循环热处理对TiAl基合金组织与性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过可行性分析、模拟试验和感应热处理试验,采用光学显微镜、扫描电镜、
    透射电镜、X射线衍射仪和室温压缩试验等手段,系统研究了快速加热循环热处
    理对TiAl基合金显微组织和室温力学性能的影响,得到以下主要结论。
     1)循环热处理正交试验(L_(16)(4~5))表明:根据不同热处理条件(加热速度υ_h=25~
    100℃/s,保温温度θ=1310~1340℃,保温时间t=2~5min,冷却速度υ_c=20~
    160℃/s,循环次数n=1~7),可获得4种不同类型的显微组织,即典型层片组织,
    细小层片、较粗层片及块状相混合组织,细小近层片组织,块状组织;在上述试
    验参数范围内,当加热速度低于25℃/s,且保温湿度低于1310℃或循环次数小
    于3时,TiAl基合金仅发生层片粗化或少量形核。由极差分析可知,加热速度、
    保温温度、保温时间、冷却速度和循环次数对硬度值的影响按从大到小排列的顺
    序为:υ_h;t,θ,υ_c,n,其中加热速度对硬度的影响最大。
     2)加热速度单因素优化试验表明:以100~3200℃/s(θ=1330℃,t=2min,
    υ_c=50~80℃/s,n=5)进行快速热处理可以使晶粒尺寸细化至50μm以下。
     3)循环热处理可以在热加工基础上进一步细化TiAl基合金显微组织;对二次
    锻原始组织,随着循环次数增加,层片组织不断细化,当循环次数为7次时,全
    层片组织的晶团平均尺寸可从50μm左右细化至20μm以下。
     4)利用感应加热设备对TiAl基合金进行循环热处理,可以获得晶团尺寸约为
    50μm、层片间距约为12×10~(-2)μm的TiAl基合金细小全层片组织。
     5)感应加热快速热处理可以大幅度提高TiAl基合金的硬度,最大硬度可达412
    HV_5;经1000℃,12~48h时效处理后,硬度仍可保持在350HV_5以上,且当
    时效时间达到12h以后基本保持不变。
     6)感应加热循环热处理可以较大幅度提高TiAl基合金的压缩力学性能,屈服
    强度、最大流变应力和压缩率的最大值分别可达806.6MPa,1740MPa和19.4%;
    最佳综合力学性能在1000℃时效至24h时获得,其值为屈服强度745.1MPa、
    最大流变应力1672.2MPa和压缩率19.4%。
     7)经感应热处理和时效后的室温压缩断裂仍为较典型的解理断裂,且裂纹扩
    展以穿晶断裂为主。
     8)在快速加热、短时保温循环热处理过程中,细小全局片组织以晶界形核为
    主,并可发生相界形核;新层片晶团的长大可用台阶机制描述。
Through feasibility analyses, simulated tests and induction heat-treatments, the effects of rapid heating cyclic heat treatments on microstructures and mechanical properties of a TiAI-based alloy (Ti-33Al-3Cr, mass fraction , %) were systematically studied by means of optical microscopy. scanning electron microscopy. transmission electron microscopy. X-ray diffractometry and compression tests, and the following main conclusions are drawn.
     1) The L16(45) orthogonal cyclic heat treatment tests show that, according to different heat treatment conditions(heating rate vh=25?100 /s. holding temperature 0=1 310?I 340 , holding time t=2? mm, cooling rate vp20?160 /s. cycling number n1 ?), four kinds of microstructures can be obtained, i.e. typical lamellar structure. mixed microstructure of fine lamellae, relatively coarse lamellae and massive phase, fine nearly-lamellar microstructure, and massive microstructure. In the selected ranges of the above parameters, when the heating rate is lower than 25 /s and the holding temperature is lower than 1 310 or the cycling number is smaller than 3, only lamellar coarsening and formation of some new nuclei occur. The hardness (HV5) can be increased by rapid heating cyclic heat treatment, and the error range analysis shows that the effects of heating rate. holding temperature, holding time, cooling rate and cycling number on hardness, from large to small, are as follows: vh; t, 6, v~ and n, among which the effect of heating rate is by far the most evident.
     2) The optimized single factor test of heating rate shows that, rapidly heated at a rate of 100~? 200 /s ( ~=l 330 , t=2 mm, v~50-?80 C/s, n=:5). the hardness of the TiAl-based alloy can be increased by 30?0 HV5 compared to that of the as-cast alloy and the microstructure can be refined to be less than 50 I~ m.
     3) The inicrostructure of the thermo-mechanicallly treated TiAI alloy can be further refined by rapid heating cyclic heat treatment. For the two-step microstructure, with increasing cycling number, the lamellar structure is continuously refined. When the cycling number reaches 7, the colony size can be refined from about 50 i~ m to be less
    
    II
    
    
    
    than 20 ii m.
    4) The microstructure of the hAl-based alloy with a colony size of about 50 I.~ m arid
    a lamellar spacing of about 12X 1W2 j.A m can be obtained. The HV5 hardness can be
    substantially increased and the highest hardness reaches 412 HV5. After aging at 1 000 C for 12?8 h, the hardness remains above 350 HV5, and when the aging time is longer than 12 h, the hardness almost keeps unchanged.
    5) The compression mechanical properties of the hAl-based alloy can also be
    substantially enhanced by rapid heating cyclic induction heat treatment. The maximum
    values of yield strength. largest flow stress and compression ratio respectively reach
    806.6 MPa, 1 740 MPa and 19.4%. The optimized mechanical properties are obtained by
    aging at 1 COOt for 24 h, and the corresponding values are respectively yield strength
    745.1 MPa, largest flow stress 1 740 MPa and compression ratio 19.4%.
     6) The compression fracture of TiAl-based alloy at room temperature after cyclic induction heat treatment and aging is still typical cleavage and the crack propagations occur transgranularly.
     7) In the process of rapid heating and short-time holding cyclic heat treatment, the nucleations of fine lamellar microstructure mainly occur along the grain boundaries and also at the phase interfaces. The growth of new lamellar colonies can be described by the ledge mechanism.
引文
[1] 胡赓祥.钱苗根.金属学.上海:上海科学技术出版社,1980. 40-41.
    [2] 波特 D A,伊斯特林 K E 著:李长海,余永宁译.金属和合金中的相变.北京:冶金工业 出版社,1998. 26.
    [3] 冯涤.韩光炜.段明.等.金属间化合物在不同领域的应用.钢铁研究学报.1997. 9(增刊): 79.
    [4] 黄伯云著.钛铝基金属间化合物.长沙:中南工业大学.1998.
    [5] 仲增墉.我国金属间化合物结构材料研究的进展.见:金属间化合物-全国首届高温结构 金属间化合物学术讨论会论文集.北京:机械工业出版社.1992. 1-2.
    [6] 仲增墉.韩雅芳.高技术金属间化合物高温材料的研究进展.钢铁研究学报.1997. 9(增 刊):1-8.
    [7] 张国庆.航空高温材料的研究进展.材料导报,1994(增刊):73.
    [8] Zhang L T and Wu J S. Stoichiometric and off-stoichiometric alloying in Ti5Si3, by Nb or Cr addition. Trans Nonferrous Met Soc China, 1999,9(Suppl.1) : 340.
    [9] Westbrook J H and Fleischer R L. Ni3Al and its Alloys Intermetallic Compounds, Principles and Practice Vol.2. Chichester, John Wiley & Sons, 1995. 17-51.
    [10] Weatbrook J H and Pleischer R L. NiAl and its Alloys Intermetallic Compounds, Principles and Practice Vol.2. Chichester. John Wiley & Sons, 1995. 199-209.
    [11] Zhang J, Wu Y and Lavemia E J. Kinetics of ceramic particulate penetration into spray atomized metallic droplet at variable penetration depth. Acta Metall Mater, 1994,42: 2955.
    [12] Dollar M. Dymeks, Hwang S J. et al. The occurrence of <110> slip in NiAl. Scr Metall Mater. 1992. 26:29.
    [13] Schuson E M and Barker D R. A brittle to ductile transition in NiAl of a critical grain size. Scr Metall. 1983, 17:519.
    [14] Schulson E M and Barker D R. A brittle to ductile transition in NiAl of a critical grain size. Scr Metall Mater, 1983, 17: 519.
    [15] Guo J T. Zhou L Z and Jiang D T. Synthesis and mechanical properties of NiAl-based composites. Trans Nonferrous Met Soc China, 1999. 9(suppl.1) : 21-29.
    
    
    [16] Darolia R, Lahrman D and Field R. The effect of iron, gallium and molybdenum on the room temperature tensile ductility of NiAl. Scr Metall Mater, 1992, 26:1007.
    [17] Darolia R. NiAl allloys for high-temperatures structural applications. JOM, 1991,43: 44.
    [18] Hamada T, Furuyama M, Sajiki Y, et al Structures and electric properties of pitch-based carbon fibers heat-treated at various temperatures. J Mater Res, 1990, 5:570.
    [19] Noebe R D, Misra A and Gibala R. Plastic flow and fracture of B2 NiAl-based intermetallic alloys containing a ductile second phase. ISIJ Inter, 1991,31: 1172.
    [20] Whittenberger J D. Effect of composition and grain size on slow plastic flow properties of NiAl between 1200 and 1400K. J Mater Sci, 1987,22: 394.
    [21] Natha M V and Ebert L J. Elevated temperature creep-rupture behavior of the single crystal nickel-base superalloy NASAIR 100. Metall Trans, 1985. 16A: 427.
    [22] Liu C T, Hortan J A Jr. Effect of refractory alloying additions on mechanical properties of near-stoichiometric NiAl. Mater Sci Eng. 1995, A192/193: 170.
    [23] Senior B A, Maguire J and Evans C A. Effects of dwell time on the creep damage generated in AISI type 347 weld and ICrMoV steel druing creep fatigue loading. Mater Sci Eng. 1991, A 138: 103.
    [24] Whittenberger J D, Gaydosh D J and Kumar K S. 1300K compressive properties of several dispersion strengthened NiAl materials. J Mater Sci, 1990,25: 2771.
    [25] Westbrook J H and Fleischer R L. FeAl and Fe3Al Intermetallic Compounds, Principles and Practice Vol.2. Chichester. John Wiley & Sons, 1995. 53-72.
    [26] Mckamey C G, Devan J H, Torturelli P F, et al. A review of recent developments in Fe3Al-based alloys. J Mater Res, 1991, 16:1779.
    [27] Fleischer E L. Hertl W. Alford T L. et al. The effect of ion induced damage on the hardness. wear, and friction of zirconia. J Mater Res. 1990, 5: 385.
    [28] George E P, Yamaguchi M. Kumar K S, et al. Ordered Intermetallics. Annual Review of Materials Science. 1994. 24: 409.
    [29] Liu Yangxiong. Xia Yuanming. Chen Mingwei. et al. Dynamic mechanical behavior of Fe3Al under tensile impact. Trans Nonferrous Met Soc China, 1999,9(Suppl.): 138-141.
    [30] 孙扬善.Fe3Al 金属间化合物的发展现状和应用前景.钢铁研究学报,1999. 9(增):38-44.
    [31] 梁广川.刘文西.FeAl 合金研究进展评述.材料导报.1999. 13(2) :25-26.
    
    
    [32] Westbrook J H and Fleischer R L. Intermetallic Compounds, Principles and Practice Vol.2 Chichester, John Wiley & Sons, 1995. 91-131.
    [33] 邹敦叙, 李世琼,仲增墉.航天航空理想新材料 Ti3Al 和 TiAl 金属间化合物合金研究开 发进展.钢铁研究学报,1997. 9(Suppl.1) :45-50.
    [34] 曹春晓.孙育峰.孙福生.曹京霞.新一代 Ti3Al 基合金的研究.钢铁研究学报.1997, 9(Suppl.1) :32-37.
    [35] 周科朝.TiAl 基金属间化合物的成形技术研究.博士学位论文.长沙:中南工业大学, 1998.
    [36] 张国才.γ-TiAl 基耐热铝合金研制的进展.稀有金属材料与工程.1990(4) :2.
    [37] 张存信.钛-铝金属间化合物高温材料.兵器材料科学与工程.1991(2) :55.
    [38] 黄伯云.曲选辉.钛铝有序合金研究综述.材料导报.1992(2) :22.
    [39] 韩传玺.张启海.曲选辉.金属间化合物的发展新方向-赴日学术研讨会技术总结.稀 有金属材料与工程.1992. 21(4) :68-80.
    [40] 曲选辉.TiAl 有序金属间化合物的微观组织与室温塑性变形特征的研究.博士学位论文. 长沙:中南工业大学,1992.
    [41] 谢鲲.钛铝基合金的显微组织及力学性能.硕士学位论文.长沙:中南工业大学.1999.
    [42] 高颖.朱静.蔡其巩.双相 Ti-Al-V 金属间化合物层状组织的微观结构研究.金属学 报.1992. 28(2) :A62-A66.
    [43] 郑运荣.汪小平.阮中慈.等.Cr.Al 含量对铸造 TiAl 基合金显微量组织的影响.航空材料 学报.1995,15(4) :8-14.
    [44] 贺跃辉,刘业翔,黄伯云.等.TiAl+Sb 合金的研究.航空材料学报.1994. 14(2) :11-16.
    [45] 贺跃辉,黄伯云,陈小群,等.TiAl+Sb 合金的室温变形亚结构.航空材料学报.1996. 16(4) : 1-6.
    [46] He Y H, Liu Y X. Huang B Y. et al. Effect of Pb addition on TiAl based alloys. Trans Nonferrous Met Soc China, 1994. 4(1) : 75-79.
    [47] 曹鹏.贺跃辉.黄伯云.等.Tial+Ca 合金的断裂及变形亚结构研究.中南工业大学学报. 1996. 27(6) :703-706.
    [48] 陈仕奇.曲选辉.雷长明.等.TiAl+La 有序合金的室温力学性能.金属学报.1994. 30(1) : A21-24.
    [49] Huang S C and Hall E L. The effects of Cr addition to binary TiAl-base alloys. Metall Trans A, 1991,22A:2619.
    
    
    [50] Ohno R and Takahashi T. Effect of mechanical stirring of melt on rates of removal of bismuth and lead in vacuum melting of copper alloys. JIM, 1992, 33:927.
    [51] 彭超群,黄伯云,贺跃辉.等.钛铝基合金的抗氧化性及其改善.稀有金属材料与工程, 1999. 28(2) :93-96.
    [52] 彭超群.黄伯云,贺跃辉.合金化对 TiAl 基合金性能的影响及机理.中国有色金属学报, 1998. 8(增1) :11-7.
    [53] Keller M M, Jones P E, Porter W J, et al. The development of low-cost TiAl Automotive values. JOM, 1997(May): 42-44.
    [54] 刘咏.元素粉末冶金 TiAl 基合金制备工艺及成形技术.博士学位论文.长沙:中南工业 大学.1999.
    [55] Tomita M and Noguchi Y. MITI program on high-temperature intermetallics. Trans Nonferrous Met Soc China. 1999,9(Suppl.1) : 346
    [56] Choi B W, Deng Y G. McCullough C, et al. Densification of rapidly solidified titanium aluminide powders-1. Comparison of experiments to hiping models. Acta Metall Mater, 1990. 38(11) : 2225.
    [57] Yu L H, Mayers M A and Thadhani N N. Reaction-assisted shock consolidation of RSR Ti-Al alloys. J Mater Res, 1990, 5(2) : 302.
    [58] Ferreira A, Meyers M A, Thadhani N N, et al. Dynamic compaction of titanium aluminides by explosively generated shock waves: Experimental and materials systems. Metall Trans A, 1991. 22A(3) :685.
    [59] Vassiliou M S, Rhodes C G, Mitchel M R, et al. Metastable microstructure in dynamically consolidated γ Titanium Aluminide. Scr Metall, 1989. 23: 1791.
    [60] Moll J H, Yolton C F and McTiernan B J. P/M processing of titanium aluminides. Inter J Powder Metall, 1990, 26(2) : 149-155.
    [61] Nakamura M and Kaieda Y. Mechanical properties of sintered TiAl prepared by canning HIPping. Powder Metall. 1990, 33(2) : 133.
    [62] 邓忠勇.TiAl 基合金超塑性的研究.硕士学位论文.长沙:中南工业大学,1998.
    [63] 贺跃辉.TiAl 基合金强韧化技术及机理的研究. 博士学位论文.长沙:中南工业大学. 1994.
    
    
    [64] Tsujimoto T,Hashimoto K and Nobuki M. Alloy design for improvement of ductility and workability of alloys based on intermetallic compound TiAl. Mater Trans JIM, 1992,33: 989.
    [65] Imayev R, Shagiev M, Salishchev G, et al. Superplasticity and hot rolling of two-phase intermetallic alloy based on TiAl. Scr Metal I Mater, 1996,34:985.
    [66] Imayev V M, Imayev R M and Salishchev G A. Porosity of TiAl intermetallic compound with micro-and submicrocrystalline structure after superplastic deformation. Mater Sci Eng. 1996, A208:2226.
    [67] Imayev R M and Imayev V M. Mechanical behavior of TiAl at elevated temperature. Scr Metall Mater, 1991,25:2041.
    [68] Zelin M G, Lee W B and Mukherjee A K. Evidence of cooperative grain boundary sliding in superplastically deformed γTiAl. J Mater Res, 1994, 10:2467.
    [69] Lee W B, Yang H S, Kim Y W, et al. Superplastic behavior in a two-phase TiAl alloy. Scr Metall, 1993. 29(1) : 1403.
    [70] Zhou Kechao, Huang Baiyun, Qu Xuanhui. et al. Superplastic deformation of TiAl based alloy. Trans Nonferrous Met Soc China, 1998, 8(2) :269.
    [71] 欧文沛.黄伯云.贺跃辉,等.TiAl 基合金的超塑性.金属材料科学与工艺.1998. 6(1) :8.
    [72] 黄伯云,贺跃辉,邓忠勇.等.热变形 TiAl 基合金的超塑性行为.金属学报.1998,34(11) : 1173.
    [73] Huang Baiyun. Deng Zhongyong, He Yuehui, et al. Superplastic behavior of a fine grained TiAl based alloy treated by multi-step thermo-mechanical treatment. Trans Nonferrous Met Soc China, 1998, 8(1) : 107-108.
    [74] Kim Y-W. Ordered intermetallic alloys, part Ⅲ: gamma titanium aluminides. JOM, 1994,46(7) : 30-39.
    [75] Kim Y-W and Dimiduk D M. Progress in the understanding of gamma titanium aluminides. JOM. 1991. 43(8) : 40-47.
    [76] Kim Y-W. Intermetallic alloys based on gamma titanium alumined. JOM, 1989, 41(7) :24-30.
    [77] Hanamura T and Tanino M. A new type of twinning in TiAl-2wt% Mn intermetallic compound. J Mat Sci Lett, 1989. 8: 24-28.
    [78] Morinaga M, Saito J. Yukawa N, et al. Electronic effect on the ductility of alloyed TiAl compound. Acta Met, 1990. 38: 25-29.
    
    
    [79] Morinaga M, Saito J, Yukawa N. et al. Electronic effect on the ductility of alloyed TiAl compound. Acta Metall Mater, 1990,38:25.
    [80] Xu J H and Freeman A J. Effects of ternary additions on the twin energy and site preference in γ-TiAl. J Mater Res, 1994,9: 1755.
    [81] Rossouw C J, Forwood C T, Gibson M A, et al. Statistical ALCHEMI: general formulation and method with application to Ti-Al ternary alloys. Phil Mag, 1996, 74: 57-76.
    [82] Rossouw C J, Forwood C T, Gibson M A, et al. Zone-axis convergent-beam electron diffraction and ALCHEMI analysis of Ti-Al alloys with ternary additions. Phil Mag, 1996, 74: 77-102.
    [83] Mohandas E and Beaven P A. Site occupation of Nb, V, Mn and Cr in γ-TiAl. Scr Metall Mater, 1991,25:2023-2027.
    [84] Ren Yunrong, Chen Guoliang and Oliver Ben F. Determination of the lattice site location of Ga in TiAl. Scr Metall Mater, 1991. 25: 249-254.
    [85] Nandy T K, Banerjee D and Gogia A K. Site substitution behaviour of TiAl intermetallic. Scr Metall Mater. 1990, 24: 2019-2022.
    [86] Kogachi M and Kameyama A. Site preference determination in Ll_2 ternary intermetallic compounds Al3Ti-X(X=Cr, Mn, Pd). Scr Metall Mater. 1993,29: 1329-1334.
    [87] Doi H, Hashimoto K. Kasahara K. et al. Site determination of third elements in TiAl compound by X-ray dirfractometry. Mater Trans Japan Int Metals, 1990, 31: 975.
    [88] Chu W Yand Thompson A W. Effects of grain size on yield strength in TiAl. Scr Metall, 1991, 25:641.
    [89] Lombard C M, Nekkanti R M and Seetharaman V. Microstructural development during thermal processing of gamma titanium aluminide. Scr Metall. 1992. 26: 1559-1564.
    [90] Huang S C. Microstructures and property tradeoffs in wrought TiAl-base alloys. Metall Trans. 1992, 23A: 375.
    [91] Umakishi Y. Nakano T and Yamane T. Contribution of single set of lamellae to the plastic behavior of TiAl crystals grown by a floating zone method. Scr Metall. 1991. 25: 1525.
    [92] 陈伶晖,黄伯云.曲选辉.等.TiAl基合金的复合热机械处理.中国有色金属学报.1996. 6(1) :120-125.
    [93] 黄伯云.贺跃辉.曲选辉.等.TiAl基合金热处理新工艺技术的研究.中南工业大学学报. 1995,26(5) :632-636.
    
    
    [94] 贺跃辉,周科朗.黄伯云,等.热锻工艺对TiAl基合金显微组织的影响.热加工工艺, 1995(5) :17-20.
    [95] 贺跃辉,黄伯云.曲选辉,等.等温锻造TiAl基合金显微组织缺陷.热加工工艺,1995(1) : 13-16.
    [97] 贺跃辉.孔高宁,黄伯云.等.改善TiAl基合金显微组织新工艺的研究.材料科学与工 程.1996. 14(1) :35-38.
    [98] 黄伯云.贺跃辉.曲选辉.等.快速变形法细化TiAl晶粒.中国有色金属学报.1996,6(2) : 52-55.
    [99] Rao Qiuhua. He Yuehui, Huang Baiyun, et al. Stress analysis of canned hot forged specimen of TiAl intermetallic compound.. Trans Nonferrous Met Soc China, 1997, 7(2) : 91-94.
    [100] 贺跃辉.黄伯云,曲选辉.等.TiAl基合金双温热处理原理及其相变特征的研究.中南 工业大学学报.1996. 27(3) :298-302.
    [101] 贺跃辉,黄伯云,陈小群.等.Ti-Al 基合金α+γ两相区退火的显微组织转变特征.稀 有金属.1997. 21(2) :109-114.
    [102] 贺跃辉.黄伯云.陈小群.等.热处理对TiAl基合金显微结构的影响.电子显微学报. 1997. 16(1) :31-38.
    [103] Huang Baiyun, He Yuehui, Kong Gaoning, et al. mechanical properties improvement of TiAl by microstructure refining. Trans Nonferrous Met Soc China, 1995, 5(4) : 79-83.
    [104] Kim Y-W Microstructural evolution and mechanical properties of a forged gamma titanium aluminide alloy. Acta Metall Mater. 1992. 40(6) : 1121-134.
    [105] Hug G, Loiseau A and Lasalmonie A. Nature and dissociation of the dislocation in TiAl deformed at room temperature. Phil Mag A, 1986,54: 47-65.
    [106] Kawabata T and Izumi O. Dislocation structures in TiAl single crystals deformed at 77K. Scr Met, 1987,21:433-434.
    [107] Kawabata T and Izumi O. Dislocation reactions and fracture mechanism in TiAl Ll_0 type intermetallic compound. Scr Metall, 1987, 21: 435-440.
    [108] Kavvabata T, Takezono Y. Kanai T. et al. Bend tests and fracture mechanism of TiAl single crystals at 293-1073K. Acta Metall. 1988. 36:963-975.
    [109] Viguier B, Hemker K J. J Bonneville J. et al. Modelling the flow stress anomaly in γ-TiAl-l. Experimental observations of deslocation mechanisms.Phil Mag A,1995,71:1295-1312.
    
    
    [110] Louchet F and Viguier B. Modelling the flow stress anomaly in γ-TiAl-Ⅱ. The local pinning-unzipping model: statistical analysis and consequences. Phil Mag A, 1995, 71: 1313-1333.
    [111] Greenberg B A, Antonova O V, Indenbaum V N, et al. Dislocation transformations and the anomalies of deformation characteristics in TiAl-I. Models of dislocation blocking. Acta Metall Mater, 1991, 39:233-242.
    [112] Germberg B A, Antonova O V, Indenbaun V N, et al. Dislocation transformation Characteristics in TiAl-Ⅱ. The structure of dislocation tnsemble: experiment and theory. Acta Metall Mater, 1991,39:243-254.
    [113] Morris M A. Dislocation configurations in two phase TiAl alloys-I. Annealed and indented structures. Phil Mag A, 1993,68:237-257.
    [114] Morris M A. Dislocation configurations in two phase TiAl alloys-Ⅱ. Structure after compression. Phil Mag A, 1993,68: 259-278.
    [115] Morris M A. Dislocation configurations in two phase TiAl Alloys-Ⅲ. Mechanisms producing anomalous flow stress dependence on temperature. Phil Mag A, 1994, 69: 129-150.
    [116] Kawabata T, Kanai T and Izumi O. A theory of the positive temperature dependence of yield stress in TiAl. Phil Mag A, 1991,63:1291-1298.
    [117] Mercer C and Soboyejo W O. Hall-Petch relationships in gamma titanium alumindes. Scr Metall, 1996, 35:17-22.
    [118] Soboyejo W O, Schwartz D S and Sastry S M L. An investigation of the fracture behavior of gamma-based titanium aluminides: effects of annealing in the α+γ and α2+γ phase fields. Metall Trans A, 1992,23A: 2039-2059.
    [119] 潘忠强.韩传玺,胡跃君.不同组织的T-47Al-5(Cr+V+Mo+Nb)合金的断裂韧性.稀有 金属材科与工程,1997,26(2) :54-57.
    [120] 贺跃辉.黄伯云.曲选辉.等.TiAl基合金双态组织试样室温断裂的研究.中南工业大 学学报.1997,28(1) :40-43.
    [121] 刘文胜.黄伯云,贺跃辉.等.TiAl基合金的断裂韧性及其影响因素的研究.材料导报, 1997. 11(1) :19-22.
    
    
    [122] 刘文胜,黄伯云,贺跃辉,等.TiAl基合金显微组织与断裂韧性关系的研究.稀有金属, 1997,21(1) :25-28.
    [123] 周科朝,黄伯云,曲选辉.等.TiAl基金属间化合物的显微量组织与断裂韧性.中国有色 金属学报.1996,6(3) :111-114.
    [124] 张继.张志宏.邹敦叙,等.TiAl合金细小全层片组织断裂机理.金属学报,1996,32(10) : 1044-1048.
    [125] 陈明伟.林栋梁.陈达,等.层状组织对双相 TiAl 合金裂纹扩展的影响.金属学报, 1994. 30(9) :A416-A421.
    [126] Dogan B, Wagner B and Beaven P A. Fracture behavior of Ti-48. 5Al-1 Mn alloy. Scr Metall Mater, 1991,25:773-778.
    [127] Huang S C and Hall E L. Plastic deformation and fracture of binary TiAl-base alloy. Metall Trans A, 1991,22A: 427-439.
    [128] Chan K S and Kim Y-W. Influence of microstructure on crack-tip micromechanics and fracture behaviors of a two-phase TiAl alloy. Metall Trans A, 1992,23 A: 1663-1677.
    [129] Shida Y and Anada H. Role of W, Mn, Nb and Si on oxidation of TiAl in air at high temperature. Mater Trans, JIM, 1994,35: 623.
    [130] Luthra K L. Stability of protective oxide films on Ti-base alloys. Oxid Met. 1991, 36(5/6) : 475.
    [131] Rahmel A and Spencer P J. Thermodynamic aspects of TiAl and TiSi2 oxidation: The Al-Ti-O and Si-Ti-O phase diagrams. Oxid Met, 1991,35(1/2) : 53.
    [132] Li X L, Hillel R, Teyssandier F, et al. Reactions and phase relations in the Ti-Al-O system. Acta Metall Mater, 1992,40: 3149.
    [133] Zhang M-X, Hsieh K-C. DeKock J, et al. Phase diagran of Ti-Al-O at 1100℃. Scr Metall Mater, 1992,27: 1361.
    [134] Kelkar G P. Phase equilibria in the Ti-AI-O system at 945℃ and analysis of Ti/Al2_O_3 reactions. J Am Ceram Soc, 1995. 78: 572.
    [135] Becker S. Rahmel A. Schorr M, et al. Mechanism of isothermal oxidation of the intermetallic TiAl and of TiAl alloys. Oxid Met. 1992. 38(5/6) : 425.
    [136] Zheng N, Fischer W, Grubmeier H, et al. The significance of sub-surface depletion layer composition for the oxidation behaviour of γ-Titanium Aluminides. Scr Metall Mater, 1995,33:47.
    
    
    [137] Rakowski J M, Pettit F S, Meier G H, et al. The effect of nitrogen on the oxidation of γ-TiAl. Scr Metall Mater, 1995,33:997.
    [138] Shida Y and Anada H. Oxidation behavior of binary Ti-Al alloys in high temperature air enviroment. Mater Trans, JIM, 1993,34:236-242.
    [139] 王福会.吴维(?). 金属间化合物的高温腐蚀与防护.材料科学与工程,1995,13(2) :14.
    [140] 秦高梧.郝士明.Ti-Al系金属间化合物.稀有金属材料与工程,1995,24(2) :1.
    [141] Kim B G, Kim G M and Kim C J. Oxidation behavior of TiAl-X(X=Cr, V, Si, Mo or Nb) intermetallics at elevated temperature. Scr Metall Mater, 1995, 33: 1117-1125.
    [142] Anada H and Shida Y. Effect of Mo addition on the oxidation behavior of TiAl intermetallic compound. Mater Trans, JIM, 1995,36: 533.
    [143] Shida Y and Anada H. Role of W, Mo, Nb and Si in oxidation of TiAl in air at high temperature. J Japan Inst Metals. 1994,58(7) : 754.
    [144] 唐兆麟.王福会,吴维(?).涂层对TiAl 金属间化合物抗循环氧化性能的影响.中国有 色金属学报.1998. 8(1) :56.
    [145] 唐兆麟.王福会.吴维(?).MCrAlY 涂层对TiAl金属间化合物抗高温氧化性能的影响, 中国腐蚀与防护学报.1997. 17:116.
    [146] 唐兆麟,王福会.吴维(?).反应溅射 Al_2O_3膜对 TiAl 抗高温抗氧化性能的影响.材料 研究学报.1997,11(5) :507.
    [147] 关春红,王福会,唐兆麟,等.溅射TiAlCr涂层对Ti-24Al-14Nb-3V抗氧化性能的影响. 中国有色金属学报.1999,9(2) :247-252.
    [148] 徐东,朱宏.汤丽娟,等.离子束增强沉积氮化硅膜及 TiAl 抗高温氧化性能的改善. 金属学报,1995,31(4) :B164.
    [149] Yoshihara M, Suzuki T and Tanaka R. Improvement of oxidation resistance for TiAl by surface treatment under a low partial pressure oxygen atmosphere and Al diffusion coating. ISU International, 1991, 31: 1200-1260.
    [150] Credic I, Latanovic M and Munz W D. Plasma nitriding of Ti and TiAl coatings. Surface and Coating Technology, 1993, 61: 339-345.
    [151] Laniguchi S, Shibata T, Toshio Y, et al. High temperature oxidation of TiAl improved by IBED Si_3N_4 coating. ISIJ International. 1993,33: 869-876.
    
    
    [152] Xu D, Zhang Z, Liu X, et al. Improvement of oxidation resistance of TiAl by ion-beam, enhanced deposition coating. Surface and Coatings Technology, 1994,66:486-494.
    [153] 唐兆麟.王福会.吴维(?).等.微弧氧化处理对TiAl合金抗氧化性能的影响.中国有色 金属学报.1999,9(Suppl.1) :63-68.
    [154] 黄伯云.曲选辉.贺跃辉.等.TiAl基合金的渗碳处理.中国有色金属学报,1994,4(4) : 53.
    [155] Martin P L, Mendiratta M G and Lipsitt H A. Creep deformation of TiAl and TiAl +W alloys. Metall Trans, 1983, 14A:2170.
    [156] Loiseau A and Lasalmonie A. Influence of the thermal stability of TiAl on its creep behaviour at high temperature. Mater Sci Eng. 1984,67: 163.
    [157] Takahashi T, Nagai H and Oikawa H. Creep characteristics in Ti-50mol%Al single phase polycrystals. Mater Trans, JIM, 1989, 30: 1044.
    [158] 彭超群.黄伯云.贺跃辉.TiAl 基合金蠕变研究进展.见:中国有色金属学会第三届学 术会议论文集(科学技术论文部分).长沙:中南工业大学出版社,1997.
    [159] Bartholomeusz M F, Yang Qibin and Wert J A. Creep deformation of a two-phase TiAl/Ti_3Al lamellar alloy and the individual TiAl and Ti_3Al constituent phases. Scr Metall Mater. 1993, 29: 389-394.
    [160] Prasad R P and Tangri K. Yielding and work hardening behaviour of titanium aluminides at different temperatures. Mater Sci Eng, 1991, A132:49-52.
    [161] Court S A, Lofvander J P A. Loretto M H, et al.The influence of temperature and alloying on the mechanisms of plastic deformation of Ti_3Al. Phil Mag, 1990,61: 109-139.
    [162] Nagai H, Takahashi T and Oikawa H. Effect of grain size on creep if Ti-53. mol%Al intermetallics at 1100 K. J Mater Sci. 1990,25:629-632.
    [163] Kim Y W. Microstructural evolution and mechanical properties of a forged gamma titanium Aluminide alloy. Acta Metall Mater, 1992,40: 1121.
    [164] Huang S C. Microstructures and property tradeoffs in wrought TiAl-base alloys. Metall Trans, 1992. A23: 375.
    [165] Huang S C and Hall E L. Plastic deformation and fracture of binary TiAl-based alloys. Metall Trans, 1991, A22: 427.
    [166] Huang S C and Hall E L. The effects of Cr additions to binary Ti-Al-base alloys. Metall Trans, 1991, A22: 2619.
    
    
    [167] Kimm D I and Wolfenstine J. Effect of grain size on the creep behavior of fully transformed γ-TiAl. Scr Metall Mater, 1994,30: 615-619.
    [168] Hayes R W and Mcquay P A. A first report on the creep deformation and damage behavior of a fine grained fully transformed lamellar gamma TiAl alloy. Scr Metall Mater, 1994, 30: 259-264.
    [169] Hayes R W and London B. On the creep deformation of a cast near gamma TiAl alloy Ti-48Al-Nb. Acta Metall Mater, 1992,40:2167.
    [170] Bartholomeusz M F and Wert J A. Modeling creep deformation of a two-phase TiAl/Ti_3Al alloy with a lamellar microstructure. Metall Mater Trans. 1994,25A: 2161-2171.
    [171] Bartholomeusz M F and Wert J A. Measurement of the compressive creep strain rates of the individual phases within a lamellar microstructure. Mater Charact, 1994,33: 377-386.
    [172] Inui H, OH M H and Yamaguchi M. Room-temperature tensile deformation of polysynthetically twinned(PST) crystals of TiAl. Acta Metall Mater, 1992,40:3095-3104.
    [173] McCullough C, Valencia J J, Mateos H, et al. The high temperature α field in the titanium-aluminum phase diagram. Scr Met, 1988,22:1131-1136.
    [174] Murray J L. Calculation of titanium-aluminium phase diagram. Metall Trans A, 1988, 19A: 243-247.
    [175] Huang S C and Simers P A. Characterization of the high-temperature phase fields near stoichiometric γ-TiAl. Metall Trans A, 1989,20A: 1899-1906.
    [176] Kattner U R, Lin J-L and Chang Y A. Thermodynamic assessment and calculation of the TiAl system. Metall Trans A, 1922,23A: 2081-2090.
    [177] Jones S A and Kaufman M J. Phase equilibria and transformations in intermediate titanium-aluminium alloys. Acta Metall Mater, 1993,41:387-398.
    [178] Hellwig A, Inden G and Palm M.The invariant reaction between α, α_2 and γ in the Ti-Al system. Scr Metall Mater, 1992, 27:143-148.
    [179] Yamabe Y. Takeyama M and Kikuchi M. Determination of α(A_3) -α_2(D0_(19) ) transition temperatures in Ti-(40-45) at% Al alloys. Scr Metall Mater. 1994. 30: 553-557.
    [180] 郝士明.曾宁华.Ti-Al-Cr三元系相图1000℃等温截面的研究. 金属学报.1995. 31(4) : B152-B158.
    
    
    [181] 陈国良,刘自成,李书江,等.高铌TiAl基合金的成分-制备-组织性能的研究.见:高 性能金属间化台物结构材料的关键基础问题研究(国家自然科学基金重大项目中期评估 报告),2000-05.
    [182] Beddoes J, Wallace W and Zhao L. Current understanding of creep behavior of near γ-titanium aluminides. International Materials Reviews, 1995,40(5) : 197.
    [183] Veeraraghavan D and Vasudevan V K. Phase transformations in two-phase TiAl/Ti_3Al alloys during continuous heating and cooling studied by electrical resistivity measurements. Materials Science and Engineering, 1995, A 192/193:950-956.
    [184] Wang P, Viswanathan G B and Vasudevan V K. Observation of a massive transformation from α to γ in quenched Ti-48 At pct Al alloys. Metall Trans A, 1992,23A: 690.
    [185] Wang P and Vasudevan V K. Composition dependence of the massive transformation from α to γ in quenched TiAl alloys. Scr Metall Mater, 1992. 27:89-94.
    [186] McQuay P A, Dimiduk D M and Semiatin S L. The decomposition of alpha phase during continuous cooling and isothermal transformation in gamma titanium aluminides. Scr Metall Mater, 1991. 25: 1689-1694.
    [187] Soboyejo W O, Schwartz D S and Sastry S M L. An investigation of the fracture behavior of gamma-based titanium aluminides: effects of annealing in the α+γ and α_2+γ phase fields. Metall Trans A, 1992,23A: 2039.
    [188] 贺跃辉,黄伯云,曲选辉,等.TLAl基合金双温热处理原理及其相变特征的研究.中南 工业大学学报.1996. 27(3) :298.
    [189] 张继.马万青,邹敦叙.等.铸造TiAl合金获取NG组织的热处理工艺及机理研究.金 属热处理学报.1996,17(3) :17-21.
    [190] 张继,张建伟,邹敦叙.等.铸造TiAl合金FFL组织形成动力学及机理.金属热处理 学报,1996. 17(4) :12-16.
    [191] 张继, 张志宏,邹敦叙.等.铸造TiAl合金FL组织的细化.钢铁研究学报,1997, 9(Suppl.1) :162-165.
    [192] 王健农.TiAl基合金新加工技术与显微组织控制.见:高性能金属间化合物结构材料的 关键基础问题研究(国家自然科学基金重大项目中期评估报告).2000-05.
    [193] 谢鲲,王健农,唐建成.等.循环热处理细化TiAl晶粒.稀有金属材料与工程,1999. 28(4) :248-250.
    
    
    [194] 周廉.罗国珍,王克光.高Nb-TiAl基合金研究课题进展-西北有色金属研究院1999 年工作汇报.见:高性能金属间化合物结构材料有关键基础问题研究(国家自然科学基 金重大项目中期评估报告).2000-05.
    [195] Grange R A and Shackelford E R.Method of producing ultrafine-grained steel.U.S.patent No 3178324. 1965-04-13.
    [196] Porter L F and Dabkowski D S.用热循环法控制晶粒尺寸.见:约翰J.伯克和沃克·威 斯编.王燕文.张永吕泽.超细晶粒金属.北京:国防工业出版社,1982.
    [197] 陈兆能.邱泽麟.余经洪编著.试验分析与设计.上海:上海交通大学出版社,1991.
    [198] Dao M, Kad B K and Asaro R J. Deformation and fracture under compressive loading in lamellar TiAl Microstructures. Phil Mag A, 1996, 74(3) : 569-591.
    [199] Denquin A and Naka S. Phase transformation mechanisms involved in two phase TiAl-I : lamellar sructure formation . Acta Metall Mater, 1996,44: 343.
    [200] 唐建成.TiAl基合金组织演变与室温拉伸变形的研究.博士学位论文.长沙:中南工业 大学,2000.
    [201] Shong D Simon and Kim Y W. Discontinuous coarsening of high perfection lamellae in titanium aluminides. Scr Metall. 1989, 23(2) : 257-261.
    [202] Bartholomeusz M F and Wert J A. The effect of thermal exposure on microstructural stability and creep resistance of a two-phase TiAl/Ti_3Al lamellar alloy. Metallurgical and Materials Transactions A. 1994,25A: 2371-2381.
    [203] Ramanujan R V, Maziasz P J and Liu C T. The thermal stability of the microstructure of γ-based titanium aluminides. Acta Mater, 1996,44: 2611-2642.
    [204] Tang Jian-cheng, Huang Bai-yun. He Yue-hui, et al. Morphology of discontinuous coarsening in fully lamellar TiAl. Trans Nonferrous Met Soc china, 2000. 10(1) :10-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700