加拿大红枫和美国蓝莓花化学成分及生物活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对加拿大红枫(Red maple)和美国蓝莓花(Blueberry flower)的化学成分及其清除DPPH自由基和抑制α-葡萄糖苷酶活性进行了研究。根据化合物的理化性质,并采用紫外图谱,红外图谱,NMR(包括二维NMR)和高分辨质谱等多种现代谱学手段鉴定了55个具有不同结构的天然化合物(包括21个没食子酸衍生物,20个黄酮,10个苯丙素类化合物,1个香豆素和3木脂素)。其中新化合物11个。生物活性测试结果表明大部分化合物都具有很强的清除DPPH自由基活性,部分没食子酸衍生物以及黄酮苷类化合物具有很强的抑制α-葡萄糖苷酶活性。对没食子酸衍生物,黄酮和苯丙素类化合物的清除DPPH自由基和抑制α-葡萄糖苷酶活性进行构效关系的探讨。本毕业论文的具体研究内容及结果简述如下:
     1)本文利用硅胶,大孔树脂,Sephadex LH-20, ODS及制备HPLC柱层析等多种色谱分离技术,从加拿大红枫树枝(stem)部位分离并鉴定了27个化合物。其中5个为新化合物:maplexin A (2)、maplexin B (3)、maplexin C (5)、 maplexin D(6)和maplexin E (12)。22个为已知化合物:条茶槭丙素(1),条茶槭乙素(4),条茶槭甲素(7),3,6-di-O-galloyl-1,5-anhydro-D-glucitol(8),3-甲氧基-4-羟基苯酚-1-O-β-D-(6'-O-没食子酰)-葡萄糖苷(17),儿茶素(18),表儿茶素(19),表儿茶素-3-O-没食子酸酯(20),原花青素A6(21),原花青素A2(22),槲皮素-3-O-α-L-鼠李糖苷(23),槲皮素-3-O-(3"-没食子酰基)-吡喃鼠李糖苷(24),槲皮素-3-O-(2"-没食子酰基)-吡喃鼠李糖苷(25),去甲络石苷元8'-O-β-D-葡萄糖苷(26),7,8-二羟基-6-甲氧基-香豆素(27),根皮苷(28),没食子酸(29),没食子酸甲酯(30),3,4-二羟基,5-甲氧基-苯甲酸甲酯(31),丁香酸甲酯(32),香草酸甲酯(33)和3,5-二羟基,4-甲氧基-苯甲酸(34)。
     2)从加拿大红枫树皮(bark)部位分离并鉴定了12个化合物,其中6个为新化合物:maplexin F (9)、maplexin G (10)、maplexin H (11)、maplexin Ⅰ(13) rubrumosides A(14)和rubrumosides B(16);1个为已知化合物:nymphaeoside A(15);以及5个和从树枝(stem)部位分离得到的化合物重复:条茶槭丙素(1),条茶槭乙素(4),条茶槭甲素(7),没食子酸(29),香草酸甲酯(33)。从加拿大红枫树枝(stem)和树皮(bark)部位共分离得到了34个单体化合物,其中11个为新化合物。化合物15,17,21,22,26,28,31和34为首次从槭树科植物中分离得到;化合物1,4,7,8,20,24,25,32和33为首次从该植物中分离得到。
     3)对从加拿大红枫中分离得到的化合物进行体外抑制α-葡萄糖苷酶和清除DPPH自由基活性测试,结果表明新化合物Maplexins E-I系列化合物都具有很好的体外抑制α-葡萄糖苷酶活性,其半数抑制浓度(ICso)为7.9-16.1μM。除化合物26,31-34外,其余化合物都具有很强的清除DPPH自由基活性其半数抑制浓度(IC50)为7.7-77.5μM。通过比较分析maplexins(或者ginnalin)化合物(1-13)的抑制α-葡萄糖苷酶活性和结构之间的关系,发现结构中没食子酰基的个数及连接位置对活性都有很大的影响,结构中有三个没食子酰基的化合物活性最强(Maplexins E-I,9-13),一个没食子酰基的活性则最弱(MaplexinsA-B和Ginnalins B-C,1-4);结构中连接有两个没食子酰基的化合物(5-8),其糖的6位羟基连有没食子酰基的化合物(7-8)活性强于6位没有没食子酰基连接的化合物(5-6)。
     4)本文对美国蓝莓花进行了化学成分研究,从乙酸乙酯萃取部位分离并鉴定了21个化合物,包括10个苯丙素类化合物和11个黄酮类化合物。它们分别为5-O-咖啡酰莽草酸(35),5-O-咖啡酰奎宁酸(36),5-O-咖啡酰奎宁酸甲酯(37),3,5-二咖啡酰奎宁酸甲酯(38),咖啡酸甲酯(39),5-O-肉桂酰奎宁酸(40),5-O-肉桂酰奎宁酸甲酯(41),肉桂酸甲酯(42),Rosin (43),2'-O-β-D-Glucosylrosine (44),槲皮素-3-O-β-D-葡萄糖苷(45),槲皮素-3-O-β-D-半乳糖苷(46),槲皮素-3-O-α-L-阿拉伯糖苷(47),杨梅素-3-O-β-D-葡萄糖苷(48),杨梅素-3-O-β-D-半乳糖苷(49),槲皮素-3-O-(6"-O-肉桂酰)-β-D-葡萄糖苷(50),槲皮素-3-O-(2"-O-肉桂酰)-β-D-葡萄糖苷(51),山柰酚-3-O-(6"-O-肉桂酰)-β-D-葡萄糖苷(52),另外3个黄酮为苯丙素取代的儿茶素类化合物(53-55)。
     5)对从蓝莓花中分离得到的化合物进行体外抑制α-葡萄糖苷酶和清除DPPH自由基活性测试,结果表明黄酮类化合物都具有很好的体外抑制α-葡萄糖苷酶活性,其半数抑制浓度(IC50)为28.9-137.5μM;而苯丙素类化合物活性则很弱,仅3,5-二咖啡酰奎宁酸甲酯(38)表现出活性,其半数抑制浓度(IC50)为99.9μM;除化合物40-44和52外,其余化合物都具有很强的清除DPPH自由基活性,其半数抑制浓度(IC50)为7.8-59.4μM;其抗氧化活性与酚羟基的数目有关。
Chemical constituents and DPPH free radical scavenging and a-glucosidase inhibition activities of red maple and blueberry flower were investigated in this paper. A total of55different compounds including twenty-one gallic acid derivatives, twenty flavonoids, ten phenylpropanoids, one coumarin and three lignans were isolated and identified. All of their structures were extensively identified by the combination of physicochemical properties, UV spectrum, infrared spectrum, NMR spectrum (including2D NMR) and high-resolution mass spectrum. Among those isolated compounds, eleven were new compounds. Biological activities tests indicated most compounds showed very stronger DPPH free radical scavenging activity, and some gallic acid derivatives and Flavonol glycosides showed powerful a-glucosidase inhibition activity. The structure-activity relationship (SAR) of gallic acid derivatives, flavonoids and phenylpropanoids were briefly discussed. The detailed contents and results of this paper are briefly as follows:
     A total of twenty-seven compounds were isolated and purified by the combination of column chromatography of Silica gel coupled with macroporous resin, Sephadex LH-20, RP-ODS and preparative HPLC chromatography from red maple stem. They are five new compounds, including maplexin A (2), maplexin B (3), maplexin C (5), maplexin D (6) and maplexin E (12), respectively. Other twenty-two compounds are known, including Ginnalin C (1), Ginnalin B (4), Ginnalin A (7),3,6-di-O-galloyl-1,5-anhydro-D-glucitol (8),3-Methoxy-4-hydroxyphenol-1-O-P-D-(6'-O-galloyl)-glucopyranoside (17), catechin (18), epicatechin (19), epicatechin-3-O-gallate (20), procyanidins A6(21), procyanidins A2(22), quercetin-3-O-a-L-rhamnoside (23), quercetin-3-O-3"-galloyl-rhamnoside (24), quercetin-3-O-2"-galloyl-rhamnos-ide (25), Nortrachelogenin-8'-O-β-D-glucopyranoside (26),7,8-dihydroxy-6-methoxycoumarin (27), phloridzin (28), gallic acid (29), methyl gallate (30),3,4-dihydroxy-5-methoxybenzoic acid methyl ester (31), methyl syringate (32), methyl vanillate (33) and3,5-dihydroxy-4-methoxybenzoic acid (34).
     A total of twelve compounds were isolated and identified from red maple bark. They are six new compounds, including maplexin F (9), maplexin G (10), maplexin H (11), maplexin I (13), rubrumosides A (14) and rubrumosides B (16). Other six compounds are known, including nymphaeoside A (15) and the same five compounds as isolated from red maple stem:Ginnalin C (1), Ginnalin B (4), Ginnalin A (7), gallic acid (29) and methyl vanillate (33), respectively. In short, thirty-four compounds were isolated and identified from red maple and eleven were new compounds. Compounds15,17,21,22,26,28,31and34were isolated from the family of Aceraceae for the first time, and compounds1,4,7,8,20,24,25,32and33were isolated from the plant for the first time.
     All of the isolated compounds from red maple were tested for their a-glucosidase inhibition and DPPH free radical scavenging activities. New compounds Maplexins E-I all showed powerful a-glucosidase inhibitory activity with range of the IC507.9-16.1μM. All of the compounds except26,31-34showed very strong DPPH free radical scavenging activity with range of the IC507.7-77.5μM. Analysis the relationship of the structure of gallic acid derivatives and the a-glucosidase inhibitory activity, which suggested that the a-glucosidase inhibitory activities of these gallotannins were influenced by both the number and positions of the galloyl groups. Compounds1-4, which possess one galloyl group each, did not show any activity in this assay, while compounds5-8, which possess two galloyl groups each, showed moderate a-glucosidase inhibitory activity. While maplexin E-I (9-13), which contained three galloyl groups, showed powerful a-glucosidase inhibitory activity.
     A total of twenty-one compounds including ten phenylpropanoids and eleven flavonoids, were isolated and purified from blueberry flower. The compounds were identified from their nuclear magnetic resonance (NMR) and mass spectral data as5-O-caffeoylshikimic acid (35),5-O-Caffeoylquinic acid (36),5-O-Caffeoylquinic acid methyl ester (37),3,5-dicaffeoylquinic acid methyl ester (38), Methyl caffeate (39),5-O-coumaroylquinic acid (40),5-O-coumaroylquinic methyl ester (41), trans-cinnamic acid methyl ester (42), Rosin (43),2'-O-β-D-Glucosylrosine (44), quercetin-3-O-β-D-glucoside (45), quercetin-3-O-β-D-galactoside (46), quercetin-3-O-α-L-arabinopyranoside (47), myricetin-3-O-β-D-glucoside (48), myricetin-3-O -β-D-galactoside (49), quercetin-3-O-(6"-O-coumaroyl)-β-D-glucoside (50), quercetin-3-O-(2"-O-coumaroyl)-β-D-glucoside (51), kaempferol-3-O-(6"-O-coumaroyl)-β-D-glucoside (52) and other three are phenylpropanoid-substituted catechins (53-55).
     All of the isolated compounds from blueberry flower were tested for their α-glucosidase inhibition and DPPH free radical scavenging activities. All of the flavonoids showed powerful a-glucosidase inhibitory activity with range of the IC5028.9-137.5μM, while the phenylpropanoids showed very weak activity, only3,5-dicaffeoylquinic acid methyl ester (38) showed good activity with the IC5099.9μM. All of the compounds except40-44and52showed very strong DPPH free radical scavenging activity with range of the IC507.8-59.4μM. Analysis the relationship of the structure and the DPPH free radical scavenging activity, which suggested that the DPPH free radical scavenging activities were influenced by the number of the hydroxy groups.
引文
[1]Arnason T, Hebda R J, Johns T. Use of plants for food and medicine by native peoples of eastern canada[J]. Canadian Journal of Botany,1981,59(11):2189-2325.
    [2]Ball D W. The chemical composition of maple syrup[J]. Journal of Chemical Education, 2007,84(10):1647.
    [3]Royer M, Diouf P N, Stevanovic T. Polyphenol contents and radical scavenging capacities of red maple (acer rubrum L.) extracts[J]. Food Chem Toxicol,2011,49(9):2180-2188.
    [4]Abou-Zaid M M, Helson B V, Nozzolillo C,. Ethyl m-digallate from red maple, acer rubrum L., as the major resistance factor to forest tent caterpillar, malacosoma disstria Hbn[J]. J. Chem. Ecol.,2001,27:2517-2527.
    [5]Li L, Seeram N P. Further investigation into maple syrup yields three new lignans, a new phenylpropanoid, and twenty-six other phytochemicals[J]. J. Agric. Food. Chem.,2011, 59(14):7708-7714.
    [6]Li L, Seeram N P. Quebecol, a novel phenolic compound isolated from Canadian maple syrup[J]. J. Funct. Foods,2011,3(2):125-128.
    [7]Li L Y, Seeram N P. Maple syrup phytochemicals include lignans, coumarins, a stilbene, and other previously unreported antioxidant phenolic compounds[J]. J. Agric. Food. Chem., 2010,58(22):11673-11679.
    [8]Song C, Zhang N, Xu R. Studies on antibacterial constituents of the leaves of acer ginnala maxim. Ⅱ. Isolation and identification of ginnalin B and ginnalin C and six other compounds[J]. Acta Chim Sinica,1982,40:1142-1147.
    [9]Zhao W H, Gao L F, Gao W,. Weight-reducing effect of acer truncatum bunge may be related to the inhibition of fatty acid synthase[J]. Natural Product Research,2011,25(4): 422-431.
    [10]Yang H, Sung S H, Kim Y C. Two new hepatoprotective stilbene glycosides from acer m ono leaves[J]. Journal of Natural Products,2005,68(1):101-103.
    [11]Parveen N, Khan N U, Inoue T. Ethyl brevifolin carboxylate and other constituents from acer oblongum leaves[J]. Phytochemistry,1988,27(12):3990-3991.
    [12]Inoue T, Ishidate Y, Fujita M. Studies on constituents of aceraceae plants.Ⅰ. Constituents in leaves and stem bark of acer nikoense maxim[J]. Yakugaku Zasshi,1978,98(1):41-46.
    [13]李云志,曾凡骏.元宝枫叶黄酮类化合物分离与鉴定[J].天然产物研究与开发,2006,18(3):426.
    [14]Park W Y. Phenolic compounds from acer ginnala maxim[J]. Saengyak Hakhoechi 1996, 27(3):212-218.
    [15]Miyazaki K, Ishizawa S, Nagumo S. Studies on the constituents of aceraceae plants.Ⅸ. Constituents of acer cissifolium[J]. Shoyakugaku Zasshi,1991,45(4):333-335.
    [16]Song C, Xu R, Song G. Active constituents of acer ginnala[J]药学通报,1981,16(12):756.
    [17]Justice D E, Reid A R, Bohm B A. Vacuolar flavonoids of rocky-mountain maple, acer glabrum torrey (aceraceae)[J]. Biochem. Syst. Ecol.,1995,23(3):263-265.
    [18]Xie B, Xu F, Li L. Flavonoid glycosides from acer truncatum[J]. Acta Botanica Yunnanica, 2005,27(3):232-234.
    [19]Dong-Joo Kwon, Bae Y-S. Chemical constituents from the stem bark of acer barbinerve[J]. Chemistry of Natural Compounds,2011,47(4):636-638.
    [20]Tung N H, Ding Y, Kim S K. Total peroxyl radical-scavenging capacity of the chemical components from the stems of acer tegmentosum maxim[J]. J. Agric. Food. Chem.,2008, 56(22):10510-10514.
    [21]Kim H J, Woo E R, Shin C G. A new flavonol glycoside gallate ester from acer okamotoanum and its inhibitory activity against human immunodeficiency virus-1 (HIV-1) integrase[J]. Journal of Natural Products,1998,61(1):145-148.
    [22]Aritomi M. Chemical constituents in aceraceous plants. Ⅱ. Flavnoid constituents in leaves of acer carpinifolium siebold et zuccarini, a. Diabolicum blume, a. Marmoratum hara form. Dissectum rehder, and a. Negundo linnaeus][J]. Yakugaku Zasshi,1964,84(4):360-362.
    [23]黄相中,潭理想,古昆,李聪.云南产元宝枫叶的化学成分研究[J].中国中药杂志,2007,32(15):1544-1547.
    [24]Tian W X, Ma X F, Wu L H. Isolation of quercetin-3-O-L-rhamnoside from acer truncatum bunge by High-Speed Counter-Current Chromatography[J]. Journal of Chromatography A, 2005,1070(1-2):211-214.
    [25]Hatano T, Hattori S, Ikeda Y. Gallotannins having a 1,5-anhydro-D-glucitol core and some ellagitannins from acer species[J]. Chem. Pharm. Bull.,1990,38(7):1902-1905.
    [26]Hu F L, Lu R L, Xia T. Activity-guided isolation and identification of radical scavenging components in Gao-Cha Tea[J]. Journal of Food Science,2010,75(8):H239-H243.
    [27]Ding Y, Liang C, Nguyen H T. Chemical constituents from acer mandshuricum and their effects on the function of osteoblastic MC3T3-E1 cells[J]. Bull. Korean Chem. Soc,2010, 31(4):929.
    [28]Backheet E. Gallotannin and flavonoid glycosides from the stem bark of acer negundo (L.)[J]. Bulletin of pharmaceutical sciences, Assiut university,2003,26(1):77-82.
    [29]Backheet E Y. Studies on the constituents of the leaves of acer negundo (1.)[J]. Bulletin of Pharmaceutical Sciences, Assiut University,2001,24(1):1-6.
    [30]Fossen T, Andersen M. Cyanidin 3-(2",3"-digalloylglucoside) from red leaves of acer platanoides[J]. Phytochemistry,1999,52(8):1697-1700.
    [31]Schmitzer V, Osterc G, Veberic R. Correlation between chromaticity values and major anthocyanins in seven acer palmatum thunb. Cultivars[J]. Scientia Horticulturae,2009, 119(4):442-446.
    [32]Schmitzer V, Stampar F, Veberic R. Phase change modifies anthocyanin synthesis in acer palmatum thunb.(Japanese maple) cultivars[J]. Acta Physiologiae Plantarum,2009,31(2): 415-418.
    [33]Ji S, Saito N, Yokoi M. Galloylcyanidin glycosides from acer[J]. Phytochemistry 1992, 31(2):655-657.
    [34]Ji S B, Yokoi M, Saito N. Cyanidin 3-(2G-Xylosylrutinoside) from brown-red spring leaves of acer macrophyllum and begonia semperflorens cultivars[J]. Technical Bulletin of Faculty of Horticulture-Chiba University (Japan),1995,49:13-17.
    [35]Navarro-Nunez L, Castillo J, Lozano M L. Thromboxane A2 receptor antagonism by flavonoids:Structure-activity relationships[J]. J. Agric. Food. Chem.,2009,57(4): 1589-1594.
    [36]Tsujimura M, Nakahama C. Chemical components in the leaves of acer aizuense. Ⅱ. Maple tannin[J]. Nippon Nogei Kagaku Kaishi,1965,39(6):209-211.
    [37]Aritomi M. Chemical constituents in aceraceous plants. Ⅰ. Flavonoid constituents in the leaves of acer palmatum thunberg[J]. Yakugaku Zasshi,1963,83(7):737-740.
    [38]Kim J H, Lee B C, Sim G S. The isolation and antioxidative effects of vitexin from acer palmatum[J]. Archives of Pharmacal Research,2005,28(2):195-202.
    [39]Aritomi M. Chemical constituents in aceraceous plants.Ⅲ. Flavonoid constituents in leaves of acer cissifolium k. Koch[J]. Chem. Pharm. Bull.,1964,12(7):841-843.
    [40]Park K M, Yang M C, Lee K H. Cytotoxic phenolic constituents of acer tegmentosum maxim[J]. Archives of Pharmacal Research,2006,29(12):1086-1090.
    [41]Yonezawa T, Lee J W, Akazawa H. Osteogenic activity of diphenyl ether-type cyclic diarylheptanoids derived from acer nikoense[J]. Bioorganic & Medicinal Chemistry Letters, 2011,21(11):3248-3251.
    [42]Akihisa T, Taguchi Y, Yasukawa K. Acerogenin M, A cyclic diarylheptanoid, and other phenolic compounds from acer nikoense and their anti-inflammatory and anti-tumor promoting effects[J]. Chem. Pharm. Bull.,2006,54(5):735-739.
    [43]Akazawa H, Akihisa T, Taguchi Y. Melanogenesis inhibitory and free radical scavenging activities of diarylheptanoids and other phenolic compounds from the bark of acer nikoense[J]. Biol. Pharm. Bull.,2006,29(9):1970-1972.
    [44]Morikawa T, Tao J, Ueda K. Medicinal foodstuffs. ⅩⅩⅪ. Structures of new aromatic constituents and inhibitors of degranulation in RBL-2H3 cells from a Japanese folk medicine, the stem bark of acer nikoense[J]. Chem. Pharm. Bull.,2003,51(1):62-67.
    [45]Morikawa T, Tao J, Toguchida I. Structures of new cyclic diarylheptanoids and inhibitors of nitric oxide production from Japanese folk medicine acer nikoense[J]. Journal of Natural Products,2003,66(1):86-91.
    [46]Narayana.V, Seshadri T R. Chemical components of acer rubrum wood and bark-occurrence of procyanidin dimer and trimer[J]. Indian Journal of Chemistry,1969,7(3):213-214.
    [47]Perkin A, Uyeda Y. Occurrence of a crystalline tannin in the leaves of the acer ginnala[J], J. Chem. Soc,1922, (121):66-66.
    [48]Kumamoto O. The chemical structure of aceritannin (acertannin). Ⅰ. Determination of the location of two galloyl groups in aceritannin[J]. Chem. Pharm. Bull.,1960,8(1):72-76.
    [49]Bock K, Faurschou laCour N, Jensen S R. The structure of acertannin[J]. Phytochemistry, 1980,19(9):2033-2033.
    [50]Choi S E, Park K H, Oh M H. Antioxidative activities and quantitative determination of gallotannins from barks of acer ginnala maxim[J]. Saengyak Hakhoechi,2010,41(3): 174-179.
    [51]Mir I, Khan F, Comrie A M. Constituents of acer pentapomicum[J]. Pakistan Journal of Scientific and Industrial Research,1975,18(3-4):91-92.
    [52]Bende G. Gallic acid isolated from water extracts of litter from acer platanoides[J]. Physiol. Plant,1956,9:243-246.
    [53]Dong L P, Liu H Y, Ni W. Four new compounds from the leaves of acer truncatum[J]. Chemistry & biodiversity,2006,3(7):791-798.
    [54]Abou-Zaid M M, Lombardo D A, Nozzolillo C. Methyl gallate is a natural constituent of maple (genus acer) leaves[J]. Nat. Prod. Res.,2009,23:1373-1377.
    [55]Ma X, Wu L, Ito Y. Application of preparative High-Speed Counter-Current Chromatography for separation of methyl gallate from acer truncatum bunge[J]. Journal of Chromatography A,2005,1076(1-2):212-215.
    [56]Choi Y H, Han S S, Lee H O. Biological activity of bioactive components from acer ginnala max[J]. Bull. Korean Chem. Soc.,2005,26(9):1451.
    [57]Han S S, Lo S C, wa Choi Y. Antioxidant activity of crude extract and pure compounds of acer ginnala max[J]. Bull. Korean Chem. Soc.,2004,25(3):389.
    [58]Bailey A E, Asplund R O, Ali M. Isolation of methyl gallate as the antitumor principle of acer saccharinum[J]. Journal of Natural Products,1986,49(6):1149-1150.
    [59]Abou-Zaid M M, Nozzolillo C.1-O-galloyl-α-L-rhamnose from acer rubrum[J]. Phytochemistry,1999,52(8):1629-1631.
    [60]Hur J M, Yang E J, Choi S H. Isolation of phenolic glucosides from the stems of acer tegmentosum max[J]. Journal of the Korean Society for Applied Biological Chemistry, 2006,49.
    [61]Zhao W H, Gao C C, Ma X F. The isolation of 1,2,3,4,6-penta-O-galloyl-β-D-glucose from acer truncatum bunge by High-Speed Counter-Current Chromatography[J]. Journal of Chromatography B,2007,850(1-2):523-527.
    [62]Ogawa A, Miyamae Y, Honma A. Pycnalin, a new α-glucosidase inhibitor from acer pycnanthum[J]. Chem. Pharm. Bull.,2011,59(5):672-675.
    [63]Honma A, Koyama T, Yazawa K. Anti-hyperglycemic effects of sugar maple acer saccharum and its constituent acertannin[J]. Food Chem.,2010,123(2):390-394.
    [64]Honma A, Koyama T, Yazawa K. Anti-hyperglycaemic effects of the japanese red mapleacer pycnanthumand its constituents the ginnalins B and C[J]. J. Enzym. Inhib. Med. Chem.,2011,26(2):176-180.
    [65]Okabe S, Suganuma M, Imayoshi Y. New TNF-α releasing inhibitors, geraniin and corilagin, in leaves of acer nikoense, megusurino-ki[J]. Biol. Pharm. Bull.,2001,24(10): 1145-1148.
    [66]Kihara T, Ichikawa S, Yonezawa T. Acerogenin A, a natural compound isolated from acer nikoense maxim, stimulates osteoblast differentiation through bone morphogenetic proteinaction[J]. Biochemical and Biophysical Research Communications,2011, 406(2):211-217
    [67]Morita H, Deguchi J, Motegi Y. Cyclic diarylheptanoids as Na+-glucose cotransporter (SGLT) inhibitors from acer nikoense[J]. Bioorganic & Medicinal Chemistry Letters,2010, 20(3):1070-1074.
    [68]Nagumo S, Ishizawa S, Nagai M. Studies on the constituents of aceraceae plants.ⅩⅢ. Diarylheptanoids and other phenolics from acer nikoense[J]. Chem. Pharm. Bull.,1996, 44(5):1086-1089.
    [69]Nagai M, Kubo M, Fujita M. Studies on constituents of aceraceae plants.Ⅱ. Structure of aceroside-1, a glucoside of a novel cyclic diarylheptanoid from acer-nikoense maxim[J]. Chem. Pharm. Bull.,1978,26(9):2805-2810.
    [70]Keseru G M, Nogradi M, Szollosy A. Synthesis of acerogenin c and (±)-acerogenin a, two macrocyclic diarylheptanoid constituents of acer nikoense[J]. European Journal of Organic Chemistry,1998,1998(3):521-524.
    [71]Inoue T, Kenmochi N, Furukawa N. Biosynthesis of acerogenin a, a diarylheptanoid from acernikoense[J]. Phytochemistry,1987,26(5):1409-1411.
    [72]Kubo M, Inoue T, Nagai M. Studies on the constituents of aceraceae plants.Ⅲ. Structure of acerogenin-B from acer-nikoense maxim[J]. Chem. Pharm. Bull.,1980,28(4):1300-1303.
    [73]Nagai M, Matsuda E, Inoue T. Studies on the constituents of aceraceae plants.Ⅶ. Diarylheptanoids from acer-griseum and acer-triflorum[J]. Chem. Pharm. Bull.,1990,38(6): 1506-1508.
    [74]Inoue T. Constituents of acer nikoense and myrica rubra. On diarylheptanoids[J]. Yakugaku Zasshi,1993,113(3):181.
    [75]Nagai M, Kubo M, Takahashi K. Studies on the constituents of aceraceae plants.Ⅴ. Two diarylheptanoid glycosides and an arylbutanol apiosylglucoside from acer-nikoense[J]. Chem. Pharm. Bull.,1983,31(6):1923-1928.
    [76]Kubo M, Nagai M, Inoue T. Studies on the constituents of aceraceae plants.Ⅳ. C-13 nuclear magnetic-resonance spectra of acerogenin-A, rhododendrol and related-compounds, and structure of aceroside-Ⅳ from acer-nikoense[J]. Chem. Pharm. Bull.,1983,31(6): 1917-1922.
    [77]Nagumo S, Kaji N, Inoue T. Studies on the constituents of aceraceae plants.Ⅺ. Two types of cyclic diarylheptanoid from acer-nikoense[J]. Chem. Pharm. Bull.,1993,41(7): 1255-1257.
    [78]Nagai M, Kenmochi N, Fujita M. Studies on the constituents of aceraceae plants.Ⅵ. Revised stereochemistry of (-)-centrolobol, and new glycosides from acer-nikoense[J]. Chem. Pharm. Bull.,1986,34(3):1056-1060.
    [79]Shiratori S, Nagumo S, Inoue T. Studies on the constituents of aceraceae plants.Ⅻ. Two new diarylheptanoid glycosides from acer triflorum[J]. Chem. pharm. bull.,1994,42(4): 960-962.
    [80]Jin W Y, Thuong P T, Su N D. Antioxidant activity of cleomiscosins A and C isolated from acer okamotoanum[J]. Archives of Pharmacal Research,2007,30(3):275-281.
    [81]Jin W Y, Min B S, Lee J P. Isolation of constituents and anti-complement activity from acer okamotoanum[J]. Archives of Pharmacal Research,2007,30(2):172-176.
    [82]Iizuka T, Nagumo S, Yotsumoto H. Vasorelaxant effects of acer nikoense extract and isolated coumarinolignans on rat aortic rings[J]. Biol. pharm. bull.,2007,30(6):1164-1166.
    [83]Furukawa N N, Seiji; Inoue, Takao; Nagai, Masahiro. Studies on the constituents of aceraceae plants (Ⅶ). Coumarinolignans from the wood of acer nikoense[J]. Shoyakugaku Zasshi,1988,42(2):163-165.
    [84]Yoshikawa K, Kawahara Y, Arihara S. Aromatic compounds and their antioxidant activity of acer saccharum[J]. Journal of Natural Medicines,2011,65(1):191-193.
    [85]Miller D, Sutcliffe R, Thauvette J. Sticker stain formation in hardwoods:Isolation of scopoletin from sugar maple (acer saccharum marsh.)[J]. Wood Science and Technology, 1990,24(4):339-344.
    [86]Dong L P, Ni W, Dong J Y. A new neolignan glycoside from the leaves of acer truncatum[J]. Molecules,2006,11(12):1009-1014.
    [87]Yoo Y M, Nam J H, Kim M Y. Analgesic and anti-gastropathic effects of salidroside isolated from acer tegmentosum heartwood[J]. Open Bioactive Compounds Journal,2009,2: 1-7.
    [88]Shinoda M, Ohta S, Kumasaka M. Protective effect of the bark of acer nikoense on hepatic injury induced by carbon tetrachloride in rats[J]. Shoyakugaku Zasshi,1986,40(2): 177-181.
    [89]Kupchan S M, Takasugi M, Smith R M. Tumor inhibitors. LⅫ. Structures of acerotin and acerocin. Novel triterpene ester aglycones from the tumor inhibitory saponins of acer negundo (maple)[J]. The Journal of Organic Chemistry,1971,36(14):1972-1976.
    [90]Son Y, Han Y. Isolation of triterpenoid saponins from the stems of acer ginnala maxim[J]. Korean Journal of Pharmacognosy,2002,33(4):301-304.
    [91]Hur J, Jun M, Yang E. Isolation of isoprenoidal compounds from the stems of acer tegmentosum max[J]. Korean Journal of Pharmacognosy,2007,38(1):67-70.
    [92]Ding Y, Liang C, Kim J H. Triterpene compounds isolated from acer mandshuricum and their anti-inflammatory activity[J]. Bioorganic & Medicinal Chemistry Letters,2010,20(5): 1528-1531.
    [93]Narayanan V, Seshadri R, Seshadri T R. Acergenin from the heartwood of acer cesium[J]. Current Science,1973,42(18):642-643.
    [94]Inoue T, Sakurai N, Nagai S. Studies on the constituents of aceraceae plants. (Ⅹ). Isolation of flavonoid glycosides and a cerebroside from the leaves of acer negundo[J]. Shoyakugaku Zasshi,1992,46(3):261-264.
    [95]Glenska M, W odarczyka M, Bassarellob C. A major saponin from leaves extract of acer velutinum[J]. Zeitschrift fuer Naturforschung, B:A Journal of Chemical Sciences 2009, 64(9):1081-1086.
    [96]Otsuka H, Komiya T, Fujioka S. Studies on anti-inflammatory agents. Ⅲ. An anti-inflammatory constituent of the genus acer [J]. Yakugaku Zasshi,1981,101(12):1108.
    [97]Yang H, Lee M K, Kim Y C. Protective activities of stilbene glycosides from acer mono leaves against H2O2-induced oxidative damage in primary cultured rat hepatocytes[J]. J. Agric. Food. Chem.,2005,53(10):4182-4186.
    [98]Boyer J D, Breeden D C, Brown D L. Isolation, identification, and characterization of compounds from acer rubrum capable of oxidizing equine erythrocytes[J]. American Journal of Veterinary Research,2002,63(4):604-610.
    [99]Fowden L, Pratt H M, Smith A. Nitrogenous constituents of billia hippocastanum and acer pseudoplatanus[J]. Phytochemistry,1972,11(12):3521-3523.
    [100]Kim J H. Isolation of polygalitol from the leaves of acer ginnala max[J]. Saengyak Hakhoechi,1983,14(1):4.
    [101]Fossse R, Hieulle A. Identification of allantoic acid in the leaves of acer pseudopiatanus[J]. Compt. Rend.,1927,184:1596-1598.
    [102]Zhang F, Luo S Y, Ye Y B. The antibacterial efficacy of an aceraceous plant [shantung maple (acer truncatum bunge)] may be related to inhibition of bacterial β-oxoacyl-acyl carrier protein reductase (FabG)[J]. Biotechnology and Applied Biochemistry,2008,51(2): 73-78.
    [103]钟莲梅,宗一,戴纪男.元宝枫叶黄酮抑制脂多糖诱导的小胶质细胞激活的作用[J].云南大学学报,2011,33(3):345-349.
    [104]Yu T, Lee J, Lee Y G. In vitro and in vivo anti-inflammatory effects of ethanol extract from acertegmentosum[J]. Journal of ethnopharmacology,2010,128(1):139-147.
    [105]Kwon H, Park J, Jeon J. Antioxidative and hepatoprotective effects of acer tegmentosum M. Extracts[J]. Journal of The Korean Society of Food Science and Nutrition,2008,37(11): 1389-1394
    [106]Shim K Y, Kim D H, Song S B. Hepatoprotection of different water extracts from acer tegmentosum m. On CCl4-induced acute hepatotoxicity in mice:Comparative efficacies between the extracts of boughs, twigs, and leaves[J]. Molecular & Cellular Toxicology, 2011,7(4):405-413.
    [107]Nakamura H, Kumazawa N, Ohta S. Protective effects of the fractions extracted from the callus of acer nikoense maxim. On carbon tetrachloride induced liver injury[J]. Yakugaku zasshi,1991,111(10):585-591.
    [108]Kupchan S M, Hemingway R J, Knox J R. Tumor inhibitors XXI. Active principles of acer negundo and cyclamen persicum[J]. Journal of Pharmaceutical Sciences,1967,56(5): 603-608.
    [109]Zhao W H, Zhang J F, Zhang Y X. The extract of leaves of acer truncatum bunge:A natural inhibitor of fatty acid synthase with antitumor activity[J]. J. Enzym. Inhib. Med. Chem., 2006,21(5):589-596.
    [110]赵春杨,赵文华,张瑾峰.不同季节元宝枫叶对Fas活性的抑制及其与总黄酮含量的相关性[J].首都医科大学学报,2008,29(1):60-63.
    [111]Nitta K, Ogawa Y, Negishi F. Hot water extract of bark of nikko maple (acer nikoense) induces apoptosis in leukemia cells[J]. Biol. pharm. bull.,1999,22(4):378-381.
    [112]Koyama T, Honma A, Yazawa K. Antihyperglycemic effects of Japanese maple acer amoenum leaf extract and its constituent corilagin[J]. Journal of Wood Science,2010,56(6): 507-512.
    [113]Satoh K, Anzai S, Sakagami H. Radical scavenging activity of acer nikoense maxim. Extract[J].Anticancer Research,1998,18(2A):833.
    [114]黄相中,李聪,古昆.元宝枫叶提取物的稳定性及抗氧化性活性研究[J].云南大学学报(自然科学版),2003,25(5):442-445.
    [115]尉芹,马希汉.杜仲叶和元宝枫叶提取物抗氧化性的研究[J].食品科学,1998,19(8):3-5.
    [116]曹永孝.刘静,贺浪冲.元宝枫单宁的抗凝血作用[J].西北药学杂志,1993,8(3):180.
    [1]Arnason T, Hebda R J, Johns T. Use of plants for food and medicine by native peoples of eastern canada[J]. Canadian Journal of Botany-Revue Canadienne De Botanique,1981, 59(11):2189-2325.
    [2]Ball D W. The chemical composition of maple syrup[J]. Journal of Chemical Education, 2007,84(10):1647.
    [3]Royer M, Diouf P N, Stevanovic T. Polyphenol contents and radical scavenging capacities of red maple(acer rubrum L.) extracts[J]. Food Chem Toxicol,2011,49(9):2180-2188.
    [4]Narayanan.V, Seshadri T R. Chemical components of acer rubrum wood and bark-occurrence of procyanidin dimer and trimer[J]. Indian J. Chem.,1969,7(3):213-214.
    [5]Abou-Zaid M M, Nozzolillo C. 1-O-galloyl-[alpha]-rhamnose from acer rubrum[J]. Phytochemistry,1999,52(8):1629-1631.
    [6]Abou-Zaid M M, Helson B V, Nozzolillo C, et, al. Ethyl m-digallate from red maple, acer rubrum 1., as the major resistance factor to forest tent caterpillar, malacosoma disstria hbn[J]. J. Chem. Ecol.,2001,27:2517-2527.
    [7]Abou-Zaid M M, Lombardo D A, Nozzolillo C. Methyl gallate is a natural constituent of maple (genus acer) leaves[J]. Nat. Prod. Res.,2009,23:1373-1377.
    [8]Li L Y, Seeram N P. Maple syrup phytochemicals include lignans, coumarins, a stilbene, and other previously unreported antioxidant phenolic compounds[J]. J. Agric. Food. Chem.,2010, 58(22):11673-11679.
    [9]Li L, Seeram N P. Further investigation into maple syrup yields three new lignans, a new phenylpropanoid, and twenty-six other phytochemicals[J]. J. Agric. Food. Chem.,2011, 59(14):7708-7714.
    [10]Li L, Seeram N P. Quebecol, a novel phenolic compound isolated from canadian maple syrup[J]. J. Funct. Foods,2011,3(2):125-128.
    [11]Yuan T, Wan C, Gonzalez-Sarrias A, et, al. Phenolic glycosides from sugar maple (acer saccharum) bark[J]. J Nat Prod,2011,74(11):2472-2476.
    [12]Gonzalez-Sarrias A, Li L, Seeram N P. Anticancer effects of maple syrup phenolics and extracts on proliferation, apoptosis, and cell cycle arrest of human colon cells[J]. Journal of Functional Foods,2012,4(1):185-196
    [13]Apostolidis E, Li L, Lee C, et, al. In vitro evaluation of phenolic-enriched maple syrup extracts for inhibition of carbohydrate hydrolyzing enzymes relevant to type 2 diabetes management[J]. J. Funct. Foods,2011,3(2):100-106.
    [14]Gonzalez-Sarrias A, Li L, Seeram N P. Effects of maple (acer) plant part extracts on proliferation, apoptosis and cell cycle arrest of human tumorigenic and non-tumorigenic colon cells[J]. Phytotherapy Research,2011, DOI:10.1002/ptr.3677.
    [15]Zhang Z, ElSohly H N, Li X C, et, al. Phenolic compounds from nymphaea odorata[J]. J Nat Prod,2003,66(4):548-550.
    [16]Ji S B, YoKO1 M, SA1T03i N, et, al. Cyanidin 3-(2G-xyiosyirutinoside) from brown-red spring leaves of acer macrophyllum and begonia semperflorens cultivars[J]. Technical Bulletin of Faculty of Horticulture-Chiba University (Japan),1995,49:13-17.
    [17]Honma A, Koyama T, Yazawa K. Anti-hyperglycaemic effects of the Japanese red maple acer pycnanthum and its constituents the ginnalins B and C[J]. Journal of Enzyme Inhibition and Medicinal Chemistry,2011,26(2):176-180.
    [18]Song C, Zhang N, Xu R, et, al. Studies on antibacterial constituents of the leaves of acer ginnala maxim. Ii. Isolation and identification of ginnalin B and ginnalin C and six other compounds[J].Acta Chim Sinica,1982,40:1142-1147.
    [19]Bock K, Faurschou laCour N, Jensen S R, et, al. The structure of acertannin[J]. Phytochemistry,1980,19(9):2033-2033.
    [20]Honma A, Koyama T, Yazawa K. Anti-hyperglycemic effects of sugar maple (acer saccharum) and its constituent acertannin[J]. Food Chemistry,2010,123(2):390-394.
    [21]Choi S E, Park K H, Oh M H, et, al. Antioxidative activities and quantitative determination of gallotannins from barks of acer ginnala maxim[J]. Saengyak Hakhoechi,2010,41(3): 174-179.
    [22]Ishimaru K, Nonaka G I, Nishioka I. Phenolic glucoside gallates from quercus mongolica and q. Acutissima[J]. Phytochemistry,1987,26(4):1147-1152.
    [23]蔡报彬,王邠,梁鸿,等.杨梅叶蚊母树化学成分研究[J].中国中药杂志,2009,34(18):2331-2333.
    [24]Ding L L, Wang S C, Wang Z T. Studies on chemical constituents from root of actinidia macrosperma[J]中国中药杂志,2007,32(18):1893-1895.
    [25]Mendez J, Bilia A R, Morelli I. Phytochemical investigations of licania genus. Flavonoids and triterpenoids from licania pittieri[J]. Pharmaceutica Acta Helvetiae,1995,70(3): 223-226.
    [26]Wang J, Peng S L, Wang M K, et, al. Chemical constituents of hyperricum monogynum [J].中国中药杂志,2002,27(2):120-122.
    [27]高亮亮,许旭东,南海江,等.唐古特大黄化学成分研究[J].中草药,2011,42(3):443-446.
    [28]白海云,詹庆丰,夏增华,等.九龙藤化学成分研究(Ⅱ)[J].天然产物研究与开发,2004,16(4):312-313.
    [29]Kamiya K, Watanabe C, Endang H, et, al. Studies on the constituents of bark of parameria laevigata moldenke[J]. Chemical & Pharmaceutical Bulletin,2001,49(5):551-557.
    [30]张朝风.鸟药与鼎湖钓樟的化学成分及抗HIV-1整合酶活性研究[J].沈阳药科大学博士学位论文,2002,:18.
    [31]Hu F L, Lu R L, Xia T. Activity-guided isolation and identification of radical scavenging components in gao-cha tea[J]. Journal of Food Science,2010,75(8):H239-H243.
    [32]Lin W H, Deng Z W, Lei H M, et, al. Polyphenolic compounds from the leaves of koelreuteria paniculata laxm[J]. Journal of Asian Natural Products Research,2002,4(4): 287-295.
    [33]Isobe T, Kanazawa K, Fujimura M. Flavonoids of polygonum sieboldi and p. Filiforme[J]. Bull Chem Soc Jpn,1981,54:3239.
    [34]Tan X Q, Chen H S, Liu R H, et, al. Lignans from trachelospermum jasminoides[J]. Planta Med,2005,71(1):93-95.
    [35]Lu Y, Foo L Y. Identification and quantification of major polyphenols in apple pomace[J]. Food Chemistry,1997,59(2):187-194.
    [36]王文祥,蒋小岗,顾明,等.芍药的化学成分研究[J].天然产物研究与开发,2000,12(6):37-39.
    [37]王定勇,刘佳铭,章骏德,等.显齿蛇葡萄(藤茶)化学成分研究[J].亚热带植物通讯,1998,27(2):39-44.
    [38]张秀尧,凌罗庆.西河柳化学成分的研究[J].中草药,1991,22(7):299-300.
    [39]谭俊杰,蒋山好,朱大元.天山棱子芹化学成分的研究[J].天然产物研究与开发,2005,17(3):267-271.
    [40]宋妍,陈广通,孙博航,等.留兰香水溶性部分化学成分的分离与鉴定[J].沈阳药科大学学报,2008,25(9):705-707.
    [41]李占军,薛培凤,解红霞,等.蒙药河柏的化学成分研究[J].中国中药杂志,2010,35(7):865-868.
    [1]中国植物志编委会.中国植物志[J].57(3):75.
    [2]南京中医药大学编.中药大辞典(第二版下册)[M][J].上海:上海科学技术出版社,2006,:3197-3198.
    [3]谢宗万主编.全国中草药汇编(第二版下册)[M][J].北京:人民卫出版社,1996,:588-589.
    [4]Torri E, Lemos M, Caliari V, et, al. Anti-inflammatory and antinociceptive properties of blueberry extract (vaccinium corymbosum)[J]. Journal of Pharmacy and Pharmacology,2007, 59(4):591-596.
    [5]Brambilla A, Lo Scalzo R, Bertolo G, et, al. Steam-blanched highbush blueberry (vaccinium corymbosum L.) juice:Phenolic profile and antioxidant capacity in relation to cultivar selection[J]. Journal of Agricultural and Food Chemistry,2008,56(8):2643-2648.
    [6]Burdulis D, Sarkinas A, Jasutiene I, et, al. Comparative study of anthocyanin composition, antimicrobial and antioxidant activity in bilberry (vaccinium myrtillus L.) and blueberry (vaccinium corymbosum L.) fruits[J]. Acta Poloniae Pharmaceutica,2009,66(4):399-408.
    [7]Moze S, Polak T, Gasperlin L, et, al. Phenolics in slovenian bilberries (vaccinium myrtillus L.) and blueberries (vaccinium corymbosum L.)[J]. Journal of Agricultural and Food Chemistry,2011,59(13):6998-7004.
    [8]Makus D J, Ballinger W E. Characterization of anthocyanins during ripening of fruit of vaccinium corymbosum cv wolcott[J]. Journal of the American Society for Horticultural Science,1973,98(1):99-101.
    [9]Pourrat H, Guichard J P, Pourrat A, et, al. Anthocyanins and flavones from vaccinium corymbosum 1. Leaves[J]. Plantes Medicinales et Phytotherapie,1978,12(3):212-216.
    [10]Kader F, Rovel B, Girardin M, et, al. Fractionation and identification of the phenolic compounds of highbush blueberries (vaccinium corymbosum, L.)[J]. Food Chemistry,1995, 55(1):35-40.
    [11]Riihinen K, Jaakola L, Karenlampi S, et, al. Organ-specific distribution of phenolic compounds in bilberry (vaccinium myrtillus) and 'northblue' blueberry (vaccinium corymbosum x v. Angustifolium)[J]. Food Chemistry,2008,110(1):156-160.
    [12]Wang S Y, Chen C-T. Effect of allyl isothiocyanate on antioxidant enzyme activities, flavonoids and post-harvest fruit quality of blueberries (vaccinium corymbosum L., cv. Duke)[J]. Food Chemistry,2010,122(4):1153-1158.
    [13]Kim S-M, Shang Ya F, Um B-H. Preparative separation of chlorogenic acid by centrifugal partition chromatography from highbush blueberry leaves (vaccinium corymbosum L.)[J]. Phytochemical analysis:PCA,2010,21(5):457-462.
    [14]Migas P, Cisowski W, Dembinska-Migas W. Isoprene derivatives from the leaves and callus cultures of vaccinium corymbosum var. Bluecrop[J]. Acta poloniae pharmaceutica,2005, 62(1):45-51.
    [15]Wang M, Li J, Shao Y, et, al. Antioxidative and cytotoxic components of highbush blueberry (vaccinium corymbosum 1.)[J]. Phytochemicals and Phytopharmaceuticals,2000:271-277.
    [16]Piljac-Zegarac J, Belscak A, Piljac A. Antioxidant capacity and polyphenolic content of blueberry (vaccinium corymbosum L.) leaf infusions[J]. Journal of Medicinal Food,2009, 12(3):608-614.
    [17]Senevirathne M, Kim S-H, Jeon Y-J. Protective effect of enzymatic hydrolysates from highbush blueberry (vaccinium corymbosum L.) against hydrogen peroxide-induced oxidative damage in Chinese hamster lung fibroblast cell line[J]. Nutrition research and practice,2010,4(3):183-190.
    [18]Castrejon A D R, Eichholz I, Rohn S, et, al. Phenolic profile and antioxidant activity of highbush blueberry (vaccinium corymbosum L.) during fruit maturation and ripening[J]. Food Chemistry,2008,109(3):564-572.
    [19]Fukuoka M. Chemical and toxicological studies on bracken fern, pteridium-aquilinum var latiuscu)um.VI. Isolation of 5-O-caffeoylshikimic acid as an anti-thiamine factor[J]. Chem. Pharm. Bull.,1982,30(9):3219-3224.
    [20]Chen Y H, Chang F R, Lin Y J, et, al. Identification of phenolic antioxidants from sword brake fern (pteris ensiformis burm.)[J]. Food Chem.,2007,105(1):48-56.
    [21]Kweon M H, Hwang H J, Sung H C. Identification and antioxidant activity of novel chlorogenic acid derivatives from bamboo (phyllostachys edulis)[J]. J. Agric. Food Chem., 2001,49(10):4646-4655.
    [22]Lee E J, Kim J S, Kim H P, et, al. Phenolic constituents from the flower buds of lonicera japonica and their 5-lipoxygenase inhibitory activities [J]. Food Chem.,2010,120(1): 134-139.
    [23]Silva F A M, Borges F, Guimaraes C, et, al. Phenolic acids and derivatives:Studies on the relationship among structure, radical scavenging activity, and physicochemical parameters[J]. J. Agric. Food Chem.,2000,48(6):2122-2126.
    [24]Lu Y R, Foo L Y. The polyphenol constituents of grape pomace[J]. Food Chem.,1999,65(1): 1-8.
    [25]Akita H, Kawahara E, Kishida M, et, al. Synthesis of naturally occurring β-D-glucopyranoside based on enzymatic β-glycosidation[J]. J. Mol. Catal. B-Enzym.,2006, 40(1-2):8-15.
    [26]Yamada T, Matsuda F, Kasai K, et, al. Mutation of a rice gene encoding a phenylalanine biosynthetic enzyme results in accumulation of phenylalanine and tryptophan[J]. Plant Cell, 2008,20(5):1316-1329.
    [27]Lu Y R, Foo L Y. Identification and quantification of major polyphenols in apple pomace[J]. Food Chem.,1997,59(2):187-194.
    [28]Fraisse D, Heitz A, Carnat A, et, al. Quercetin 3-arabinopyranoside, a major flavonoid compound from alchemilla xanthochlora[J]. Fitoterapia,2000,71(4):463-464.
    [29]Scharbert S, Holzmann N, Hofmann T. Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse[J]. J. Agric. Food Chem.,2004,52(11):3498-3508.
    [30]Gao C L, Mayon P, MacManus D A, et, al. Novel enzymatic approach to the synthesis of flavonoid glycosides and their esters[J]. Biotechnol. Bioeng.,2001,71(3):235-243.
    [31]Saxena V, Samaiya G. A new acylated quercetin glycoside from the leaves of fagopyrum cymosum[J]. Fitoterapia,1987,58:421.
    [32]Zhang Y, Seeram N P, Lee R,et, al. Isolation and identification of strawberry phenolics with antioxidant and human cancer cell antiproliferative properties[J]. J. Agric. Food Chem.,2008, 56(3):670-675.
    [33]Chen H F, Tanaka T, Nonaka G I, et, al. Phenylpropanoid-substituted catechins from castanopsis-hystrix and structure revision of cinchonains[J]. Phytochemistry,1993,33(1): 183-187.
    [34]Liu X, Li W, Hua H,et, al, An NMR study of a phenyl propanoid-substituted catechin from polygonum bistorta.2006, Asian Journal of Traditional Medicines.1(2):73-75.
    [35]Foo L Y. Phenylpropanoid derivatives of catechin, epicatechin and phylloflavan from phyllocladus trichomanoides[J]. Phytochemistry,1987,26(10):2825-2830.
    [1]Willcox J K, Sarah L, George 1 C. Antioxidants and prevention of chronic disease[J]. Critical Reviews in Food Science and Nutrition,2004,44(4):275-295.
    [2]Riley P. Free radicals in biology:Oxidative stress and the effects of ionizing radiation[J]. International Journal of Radiation Biology,1994,65(1):27-33.
    [3]Valko M, Leibfritz D, Moncol J, et, al. Free radicals and antioxidants in normal physiological functions and human disease[J]. The International Journal of Biochemistry & Cell Biology, 2007,39(1):44-84.
    [4]Crozier A, Jaganath I B, Clifford M N. Dietary phenolics:Chemistry, bioavailability and effects on health[J]. Nat. Prod. Rep.,2009,26(8):1001-1043.
    [5]Kumar S, Narwal S, Kumar V, et, al. a-glucosidase inhibitors from plants:A natural approach to treat diabetes[J]. Pharmacognosy Reviews,2011,5(9):19.
    [6]Benalla W, Bellahcen S, Bnouham M. Antidiabetic medicinal plants as a source of alpha glucosidase inhibitors[J]. Current Diabetes Reviews,2010,6(4):247-254.
    [7]Tundis R, Loizzo M, Menichini F. Natural products α-amylase and a-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes:An update[J]. Mini reviews in Medicinal Chemistry,2010,10(4):315-331.
    [8]Ogawa A, Miyamae Y, Honma A, et, al. Pycnalin, a new a-glucosidase inhibitor from acer pycnanthum[J]. Chemical and Pharmaceutical Bulletin,2011,59(5):672-675.
    [9]Hsieh P C, Huang G J, Ho Y L, et, al. Activities of antioxidants, a-glucosidase inhibitors and aldose reductase inhibitors of the aqueous extracts of four flemingia species in taiwan[J]. Botanical Studies,2010,51(3):293-302.
    [10]Apostolidis E, Li L, Lee C, et, al. In vitro evaluation of phenolic-enriched maple syrup extracts for inhibition of carbohydrate hydrolyzing enzymes relevant to type 2 diabetes management[J]. Journal of Functional Foods,2011,3(2):100-106.
    [11]Apostolidis E, Karayannakidis P D, Kwon Y I, et, al. Seasonal variation of phenolic antioxidant-mediated a-glucosidase inhibition of ascophyllum nodosum[J]. Plant Foods for Human Nutrition (Formerly Qualitas Plantarum),2011,66(4):313-319.
    [12]Li L, Seeram N P. Maple syrup phytochemicals include lignans, coumarins, a stilbene, and other previously unreported antioxidant phenolic compounds[J]. Journal of Agricultural and Food Chemistry,2010,58(22):11673-11679.
    [13]Li L, Seeram N P. Further investigation into maple syrup yields three new lignans, a new phenylpropanoid, and twenty-six other phytochemicals[J]. Journal of Agricultural and Food Chemistry,2011,59(14):7708-7714.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700