基于图像内容的水下目标识别技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文是结合国防“十五”预研项目——军用智能水下机器人中“水下目标声探测与识别技术”的工作而进行的。内容涉及声图像的预处理、纹理和形状特征的提取,以及分类器的设计等。本文在解决王程问题的同时,对基于声图像的纹理特征和形状特征的识别方法,进行了深入的研究。具体而言,本文的主要内容包括:
     (1)综述了国内外水下目标识别技术的研究现状和发展趋势。将图像数据库检索中广泛使用的“基于内容的图像检索(CBIR)”技术,引入到水下声图像的识别中。
     (2)在水下声图像的预处理部分,针对声图像所受噪声干扰大、边缘模糊的缺点,深入研究了形态学滤波的相关理论和方法。设计了一种广义多结构元受控形态滤波器,该滤波器具有平移不变性、递增性、对偶性和幂等性等重要性质。由于该滤波器采用受控算子和多结构元结构对形态学运算的程度进行控制,因此不仅有效地抑制了图像中的噪声,而且较好地保持了图像的几何结构特征。
     (3)针对传统直方图只包含灰度的总体信息而没有体现空间关系的不足,提出了一种灰度—空间直方图的识别方法,该直方图在不失传统直方图鲁棒性和简单快捷的前提下,将灰度和空间信息有机地融合起来,从而提高了识别精度。
     (4)分析了小波分解的特点,将传统的塔式小波分解和树式小波分解进行了比较,利用小波变换的方法对声图像进行了树式分解。根据小波系数移变的特点,分别采用方差、三阶中心矩、四阶中心矩和熵作为统计量提取了图像的纹理特征,并根据特征本身的离散程度对其进行规范化处理。
     (5)对图像处理中几种典型的小波基的选择进行了比较分析。此外,比较了各级分解小波系数在作为纹理特征集进行图像识别时的识别效果,结果
    
    哈尔滨工程大学博士学位论文
    表明多级分解的识别率不仅没有显著提高,反而由于特征集过大,造成“特
    征灾难”从而使识别率下降。
     (6)提出了一种将多重分形理论和小波分析相结合的声图像识别方法。
    在特征提取上,运用图像变换和小波分解的思想,对各种图像变换结果进行
    估计,得到了基于多重分形维数的特征集。
     (7)采用填充算法和Canny算子相结合的方法来提取声图像的轮廓。该
    方法较好地消除声图像内部由于回波信号的强弱变化,导致的灰度突变,所
    以边缘轮廓较完整,图像内部的孤立点得到了抑制。
     (8)分析现有模板匹配算法存在问题的基础上,提出一种基于可变形模
    板的声图像识别新方法。该算法在Snake模型的能量最小思想的基础上,对
    原有的能量函数重新进行了定义,加入了形状约束,对噪声的敏感程度也相
    应下降,从而提高了算法的鲁棒性和识别效率。利用免疫算法求取了能量函
    数的最优解。
     (9)设计了一种模糊分类器,由于模糊判决分类器通过引入隶属度函数
    对特征进行模糊化,反映了各类样本间由于随机噪声等畸变因素造成的抽取
    特征值存在的不确定性,从而提高了分类器的鲁棒性。对BP神经网络分类器
    设计和应用中的一些问题和技巧,进行了归纳总结
     (10)采用由“粗”到“精”的设计思想,构建了基于图像内容的水下
    目标识别系统。
This paper carries out with the tenth five-year national defense study-in-advance project named "underwater target acoustic detection and recognition" , which is part of the military intelligent underwater vehicle. The contents in the paper include acoustic image preprocessing, feature extraction of texture and shape, and classifier design. While solving the engineering problems, the paper makes a deep study on the recognition methods based on texture and shape features of acoustic images. The major contents are as follows in general:
    (1) The paper gives a survey of the internal and external current status of research and progress trends on underwater target recognition. The CBIR(Content-based image retrieval)technique, which is widely used in digital image database retrieval, is brought into the underwater acoustic image recognition.
    (2) To solve the disadvantages of heavy noisy disturbance and edge blurring, we thoroughly do research on relative theories and methods of morphological filtering in the pre-processing part of acoustic images. The generalized and regulated morphological filter is constructed by using multiple structuring elements. The filter possesses some important properties such as translation invariance, increasing, duality and idempotence. As the regulated operator and multiple structuring elements are used to control the morphological operation in the filter, it can not only efficiently suppress noise in images but also preserve the geometrical features of images.
    (3)The demerit of gray histograms is they only records the overall
    
    
    gray compositions of images and no any spatial information is included. To solve that, gray-spatial histograms are proposed, which incorporate spatial information with gray compositions without sacrificing the robustness and simplicity of traditional gray histograms.
    (4) We analyze the character of wavelet decomposition and compare the pyramid-structured wavelet decomposition with the tree-structured wavelet decomposition. In accordance to the difference between the two, the tree-structured decomposition of acoustic images has been done in the wavelet domain. Since the wavelet coefficients are shift variant, they are not suitable for direct use as texture features, which must be shift-invariant. Variance, the third moment, the fourth moment and entropy are used as texture features of images. According to the degree of dispersion, the features are normalized.
    (5) Comparison and analysis have been done in the selection of several typical wavelet bases which are often used in image processing. In addition, the effectiveness of texture feature sets that are made of wavelet coefficients of every level is compared. It shows that the recognition rate is not improved magnificently by using multi-level decomposition. On the contrary, the recognition rate reduces because the feature sets contain too many features and result in feature disasters.
    ( 6 ) The recognition method of acoustic image, which takes advantages of both multi-fractal theory and wavelet analysis, is presented . In the process of feature extraction, image transformation and wavelet decomposition are combined and a feature set based on multi-fractal dimension is assembled.
    
    (7) The filled-in algorithm and Canny operator are incorporated to extract the contours of acoustic images. This method can eliminate gray burst caused by uneven echo signals. As a result, it can get integral contours and get rid of isolated points.
    (8) On the basis of deformable template matching, a new approach based on the deformable template is presented. Compared with the energy minimization of the Snake model, the energy function is redefined by adding a shape restriction. This improves the noise-resistance ability so that robustness and high recognizing rate are acquired. The energy minimization problem is tackled using the Immune Algorithm.
    (9) By introducing membership function of the features, the fuzzy classifier is designed and it reflects the uncertainty of the feature values made by random noise. This increases the robus
引文
[1] 刘倩.基于内容的图像检索综述.现代计算机.2002(5):16-19页
    [2] 黄祥林,沈兰荪.基于内容的图像检索技术研究.电子学报.2002,30(7):1065-1071页
    [3] A. Yoshitaka, T. Ichikawa. A survey on contented-based retrieval for multimedia databases. IEEE rrans on Knowledge and Data Engineering, 1999, 11(1): 81-93P
    [4] 李向阳,庄越挺,潘云鹤.基于内容的图像检索技术与系统.计算机研究与发展.2001,38(3):344-354页
    [5] 庄越挺,潘云鹤,芮勇.基于内容的图像检索综述.模式识别与人工智能.1999,12(6):170-177页
    [6] W. Niblack et al. The QBIC Project: Querying images by content using color, texture and shape. SPIE Visual Communication and Image Processing. 1994: 203-207P
    [7] 刘伟成,孙吉红.基于内容的图像信息检索综述.情报科学.2002,20(4):430-437页
    [8] J.Swain, H. Ballard. Color indexing. International Journal of Computer Vision. 1991, 7(1): 11-32P
    [9] M. Striker, M. Oregan. Similarity of color images. SPIE Storage and Retrieval for Image and Databases. 1995, 20(24): 381-392P
    [10] J.Hafner et al. Efficient color histogram indexing for quadratic form function. IEEE PAMI. 1995, 17(7): 129-156P
    [11] J.Zachary, S. Iyenger. Content based image retrieval system. IEEE Symposium on Application Specific Systems and Software Engineering and Technology. 1999: 652-660P
    
    
    [12] J.Huang. Image indexing using color correlative histogram. IEEE Conference on Computer Vision and Pattern Recognition. 1997: 762-768P
    [13] J. Zhang, T. Tan. Brief review of invariant texture analysis methods. Pattern Recognition. 2002, 35(8): 735-747P
    [14] 袁昕,吴春明,朱森良,王东辉.基于主色选择的CBIR检索.计算机研究与发展.2002,39(9):1120-1126页
    [15] 宋擒豹,杨向荣,沈钩毅,王甲民.图像相似模式挖掘中的颜色—位置直方图方法.计算机研究与发展.2002,39(9):1132—1137页
    [16] L. Cinque, O. Cincaa. Color-based image retrieval using spatialchromatic histogram. Image and Vision Computing. 2001, 19(6): 979-986P
    [17] S. LONCRIC. A survey of shape analysis techniques. Pattern Recognition. 1998, 31(8): 983-1001P
    [18] 丁险峰,吴洪,张宏江,马颂德.形状匹配综述.自动化学报.2001,27(9):678-694页
    [19] K. Jain et al. Deformable template model: a review. Signal Processing. 1998, 17(6): 109-129P
    [20] M. Vittorio. Reconstruction and segmentation of underwater acoustic images combing confidence information in MRF models. Pattern Recognition. 2001, 34(5): 981-997P
    [21] 刘传才,杨静宇.一种新的图像纹理表示方法.计算机学报.2001,14(11):1202-1209页
    [22] 王惠锋,金翔宁,孙正兴.基于语义的图像检索方法研究综述.计算机工程.2001,27(8):3-6页
    [23] G. Pass et al. Comparing images using color coherence vectors.
    
    Proc of ACM International Conference. 1996: 237-242P
    [24] R. Rickerman, S. John. Content based image retrieval using color tuple histogram. SPIE Storage and Retrieval for Image and Databases. 1996: 267-270P
    [25] W. Hue, T. Chua, K. Pung. An integrated color-spatial approach to content-based image retrieval. ACM International Conference. 1995: 305-313P
    [26] J. Smith, S. Chang. Tools and techniques for color image retrieval. SPIE Storage and Retrieval for Image and Databases. 1996: 426-437P
    [27] 伯晓晨,刘建平.基于颜色的图象检索中若于关键问题的研究.小型微型计算机系统.1998,19(10):42-47页
    [28] D. Charalampidis. Novel textural features and techniques for image segmentation and classification. Ph.D. dissertation, College of Engineering and Computer Science at the University of Central Florida, Orlando Florida. 2001: 1-SP
    [29] 马晓川,侯朝焕,唐姗.新的纹理分类算法.中国图像图形学报.1999,4(5):387-390页
    [30] 贾云得编著.计算机视觉.北京:科学出版社,2000:129页
    [31] M. Tuceryan, A.K. Jain. Texture analysis in handbook of pattern recognition and computer vision. World Scientific Publishing. 1993: 235-276P
    [32] A.R. Rao. Ataxonomy for texture description and identification. Springer, Berlin. 1990: 12-16P
    [33] F. romita, S. Tsuji. Computer analysis of visual textures. Kluwer Academic, Hingham, MA. 1990: 5-9P
    
    
    [34] T.N. Tan, Geometric transform invariant texture analysis. SPIE Computer Vision. 1995: 475-485P
    [35] R.M. Haralick. Statistical and structural approaches to texture. Proceedings of IEEE Artificial Intelligence. 1979: 786-804P
    [36] T.N. Tan. Texture segmentation approaches: a brief review. Proceedings of CIE and IEEE Conference on Neural Networks and Signal Processing, guangzhou, China. 1993: 11-15P
    [37] T.R. Reed, J.M. Buf. A review of recent texture segmentation and feature extraction techniques. Image Understanding. 1993, 57: 359-372P
    [38] L. Van Gool, P. Dewaele. Survey: texture analysis. CVGIP 1985, 29: 336-357P
    [39] F. Cohen et al. Classification of rotated and scaled texture images using Gaussian Markov random field models. IEEE Trans. PAMI. 1992, 13(2): 192-202P
    [40] K. Sivakumar. Morphologically constrained GRF: applications to texture synthesis and analysis. IEEE Trans. PAMI. 1999,21(2): 148-153P
    [41] Fang Liu, R.W. Picard. Periodicity, directionality and randomness: wold features of image and modeling and retrieval. IEEE Trans. PAMI. 1996, 18(7): 722-733P
    [42] Fang Liu, R.W. Picard. Periodicity, directionality, and randomness: wold features for perceptional pattern recognition. Proceedings of the International Conference on Pattern Recognition. 1994, 10(11): 184-185P
    [43] R. Azencott, J.P. Wang, L. Younes. Texture classification using
    
    windowed Fourier filters. IEEE Trans. PAMI. 1997, 19(2): 148-153P
    [44] A.K. Jain, F. Farrokhnia. Unsupervised texture segmentation using Gabor filters. Pattern Recognition. 1991, 24(12): 1167-1186P
    [45] J.G. Daugman. Two-dimensional spectral analysis of cortical receptive field profiles. Vision Resourse. 1980, 20: 847-856P
    [46] D. Dunn, W. Higgins. Optical Gabor filters for texture segmentation. IEEE Trans. Image Processing. 1995, 4(7): 947-964P
    [47] J. Bigun, J. Hans. N-folded symmetries by complex moments in Gabor space and their application to unsupervised texture segmentation. IEEE Trans. PAMI. 1994: 16(1): 80-87P
    [48] Y. Chitre, A.P. Dhawan. M-band wavelet discrimination of natural textures. Pattern Recognition. 1999, 32(2): 773-789P
    [49] R. Porter, N. Canagarajah. Robust rotation invariant texture classification. International Conference on Acoustics, Speech and Signal Processing. 1997: 3157-3160P
    [50] R. Porter, N. Canagarajah. Robust rotation-invariant texture classification: wavelet, Gabor filter and GMRF based schemes. IEE Vision Image Signal Processing. 1997, 144(3): 180-188P
    [51] T. Chang, J. Kuo. Texture analysis and classification with treestructured wavelet transform. IEEE Trans. Image Processing. 1993, 2(4): 429-441P
    [52] 郭海涛.高分辨率成像声呐后置图像处理.哈尔滨工程大学博士学位文.2002:13,74-82页
    [53] S. Daniel et al. Side-scan image matching. IEEE Journal of Oceanic Engineering. 1998, 23(3): 245-259P
    
    
    [54] D.T. Cobra, A.V. Oppenheim, H.S. Jaffe. Geometric distortion in side-scan sonar image: a procedure for their estimation and correction. IEEE Journal of Oceanic Engineering. 1992,17(3): 252-268P
    [55] D. Sauter, L. Parson. Spatial filtering for speckle reduction, contrast enhancement, and texture analysis of GLORIA. IEEE Journal of Oceanic Engineering. 1994: 19(4): 563-5769
    [56] P. Cervenka, C. Moustier. Sidescan sonar image processing techniques. IEEE Journal of Oceanic Engineering. 1993, 18(2): 108-1229
    [57] S.G. Johnson, M.A. Deatett. The application automated recognition techniques to side-scan sonar imagery. IEEE Journal of Oceanic Engineering. 1994, 19(1): 138-1449
    [58] 刘晨晨.数学形态学图像处理算法应用研究.哈尔滨工程大学硕士学位论文.2002:2-3,58-61页
    [59] Tang Xiaoou. Multiple competitive learning network fusion for object classification. IEEE Trans on Systems, Man and Cybernetics part B: Cybernetics. 1998, 28(4): 532-543P
    [60] G.L. FORESTI, S. GENTILI. A vision based system for object detection in underwater images. International journal of Pattern Recognition and Artificial Intelligence. 2001, 14(2): 167-188P
    [61] K.S. Thyagarajan, T. Nguyen, C.E. Persons. Maximum likelihood approach to image texture and acoustic signal classification. IEE Proceedings: Vision, Image and Signal Processing. 1999, 146(1): 34-39P
    
    
    [62] Sutton Jeffrey et al. Enhancing mine signatures in sonar images using nested neural networks. Proceedings of SPIE-The International Society for Optical Engineering. 1999, 37(1): 570-577P
    [63] M.A. Hodgetts, A.R. Greig, A. Fairweather. Underwater imaging using Markov Random Fields with feed forward prediction. Underwater Technology. 1999, 23(4): 157-167P
    [64] M. Mignotte et al. Bayesian inference and optimization strategies for some detection and classification problems in sonar imagery. Proceedings of SPIE-The International Society for Optical Engineering. 1999, 36(2): 14-27P
    [65] L.M. Linnett et al. Texture classification using a spatial-point process model. IEE Proceedings: Vision, Image and Signal Processing. 1995, 142(1): 1-6P
    [66] V. Murino. Acoustic image reconstruction by Markov random fields. Electronics Letters. 1996, 32(7): 697-698P
    [67] M. Mignotte et al. Markov Random Field and Fuzzy Logic Modeling in Sonar Imagery: Application to the Classification of Underwater Floor. Computer Vision and Image Understanding. 2000, 79(1): 4-24P
    [68] S. Daniel. et al. Side-scan sonar image matching. IEEE Journal of Oceanic Engineering. 1998, 23(3): 245-259P
    [69] R. Slater, C. Robinson, S. Lingsch. Object detection and discrimination in side-scan sonar by means of intensity contouring. Proceedings of SPIE-The International Society for Optical Engineering. 1999, 10(1): 496-503P
    
    
    [70] B.R. Calder, L.M. Linnett, D.R. Carmichael. Bayesian approach to object detection in sidescan sonar. ICE Proceedings: Vision, Image and Signal Processing. 1998, 145(3): 221-228P
    [71] M. Vittorio, T. Andrea. Confidence-based approach to enhancing underwater acoustic image formation. IEEE Trans. on Image Processing. 1999, 8(2): 270-285P
    [72] Liu chen-chen, Sang en-fang. Application of morphological filter in underwater acoustic-image processing system. Papers of the 3rd International Workshop on Acoustical Engineering and Technology. 2002: 207-210P
    [73] 严学强.数学形态学方法在水声图象预处理中的应用研究.哈尔滨船舶工程学院硕士学位论文.1995:4页
    [74] F. Luca et al. A voting-based approach for fast object recognition in underwater acoustic images. IEEE Journal of Oceanic Engineering. 1997, 22(1): 57-65P
    [75] M.J. Chantler, J.P. Stoner. Automatic interpretation of sonar imagery using qualitative feature matching. IEEE Journal of Oceanic Engineering. 1994, 19(3): 391-405P
    [76] 阮秋琦编著.数字图像处理学.北京:电子工业出版社,2001:146-147,419-424页
    [77] 章毓晋著.图象分割.北京:科学出版社,2001:122页
    [78] Larry Davis. Polarogram: a new tool for image texture analysis. Pattern Recognition. 1981, 13(3): 219-223P
    [79] M. Mayorga, L. Ludman. Shift and rotation invariant texture recognition with neural nets. Proceedings of IEEE International Conference On Neural Networks. 1994: 4078-4083P
    
    
    [80] B. Julesz, T. Caelli. On the limits of Fourier decompositions in visual texture perception. Perception. 1979, 8: 69-73P
    [81] B. Julesz. Experiments in the visual perception of texture. Science. 1975, 12: 34-43P
    [82] J. Rosen, J. Shamir. Circular harmonic phase alters for efficient rotation invariant pattern recognition. Apply Optics. 1988, 27(14): 2895-2899P
    [83] P. Danieisson. Rotation-invariant digital pattern recognition using circular harmonic expansion: a comment. Apply Optics. 1989, 28(9): 1613-1615P
    [84] Y.L. Sheng, H. Arsenault. Experiment on pattern recognition using invariant Fourier-Mellin descriptors. Apply Optics. 1986, 3(6): 771-776P
    [85] Wunlong Sheng, J. Duvernoy. Circular-Fourier-radical-Mellin transform descriptors for pattern recognition. JOSA Commun. 1986, 3(6): 885-888P
    [86] M.K. Tsatsanis, G.B. Giannakis. Object and texture classification using high order statistics. IEEE Trans. PAMI. 1992, 14(7): 733-750P
    [87] M. Pietikainen, T. Ojala. Rotation-Invariant texture classification using feature distributions. Pattern Recognition. 2000, 33(4): 43-52P
    [88] S. Baheerathan, F. Albregtsen, H.E. Danislsen. New texture features based on the complexity curve. Pattern Recognition. 1999, 32(5): 605-618P
    [89] R.K. Goyal et al. Invariant element compactness for texture
    
    classification. ICARCV94. 1994: 1902-1096P
    [90] G. Eichmann, T. Kasparis. Topologically invariant texture descriptors. Computer Vision. 1998, 41(6): 267-281P
    [91] W.K. Lam, C.K. Li. Rotated texture classification by improved iterative morphological decomposition, IEE Vision Image Signal Process. 1997, 144(3): 171-179P
    [92] R.K. Goyal et al. A translation rotation and scale invariant texture analysis technique based on structural properties. Proceedings of the Third International Conference on Automation Technology. 1994: 1092-1095P
    [93] Liu Zhuo-fu, Sang En-fang. Underwater sonar image recognition based on gray-spatial histograms. Journal of Marine Science and Application. 2003, 2(1): 49-52P
    [94] 伯晓晨,刘建平.基于颜色直方图的图象检索.中国图象图形学报.1999,4(1):33-37页
    [95] R. Jain et al. Similarity measures for image databases. FUZZ-IEEE95. 1995: 1247-1254P
    [96] D. Androutsos, K.N. Plataniotos, A.N. Venetas. A novel vectorbased approach to color image retrial using a vector angularbased distance measure. Computer Vision and Image Understanding. 1999, 75(1): 46-58P
    [97] 徐朝伦,王晓湘,柯有安.基于子波变换的纹理图像分类.电子科学学刊.1999,21(5):404-407页.
    [98] 赵松年,熊小芸.子波交换与子波分析.北京:电子工业出版社,1996:14-87页
    [99] Xiaoou Tang, K. Stewart. Optical and sonar image classification:
    
    wavelet packet transform vs Fourier transform. Computer Vision and Image Understanding. 2000, 79(5): 25-46P.
    [100] Lei Wang, Jun Liu. Texture classification using multiresolution Markov random Field models. Pattern Recognition Letters. 1999, 2(3): 171-182P.
    [101] 吴高洪,章毓晋,林行刚.利用特征加权进行基于小波变换的纹理分类.模式识别与人工智能.1999,12(9):262-267页.
    [102] 刘卓夫,桑恩方.小波域声纳图像识别.哈尔滨工程大学学报.2003,24(5):495-499页
    [103] 郑丽颖,田凯,王科俊,宋克欧.基于分形维数的复杂图像特征提取方法.哈尔滨工程大学学报.2001,22(10):20-22页
    [104] 李厚强,刘政凯,林峰.基于分形理论的航空图像分类方法.遥感学报.2001,5(9):353-357页
    [105] 杨裕欢,王思贤,廖孟扬,李群丽.基于多重分形的纹理分析方法在B超图象识别中的应用.中国图象图形学报.1999,5(4):391-394页
    [106] B.B. Chaudhuri, N. Sarkar. Texture segmentation through fractal dimension. IEEE Trans. PAMI. 1995, 17(1): 72-77P
    [107] N. Sarkar, B.B. Chaudhuri. An efficient approach to estimate fractal dimension of textural images. Pattern Recognition. 1992, 25(9): 1035-1041P
    [108] 谢和平,薛秀谦.博士丛书-分形应用的数学基础与方法.科学出版社,1997:81-96页
    [109] H. Potlapalli, L. Ren. Fractal-based classification of natural textures. IEEE Trans. on Industrial Electronics. 1998, 45(1): 142-150P
    [110] T. Kasparis et al. Texture description using fractal and energy
    
    features. Electrical Engineering. 1995, 21(1): 21-32P
    [111] Van QiuChen, Guoan Bi. Texture classification using fractal dimension. International Journal of Pattern Recognition and Artificial Intelligence. 2001, 13(6): 929-943P
    [112] K. Rajesh et al. Performance analysis of textural features for characterization and classification of SAR images. International Journal of Remote Sensing. 2001, 22(8): 1555-1569P
    [113] 袁杰.分形算法与应用研究.哈尔滨工程大学硕士学位论文.2002:6—11页
    [114] 陈哲,冯天瑾.基于小波分形特征提取的图象分割方法.中国图象图形学报.1999,4(12):1072-1077页
    [115] 马波,裘正定.小波变换的分形特性.铁道学报.1998,20(6):74-80页
    [116] 贾云得.机器视觉.科学出版社,2000:82-105页
    [117] 宋芳莉.图像边缘检测中的方法研究.西北大学硕士学位论文.2002:5—15,52—63页
    [118] 徐建华.图像处理与分析.科学出版社,1992:12—23页
    [119] B. Widrow. The rubber mask technique. Pattern Recognition. 1973, 5(2): 175-211P
    [120] M. Fischler, R.Elschanger. The representation and matching of pictorial structure. IEEE Trans. Computer. 1973, 22(1): 57-92P
    [121] A.D. Bimbo. Visual image retrieval by elastic matching of user sketches. IEEE Trans. PAMI. 1997, 19(2): 121-132P
    [122] T. K Cootes et al. Active shape models: training and application. Computer Vision Image Understanding. 1995, 61(1): 38-59P
    [123] A.K. Jain, D. Zongker. Representation and recognition of hand-
    
    written digits using deformable templates. IEEE Trans. PAMI. 1997, 19(12): 1386-1390P
    [124] S. Sclaro, A. Pentland. Modal matching for correspondence and recognition. IEEE Trans. PAMI. 1995,17(6): 545-561P
    [125] Y. Amit, U. Grenandar, M. Piccioni. Structural image restoration through deformable template. Journal American Statistical Assn. 1991, 86(6): 376-378P
    [126] M. Kass, A. Witkin, D. Ferzopoulos. Snakes: active contour model. Pro. First International Conference Computer Vision. 1987: 259-268P
    [127] D.J. Burr. Elastic matching of line drawing. IEEE Trans. PAMI. 1981, 3(11): 708-713P
    [128] L. Cohen. Note on active contour models and balloons. Image Understanding. 1991, 53(2): 211-218P
    [129] S. Menet et al. B-snake: implementation and application on 3D images. Image Understanding. 1990, 23(4): 720-726P
    [130] M. Flickner et al. Intelligent interactive image outlining. Signal and System. 1994, 1(3): 731-741P
    [131] B. Widrow. The rubber mask technique. Pattern Recognition. 1973, 5(2):175-211P
    [132] L.H. Staib, J.S. Duncan. Boundary finding with parametrically deformable models. IEEE Trans. PAMI. 1992, 14(11): 1061-1075P
    [133] Y.Amit, U. Grenandar, M. Piccioni. Structural image restoration through deformable templates. Journal American Statistical Assn. 1991, 86(6): 376-378P
    [134] K.F. Lai, R.T. Chain. Deformable contours: modeling and extrac-
    
    tion. IEEE Trans on PAMI. 1995, 17(2): 1084-1090P
    [135] C. Kervrann, F. Heitz. A hierarchical statistical framework for the segmentation of deformable objects in image sequences, in: Proc. IEEE Conference on Computer Vision Pattern Recognition. 1994: 724-728P
    [136] T.F. Cootes et al. Active shape models-Their training and application. Computer Vision Image Understanding. 1995, 2(1): 38-59P
    [137] Xu G et al. Robust active contours with insensitive parameters. Pattern Recognition. 1994, 27(7): 879-8849
    [138] S. Milan, H. Vaclav, B. Roger. Image processing analysis and machine vision. THOMSON. 2002:63-689
    [139] 龚炜,石青云,程民德著.数字空间中的数学形态学—理论与应用.科学出版社,1997:1-13页
    [140] C.G. Rafael, E.W. Richard. Digital image processing. Prentice Hall. 2002: 519-560, 648-649, 695P
    [141] H. Freeman. Shape description via the use of critical points. Pattern Recognition. 1978, 10: 159-166P
    [142] H. Freeman. Comparative analysis of line drawing modeling schemes. Computer Graphics Image Process. 1980, 12: 203-223P
    [143] R. Kashyap, R. Chellappa. Stochastic models for closed boundary analysis: representation and reconstruction. IEEE Trans. Inform. Theory. 1981, 27: 627-637P
    [144] 黎倩,陈迪,吴健康.神经网络图像匹配.模式识别于人工智能.1992,5(3):221-228页
    [145] B. Bhanu, L. Sungkee. Adaptive image segmentation using a genetic
    
    algorithm. IEEE Trans PAMI. 1995, 25(12): 1543-1567P
    [146] W. Wu, J.Wang. Two dimensional object recognition through two stage string matching. IEEE Trans. Image Processing. 1999, 8(7): 978-981P
    [147] 谢杰成,张大力,徐文立.小波图象去噪综述.中国图象图形学报.2002,7(3):209-217页
    [148] 赵春晖,孙圣和.广义多结构元素并行复合形态滤波器.电子科学学刊.1998,20(1):75-81页
    [149] S. Pierre. On morphological operators based on rank filters. Pattern Recognition. 2002, 35(4): 527-535P
    [150] N. Mike, E. Etienne. Connections between binary, gray-scale and fuzzy mathematical morphologies. Fuzzy Sets and Systems. 2001, 124(1): 73-85P
    [151] 赵春晖,王伟.全方位多结构元形态滤波器.中国图象图形学报.1997,2(7):500-503页
    [152] Yu Zhong, A.K. Jain. Object localization using color, texture and shape. Pattern Recognition. 2000, 30(7): 671-684P
    [153] 黄凤岗,宋克欧.模式识别.哈尔滨工程大学出版社,1998:60-92页
    [154] 苏彩红,朱学锋,毛宗源.一类免疫优化算法及其应用.西南交通大学学报.2002,37(6):677-680页
    [155] A.K. Jain, Yu Zhong, L.Sridhar. Object matching using deformable templates. IEEE Trans. PAMI. 1996, 18(3): 267-278P
    [156] M. Max et al. Hybrid genetic optimization and statistical model-based approach for the classification of shadow shapes in sonar imagery. IEEE Trans. PAMI. 2000, 22(2): 129-141P
    
    
    [157] 罗小平,韦巍.一种基于生物免疫遗传学的新优化方法.电子学报.2003,31(1):59-62页
    [158] 赵春晖.数字形态滤波器理论及其算法研究.哈尔滨工业大学博士学位论文.1998:6-9,11页
    [159] 王凌.智能优化算法及其应用.清华大学出版社,2001:50-53页
    [160] A. Gady, I. Dinsten. Regulated morphological operations. Pattern Recognition. 1999, 32(5): 947-971P
    [161] 郭桂蓉.模糊模式识别.长沙:国防科技大学出版社,1992:98,103-106页
    [162] 马文驷.多分类器融合模式识别方法研究.西安电子科技大学硕士学位论文.2002:23-45页
    [163] 潘翔.基于多分类器集成的模式识别研究.浙江工业大学硕士学位论文.2001:28-43页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700