch Gynecol Obstet,2000,263(4): 160-163.
    [14] A1-Mufti R, Hambley H, Farzaneh F, et al. Assessment of efficacy of cell separation techniques used in the enrichment of foetal erythroblasts from maternal blood: triple density gradient vs. single density gradient. Clin Lab Haematol, 2004,26(2): 123-128.
    [15] 刘辉主编.临床免疫学和免疫检验实验指导(第二版).北京:人民卫生出版社,2003.31-32.
    [16] 唐佩弦,杨主楹,主编.造血细胞培养技术.西安:陕西科学技术出版社,1985.132-133.
    [17] Bianchi DW, Williams JM, Sullivan LM, et al. PCR quantitation of fetal cells in maternal blood in normal and aneuploid pregnancies. Am J Hum Genet, 1997,61(4):822-829.
    [1] Hamada H, Arinami T, Kubo T, et al. Fetal nucleated cells in maternal peripheral blood: Frequency and relationship to gestetionage. Hum Genet, 1993,91:427-432.
    [2] Zheng YL, Zhen DK, Farina A,et al. Fetal cell identifiers: results of microscope slide-based immunocytochemical studies as a function of gestational age and abnormality. Am J Obstet Gynecol, 1999,180(5): 1234-1239.
    [3] Mavrou A, Kolialexi A, Antsaklis A,et al. Identification of fetal nucleated red blood cells in the maternal circulation during pregnancy using anti-hemoglobin-epsilon antibody. Fetal Diagn Ther, 2003,18(5):309-13.
    [4] Sekizawa A, Kimura T, Sasaki M, et al. Prenatal diagnosis of Duchenne muscular dystrophy using a single fetal nucleated erythrocyte in maternal blood. Neurology, 1996,46(5): 1350-1353.
    [5] Samura O,Pertl B,Sohda S, et al. Female fetal cells in maternal blood:use of DNA polymorphisms to prove origin.Hum Genet ,2000,107(1) :28-32.
    [6] 吴冠芸,王申五,主编.基因诊断.北京:人民卫生出版社,1988.131-144.
    [7] Zhang L, Cui X, Schmitt K,et al. Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl Acad Sci U S A,1992,89:5847-5851.
    [8] 侯一平,吴谨,李英碧,等.中国汉族群体五个STR基因座遗传多态性研究.中华医学遗传学杂志,1999,16:228-232.
    [9] 侯一平,李英碧,唐剑频,等.成都汉族群体八个STR基因座遗传多态性研究.中华医学遗传学杂志,2000,17:236-240.
    [10] Bianchi DW, Flint AF, Pizzimenti MF, et al. Isolation of fetal DNA from nucleated erythrocytes in maternal blood. Proc Natl Acad Sci U S A, 1990,87(9):3279-3283.
    [11] Bianchi DW, Zickwolf GK, Yih MC, et al.Erythroid-specific antibodies enhance detection of fetal nucleated erythrocytes in maternal blood. Prenat Diagn, 1993,13(4):293-300.
    [12] Mavrou A, Kolialexi A, Zheng YL, et al. Improved specificity of NRBC detection in chorionic villus sample supernatant fluids using anti-zeta and anti-epsilon monoclonal antibodies. Fetal Diagn Ther, 1999,14:291-295.
    [13] Hogh AM, Hviid TV, Christensen B,et al. zeta-, epsilon-, and gamma-Globin mRNA in blood samples and CD71(+) cell fractions from fetuses and from pregnant and nonpregnant women, with special attention to identification of fetal erythroblasts. Clin Chem,2001,47(4):645-653.
    [14] 张俊武,龙桂芳主编.血红蛋白与血红蛋白病.南宁:广西科学技术出版社,2003.234.
    [15] Choolani M, O'Donnell H, Campagnoli C, et al. Simultaneous fetal cell identification and diagnosis by epsilon-globin chain immunophenotyping and chromosomal fluorescence in situ hybridization. Blood, 2001,98(3):554-557.
    [16] Voullaire L, Ioannou P, Nouri S, et al. Fetal nucleated red blood cells from CVS washings: an aid to development of first trimester non-invasive prenatal diagnosis. Prenat Diagn, 2001,21 (10):827-834.
    [17] Geifman-Holtzman O, Holtzman EJ, Vadnais TJ,et al. Detection of fetal HLA-DQa sequences in maternal blood: a gender-independent technique of fetal cell identification. Prenat Diagn, 1995,15(3):261-268.
    [18] Watanabe A, Sekizawa A, Taguchi A,et al. Prenatal diagnosis of ornithine transcarbamylase deficiency by using a single nucleated erythrocyte from maternal blood. Hum Genet, 1998,102(6):611-615.
    [19] Alford RL, Hammond HA, Coto I, et al. Rapid and efficient resolution of parentage by amplification of short tandem repeats. Am J Hum Genet. 1994,55(1): 190-195.
    [20] Samura O,Sohda S ,Johnson KL ,et al. Diagnosis of trisomy 21 in fetal nucleated erythrocytes from maternal blood by use of short tandem repeat sequences. Clin Chem ,2001,47:1622-1626.
    [21] Pertl B, Sekizawa A, Samura O, et al. Detection of male and female fetal DNA in maternal plasma by multiplex fluorescent polymerase chain reaction amplification of short tandem repeats. Hum Genet, 2000,106(1): 45-49.
    [22] 刘丽英,金春莲,林长坤,等.应用胎儿特异性抗体HbF(Y链)标记法无创性产前基因诊断DMD.遗传,2005,27(1):49-52.
    [23] 程良红,邓志辉,魏天莉等.中国南方汉族人群STR位点遗传多态性研究及其在亲子鉴定中的应用.临床输血与检验,2003,5(1):12-15.
    [24] 金天博,高雅,赖江华,等.中国广西壮族9个STR基因座遗传多态性研究.遗传学报,2002,29(12):1052-1056.
    [25] 高放,毕世华,赖江华,等.中国瑶族人群(广西)9个STR基因多态性研究.遗传,2002,24(5):537-538.
    [26] 刘超,杨电,刘长晖,等广西苗族人群15个STR基因座的多态性调查.法医学杂志,2003,19(4):204-206.
    [27] Sekizawa A, Kimura T, Sasaki M, et al. Prenatal diagnosis of Duchenne muscular dystrophy using a single fetal nucleated erythrocyte in maternal blood. Neurology, 1996,46(5): 1350-1353.
    [28] Bianchi DW, Shuber AP, DeMaria MA, et al. Fetal cells in maternal blood: determination of purity and yield by quantitative polymerase chain reaction. Am J Obstet Gynecol, 1994,171 (4):922-926.
    [29] Di Naro E, Ghezzi F, Vitucci A, et al. Prenatal diagnosis o betathalassaemia using fetal erythroblasts enriched from maternal blood by a novel gradient. Mol Hum Reprod, 2000,6(6):571-574.
    [1] 曾溢滔.遗传病的基因诊断与基因治疗.上海:上海科学技术出版社,1999.96.
    [2] 谢建生,龙桂芳.母血中胎儿有核红细胞的分离及无创性产前基因诊断研究.中华血液学杂志,2000,21(10):512-516.
    [3] Hardison R, Riemer C, Chui DH, et al. Electronic access to sequence alignments, experimental results, and human mutations as an aid to studying globin gene regulation. Genomics, 1998,47(3):429-437.
    [4] Ko TM, Xu X. Molecular study and prenatal diagnosis of alpha- and beta-thalassemias in Chinese. J Formos Med Assoc, 1998,97(1):5-15.
    [5] 刘敬忠,吴冠芸,高庆生等.中国广西、广东、四川三省区β地中海贫血基因突变类型及产前基因诊断研究.中国医学科学院学,1990,12(2):90-95.
    [6] Cheung MC, Goldberg JD, Kan YW. Prenatal diagnosis of sickle cell anaemia and thalassaemia by analysis of fetal cells in maternal blood.Nat Genet,1996,14(3):264-268.
    [7] Di Naro E, Ghezzi F, Vitucci A, et al. Prenatal diagnosis of beta-thalassaemia using fetal erythroblasts enriched from maternal blood by a novel gradient. Mol Hum Reprod, 2000,6(6):571-574.
    [8] 伍欣星,聂广,胡继鹰主编.医学分子生物学原理与方法.北京:科学出版社,2000.162.
    [9] Maggio A, Giambona A, Cai SP, et al. Rapid and simultaneous typing of hemoglobin S, hemoglobin C, and seven Mediterranean beta-thalassemia mutations by covalent reverse dot-blot analysis: application to prenatal diagnosis in Sicily. Blood, 1993,81 (1):239-242.
    [10] Sutcharitchan P, Saiki R, Huisman TH,et al. Reverse dot-blot detection of the African-American beta-thalassemia mutations. Blood,,86(4): 1580-1585.
    [11] 廖灿,徐湘民,黄以宁,等.反向点杂交法用于80例β地中海贫血的快速产前诊断.中华血液学杂志,1996,17(8):413-415.
    [12] Piyamongkol W, Bermudez MG, Harper JC, et al. Detailed investigation of factors influencing amplification efficiency and allele drop-out in single cell PCR: implications for preimplantation genetic diagnosis. Mol Hum Reprod,2003,9(7):411-420.
    
    [13] Sermon K, Lissens W, Joris H,et al. Adaptation of the primer extension preamplification (PEP) reaction for preimplantation diagnosis: single blastomere analysis using short PEP protocols. Mol Hum Reprod,1996,2(3):209-212.
    
    [14] Ray PF, Handyside AH. Increasing the denaturation temperature during the first cycles of amplification reduces allele dropout from single cells for preimplantation genetic diagnosis. Mol Hum Reprod, 1996 ,2(3):213-218.
    
    
    [15] Samura O,Pertl B,Sohda S,et al. Female fetal cells in maternal blood: use of DNA polymorphisms to prove origin. Hum Genet,2000,107:28-32.
    [1] Walknowska J, Conte FA, Grumbach MM. Practical and theoretical implications of fetal-maternal lymphocyte transfer. Lancet, 1969, 1 (7606): 1119-1122.
    [2] Lamvu G, Kuller JA. Prenatal diagnosis using fetal cells from the maternal circulation. Obstet Gynecol Surv,1997 ,52(7):433-437.
    [3] Lo YM, Corbetta N , Chamberiain PF, et al. Presence of fetal DNA in maternal plasma and serum. Lancet, 1997, 350(9076): 485-487.
    [4] Saito H,Sekizawa A,Morimoto T,et al. Prenatal DNA diagnosis of a single-gene diaorder from maternal plasma.Lancet,2001, 357(9252): 310-311.
    
    [5] Chan KC , Zhang J , Hui AB , et al. Size distributions of maternal and fetal DNA in maternal plasma[J ]. Clin Chem, 2004 , 50(1): 88-92.
    [6] Botezatu I, Serdyuk O, Potapova G, et al. Genetic analysis of DNA excreted in urine: a new approach for detecting specific genomic DNA sequences from cells dying in an organism [J]. Clin Chem, 2000, 46: 1078-1084.
    [7] Al - Yatama M K, Mustafa A S , Ali S, et al. Detection of Y chromosome - specific DNA in the plasma and urine of pregnant women using nested polymerase chain reaction [J]. Prenat Diagn, 2001, 21: 399-402.
    [8] Zhang L, Cui X, Schmitt K,et al. Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl Acad Sci U S A,1992,89(13):5847-5851.
    [9] Klein CA, Schmidt-Kittler O, Schardt JA, et al. Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. Proc Natl Acad Sci U S A,1999 , 96(8):4494-4499.
    
    [10] Watanabe A, Sekizawa A, Taguchi A,et al. Prenatal diagnosis of ornithine transcarbamylase deficiency by using a single nucleated erythrocyte from maternal blood. Hum Genet, 1998 ,102(6):611-615.
    [11] Voullaire L, Wilton L, Slater H,et al. Detection of aneuploidy in single cells using comparative genomic hybridization. Prenat Diagn, 1999 , 19(9): 846- 851.
    [12] van Wijk IJ, van Vugt JM, Mulders MA,et al. Enrichment of fetal trophoblast cells from the maternal peripheral blood followed by detection of fetal deoxyribonucleic acid with a nested X/Y polymerase chain reaction. Am J Obstet Gynecol,1996 ,174(3):871-878.
    [13] Lo YM, Patel P, Wainscoat JS,et al. Prenatal sex determination by DNA amplification from maternal peripheral blood. Lancet, 1989 ,2(8676) :1363- 1365.
    [14] Pertl B, Sekizawa A, Samura O,et al. Detection of male and female fetal DNA in maternal plasma by multiplex fluorescent polymerase chain reaction amplification of short tandem repeats. Hum Genet,2000,106(1): 45 -49.
    [15] Roest PA, Bout M, van der Tuijn AC,et al. Splicing mutations in DMD/ BMD detected by RT-PCR/PTT: detection of a 19AA insertion in the cysteine rich domain of dystrophin compatible with BMD. J Med Genet, 1996,33(11):935- 939.
    [16] Hahn S, Zhong XY, Burk MR, et al.Multiplex and real-time quantitative PCR on fetal DNA in maternal plasma. A comparison with fetal cells isolated from maternal blood. Ann N Y Acad Sci, 2000,906:148-152.
    [17] Elias S, Price J, Dockter M, et al. First trimester prenatal diagnosis of trisomy 21 in fetal cells from maternal blood. Lancet, 1992 ,340(8826): 1033.
    [18] Bischoff FZ, Lewis DE, Simpson JL,et al. Detection of low-grade mosaicism in fetal cells isolated from maternal blood. Prenat Diagn, 1995 , 15(12):1182-1184.
    [19] Bischoff FZ, Lewis DE, Nguyen DD, et al.Prenatal diagnosis with use of fetal cells isolated from maternal blood: five-color fluorescent in situ hybridization analysis on flow-sorted cells for chromosomes X, Y, 13, 18, and 21. Am J Obstet Gynecol, 1998,179(1):203-209.
    [20] Orsetti B, Lefort G, Boulot P, et al. Fetal cells in maternal blood: the use of primed in situ (PRINS) labelling technique for fetal cell detection and sex assessment. Prenat Diagn, 1998,18(10): 1014-1022.
    [21] 陈汉平,王陶然,徐晓燕等.对孕妇外周血中胎儿细胞进行基因检测的三种方法比较.中华医学遗传学杂志,2004,21(2):187-189
    [22] Harrer T, Schwinger E, Mennicke K. A new technique for cyclic in situ amplification and a case report about amplification of a single copy gene sequence in human metaphase chromosomes through PCR-PRINS. Hum Mutat, 2001,17 (2): 131-140.
    [23] Yang YH, Yang ES, Kwon JY, et al. Prenatal diagnosis oftrisomy 21 with fetal cells in maternal blood using comparative genomic hybridization. Fatal Diagn Ther,2006,21(1):125-133.
    [24] Yakabayashi H, Kuwabara S, Ukita T, et al. Development of non-invasive fetal DNA diagnosis from maternal blood. Prenat Diagn, 1995,15(1): 74- 77.
    [25] Sekizawa A, Taguchi A, Watanabe A, et al. Analysis of HLA-DQ alpha sequences for prenatal diagnosis in single fetal cells from maternal blood. Hum Genet, 1998,102(4):393-396.
    [26] Krabchi K, Gros-Louis F, Yan J, et al. Quantification of all fetal nucleated cells in maternal blood between the 18th and 22nd weeks of pregnancy using molecular cytogenetic techniques. Clin Genet,2001,60(2): 145-150.
    [27] Sekizawa A, Watanabe A, Kimura T, et al. Prenatal diagnosis of the fetal RhD blood type using a single fetal nucleated erythrocyte from maternal blood. Obstet Gynecol, 1996,87(4): 501-505.
    [28] Geifman-Holtzman O, Bernstein IM, Berry SM, et al. Fetal RhD genotyping in fetal cells flow sorted from maternal blood. Am J Obstet Gynecol, 1996,174(3):818-822.
    [29] Camaschella C, Alfarano A, Gottardi E, et al. Prenatal diagnosis of fetal hemoglobin Lepore-Boston disease on maternal peripheral blood. Blood, 1990,75(11):2102-2106.
    [30] Price JO, Elias S, Wachtel SS, et al. Prenatal diagnosis with fetal cells isolated from maternal blood by multiparameter flow cytometry. Am J Obstet Gynecol, 1991,165(6 Pt 1):1731-1737.
    [31] Bianchi DW, Mahr A, Zickwolf GK, et al. Detection of fetal cells with 47,XY, +21 karyotype in maternal peripheral blood. Hum Genet, 1992, 90(4):368-370.
    [32] Cheung MC, Goldberg JD, Kan YW. Prenatal diagnosis of sickle cell anaemia and thalassaemia by analysis of fetal cells in matemal blood.Nat Genet,1996,14(3):264-268.
    [33] Di Naro E, Ghezzi F, Vitucci A, et al. Prenatal diagnosis of betathalassaemia using fetal erythroblasts enriched from maternal blood by a novel gradient. Mol Hum Reprod, 2000,6(6):571-574.
    [34] 谢建生,龙桂芳.母血中胎儿有核红细胞的分离及无创性产前基因诊断研究.中华血液学杂志,2000,21(10):512-516.
    [35] Lau ET, Kowk YK, Luo HY, et al. Simple non-invasive prenatal detection of Hb Bart's disease by analysis of fetal erythrocytes in maternal blood. Prenat Diagn, 2005,25(2): 123-128.
    [36] Chiu RW, Lau TK, Leung TN, et al. Prenatal exclusion of beta thalassaemia major by examination of maternal plasma. Lancet,2002,360(9338):998- 1000.
    [37] Sekizawa A, Kimura T, Sasaki M, et al. Prenatal diagnosis of Duchenne muscular dystrophy using a single fetal nucleated erythrocyte in maternal blood. Neurology, 1996,46(5): 1350-1353.
    [38] 刘丽英,金春莲,林长坤,等.应用胎儿特异性抗体HbF(γ链)标记法无创性产前基因诊断DMD.遗传,2005,27(1):49-52.
    [39] Al-Mufti R, Hambley H, Albaiges G, et al. Increased fetal erythroblasts in women who subsequently develop pre-eclampsia. Hum Reprod,2000 , 15(7):1624-1628.
    [40] Al-Mufti R, Lees C, Albaiges G, et al. Fetal cells in maternal blood of pregnancies with severe fetal growth restriction. Hum Reprod,2000 , 15(1):218-221.
    [41] Bianchi DW, Flint AF, Pizzimenti MF, et al. Isolation of fetal DNA from nucleated erythrocytes in maternal blood. Proc Natl Acad Sci U S A, 1990 , 87(9):3279-3283.
    [42] Yang YH, Kim SH, Yang ES, et al. Prenatal diagnosis of fetal trisomy 21 from maternal peripheral blood.Yonsei Med J, 2003 ,44(2): 181-186.
    [43] Chi C, Hyett JA, Finning KM, et al. Non-invasive first trimester determination of fetal gender: a new approach for prenatal diagnosis of haemophilia.BJOG 2006,113(2):239-242.
    [44] Hromadnikova I, Vechetova L, Vesela K, et al. Non-invasive fetal RHD exon 7 and exon 10 genotyping using real-time PCR testing of fetal DNA in maternal plasma. Fetal Diagn Ther, 2005,20(4):275-280.
    [1] Walknowska J, Conte FA, Grumbach MM.Practical and theoretical implications of fetal-maternal lymphocyte transfer. Lancet,1969,1(7606):1119-1122.
    [2] Herzenberg LA, Bianchi DW, Schroder J,et al. Fetal cells in the blood of pregnant women: detection and enrichment by fluorescence-activated cell sorting. Proc Natl Acad Sci U S A, 1979, 76(3): 1453-1455.
    [3] Lo YM, Patel P, Wainscoat JS,et al. Prenatal sex determination by DNA amplification from maternal peripheral blood. Lancet, 1989 ,2(8676): 1363-1365.
    [4] Covone AE, Kozma R, Johnson PM,et al. Analysis of peripheral maternal blood samples for the presence of placenta-derived cells using Y-specific probes and McAb H315 .Prenat Diagn, 1988 ,8(8):591-607.
    [5] Pool C, Aplin JD, Taylor GM,et al. Attempts to identify trophoblast in peripheral blood during pregnancy using monoclonal antibody H315. Am J Reprod Immunol, 1989 ,20(3):77-80.
    [6] Durrant L, McDowall K, Holmes R,et al. Non-invasive prenatal diagnosis by isolation of both trophoblasts and fetal nucleated red blood cells from the peripheral blood of pregnant women. Br J Obstet Gynaecol,1996 ,103(3):219-222.
    [7] Adinolfi M. Non- or minimally invasive prenatal diagnostic tests on maternal blood samples or transcervical cells. Prenat Diagn,1995 ,15(10):889-896.
    
    [8] Miny P, Basaran S, Pawlowitzki IH, et al. Validity of cytogenetic analyses from trophoblast tissue throughout gestation. Am J Med Genet, 1989,33(1):136-141.
    [9] Bianchi,DW, Zickwolf GK, Weil GJ, et al. Male fetal progenitor cells in maternal blood for as long as 27 years. Postpartum Proc Natl Acad Sci USA, 1996,93(6):705-708.
    [10] Wessman M, Ylinen K, Knuutila S. Fetal granulocytes in maternal venous blood detected by in situ hybridization. Prenat Diagn, 1992,12( 12):993-1000.
    [11] Orsetti B, Lefort G, Boulot P,et al. Fetal cells in maternal blood: the use of primed in situ (PRINS) labelling technique for fetal cell detection and sex assessment. Prenat Diagn, 1998 , 18(10): 1014-1022.
    [12] Lamvu G, Kuller JA. Prenatal diagnosis using fetal cells from the maternal circulation. Obstet Gynecol Surv,1997 ,52(7):433-437.
    [13] Bianchi DW, Flint AF, Pizzimenti MF, et al. Isolation of fetal DNA from nucleated erythrocytes in maternal blood. Proc Natl Acad Sci USA, 1990,87(9):3279-3283.
    [14] Simpson JL ,Elias S. Isolating fetal cells in the maternal circulation.Hum Reprod Update, 1995,1 (4) :409-418.
    [15] Pearson HA. Life-span of the fetal red blood cell. J Pediatr, 1967 ,70(2): 166-171.
    [16] Bianchi DW, Williams JM, Sullivan LM, et al.PCR quantitation of fetal cells in maternal blood in normal and aneuploid pregnancies. Am J Hum Genet, 1997 ,61(4):822-829.
    [17] Parano E, Falcidia E, Grillo A,et al. Fetal nucleated red blood cell counts in peripheral blood of mothers bearing Down syndrome fetus .Neuropediatrics, 2001 ,32(3):147-149.
    [18] Simpson JL, Lewis DE, Bischoff FZ, et al. Isolating fetal nucleated red blood cells from maternal blood: the Baylor experience-1995. Prenat Diagn, 1995, 15(10):907-912.
    [19] Martin WL, Durrant LG, Liu DT. Non-invasive fetal cell isolation from maternal blood. Br J Obstet Gynaecol, 1998 ,105(6):576-583.
    
    [20] Zheng YL, Demaria M, Zhen D, et al. Flow sorting of fetal erythroblasts using intracytoplasmic anti-fetal haemoglobin: preliminary observations on maternal samples. Prenat Diagn, 1995 ,15(10):897-905.
    [21] Al-Mufti R, Lees C, Albaiges G, et al. Fetal cells in maternal blood of pregnancies with severe fetal growth restriction. Hum Reprod, 2000, 15(1):218-221.
    [22] Al-Mufti R, Hambley H, Albaiges G,et al. Increased fetal erythroblasts in women who subsequently develop pre-eclampsia. Hum Reprod,2000 , 15(7):1624-1628.
    [23] Wachtel SS, Sammons D, Twitty G, et al. Charge flow separation: quantification of nucleated red blood cells in maternal blood during pregnancy. Prenat Diagn, 1998,18: 455-463.
    [24] Michihiro K, Kentaro S, Hiroko O, et al.New technique using galactose-specific lectin for isolation of fetal cells from maternal blood. Prenat Diagn,2002,22: 17-21.
    [25] Troeger C, Zhong XY, Burgemeister R, et al. Approximatelyhalf of the erythroblasts in maternal blood are of fetal origin. Mol Hum Reprod, 1999,5: 1162-1165.
    [26] Shulman LP, Phillips OP, Tolley E,et al. Frequency of nucleated red blood cells in maternal blood during the different gestational ages. Hum Genet, 1998,103(6):723-726.
    [27] Rodriguez de Alba M, Palomino P, Gonzalez-Gonzalez C, et al. Prenatal diagnosis on fetal cells from maternal blood: practical comparative evaluation of the first and second trimesters. Prenat Diagn,2001,21(3):165-170.
    [28] Smits G, Holzgreve W, Hahn S. An examination of different Percoll densitygradients and magnetic activated cell sorting (MACS) for the enrichment of fetal erythroblasts from maternal blood.Arch Gynecol Obstet,2000 ,263(4):160-163.
    [29] Sekizawa A, Kimura T, Sasaki M,et al. Prenatal diagnosis of Duchenne muscular dystrophy using a single fetal nucleated erythrocyte in maternal blood. eurology,1996 ,46(5): 1350-1353.
    [30] Ganshirt-Ahlert D, Borjesson-Stoll R, Burschyk M,et al.Detection of fetal trisomies 21 and 18 from maternal blood using triple gradient and magnetic cell sorting.Am J Reprod Immunol, 1993, 30(2-3): 194-201
    [31] Takabayashi H, Kuwabara S, Ukita T,et al. Development of non-invasive fetal DNA diagnosis from maternal blood. Prenat Diagn, 1995 ,15(1):74-77.
    [32] Firth HV, Boyd PA, Chamberlain P, et al. Severe limb abnormalities after chorion villus sampling at 56-66 day's gestation.Lancet, 1991,33:762
    [33] Ganshirt-Ahlert D, Burschyk M, Garritsen HS, et al. 1992. Magnetic cell sorting and the transferrin receptor as potential means of prenatal diagnosis from maternal blood. Am J Obstet Gynecol 166: 1350-1355.
    [34] Bianchi DW, Flint AF, Pizzimenti MF,et al.Isolation of fetal DNA from nucleated erythrocytes in maternal blood. Proc Natl Acad Sci U S A, 1990 ,87(9):3279-3283.
    [35] Bianchi DW, Zickwolf GK, Yih MC, et al.Erythroid-specific antibodies enhance detection of fetal nucleated erythrocytes in maternal blood. Prenat Diagn, 1993 ,13(4):293-300.
    [36] Wachtel SS, Sammons D, Manley M, et al. Fetal cells in maternal blood: recovery by charge flow separation. Hum Genet, 1996,98: 162-166.
    [37] Alter BP. Biology of erythropoiesis. Ann N Y Acad Sci, 1994 ,731:36-47.
    [38] Chen H, Griffin DK, Jestice K, ET AL.Evaluating the culture of fetal erythroblasts from maternal blood for non-invasive prenatal diagnosis. Prenat Diagn, 1998 ,18(9):883-892.
    [39] Shinya M, Okamoto A, Sago H, et al. Analysis of fetal DNA from maternal peripheral blood by lectin-polymerase chain reaction-single strand conformation polymorphism. Congenit Anom (Kyoto),2004 ,44(3): 142- 146.
    
    [40] Hamada H, Arinami T, Kubo T, et al. Fetal nucleated cells in maternal peripheral blood: Frequency and relationship to gestetionage. Hum Genet, 1993,91:427-432.
    [41] Tharapel AT, Jaswaney VL, Dockter ME, et al. Inability to detect fetal metaphases in low-sorted lymphocyte cultures based on maternal-fetal HLA differences. Fetal Diagn Ther, 1993 , 8(2) :95 -101.
    [42] Cheung MC, Goldberg JD, Kan YW. Prenatal diagnosis of sickle cell anaemia and thalassaemia by analysis of fetal cells in maternal blood. Nat Genet, 1996 ,14(3):264-268.
    [43] Zheng YL, Zhen DK, Farina A,et al. Fetal cell identifiers: results of microscope slide-based immunocytochemical studies as a function of gestational age and abnormality. Am J Obstet Gynecol,1999 ,180(5): 1234-1239.
    [44] von Eggeling F, Michel S, Gunther M,et al. Determination of the origin of single nucleated cells in maternal circulation by means of random PCR and a set of length polymorphisms. Hum Genet, 1997 ,99(2):266-270.
    [45] DeMaria MA, Zheng YL, Zhen D,et al. Improved fetal nucleated erythrocyte sorting purity using intracellular antifetal hemoglobin and Hoechst 33342. Cytometry, 1996 ,25(1):37-45.
    [46] Al-Mufti R, Hambley H, Farzaneh F,et al.Distribution of fetal andembryonic hemoglobins in fetal erythroblasts enriched from maternal blood. Haematologica. 2001 ,86(4): 357-362.
    [47] Hogh AM, Hviid TV, Christensen B,et al. zeta-, epsilon-, and gamma- Globin mRNA in blood samples and CD71(+) cell fractions from fetuses and from pregnant and nonpregnant women, with special attention to identification of fetal erythroblasts. Clin Chem,2001 ,47(4):645-653.
    [48] Choolani M, O'Donnell H, Campagnoli C, et al.Simultaneous fetal cell identification and diagnosis by epsilon-globin chain immunophenotyping and chromosomal fluorescence in situ hybridization. Blood,2001,98(3):554 -557.
    [49] Mavrou A, Kolialexi A, Antsaklis A,et al. Identification of fetal nucleated red blood cells in the maternal circulation during pregnancy using anti-hemoglobin-epsilon antibody. Fetal Diagn Ther, 2003 ,18(5):309-13.
    [50] Geifman-Holtzman O, Holtzman EJ, Vadnais TJ,et al. Detection of fetal HLA-DQa sequences in maternal blood: a gender-independent technique of fetal cell identification. Prenat Diagn, 1995 ,15(3):261-268.
    [51] Sekizawa A, Taguchi A, Watanabe A,et al. Analysis of HLA-DQ alpha sequences for prenatal diagnosis in single fetal cells from maternal blood. Hum Genet, 1998 ,102(4):393-396.
    [52] Watanabe A, Sekizawa A, Taguchi A,et al. Prenatal diagnosis of ornithine transcarbamylase deficiency by using a single nucleated erythrocyte from maternal blood. Hum Genet, 1998 ,102(6):611-615.
    
    [53] Samura O, Pertl B, Sohda S, et al.Female fetal cells in maternal blood:use of DNA polymorphisms to prove origin.Hum Genet ,2000,107(1) :28-32.
    [54] Samura O, Sohda S, Johnson KL, Pertl B,et al. Diagnosis of trisomy 21 in fetal nucleated erythrocytes from maternal blood by use of short tandem repeat sequences. Clin Chem,2001, 47(9): 1622-1626.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700