Ni-Al、Ti-Al系金属间化合物合成与成形的电脉冲效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ni/Al系和Ti/Al系金属间化合物是极有潜力的新一代高温结构材料,它们具有许多优良性能,如高温高强度、高温耐蚀性、高的比强度和比刚度等。但是从文献检索来看,其切削加工性和成形性能很差,目前对Ni/Al系金属间化合物的SHS合成研究主要存在着制作的Ni/Al系金属间化合物致密化程度较低、对反应特征没有详尽的描述、反应产物的形状尺寸精度较差、难以制备实用化制品等问题。
     本文在国家自然科学基金、湖北省“十五”重点攻关计划等基金支持下,系统地论述了作者在Ni/Al系和Ti/Al系金属间化合物合成与成形的电脉冲效应方面研究成果。论文的主要内容与创新如下:
     分析了Ni/Al、Ti/Al系金属间化合物室温塑性低的组织结构原因。提出了通过细化晶粒来提高室温塑性的措施,指出了细化晶粒的关键是在合成过程中使坯料处在高温状态的时间短,以抑制晶粒的长大过程。
     研究了Ti/Al,Ni/Al系金属微粉的MM制备与活化方法,分析了MM处理工艺使金属粉末在物理性能、化学性能和组织结构等方面的变化。提出了描述纯金属粉末球磨时粉碎规律的算法,并对Ni、Fe等纯金属粉末球磨时的细化过程进行了计算。研究了不同的MM工艺参数对Ni粉、Al粉、Ti粉、Ni/Al粉和Ti/Al粉等材料的影响。
     研究了在较低的脉冲电流作用下Ni/Al和Ti/Al的合成工艺过程与特点。采用合理的球磨工艺使合成反应产物的组织和显微硬度均匀化。提出了冷态下的脉冲电流处理可破碎粉粒表面的氧化皮,改善坯料的反应条件。分析了脉冲数量、脉冲时间、坯料高度、加压等参数对升温速度、T_(ig)和T_(max)、脉冲敏感性、反应产物致密性的影响。
     对高密度脉冲电流下Ni/Al、Ti/Al的反应特点进行了分析,总结了在不同的充电电压、充电电容、脉冲电流、脉冲数量、脉冲持续时间等参数下,反应产物的组织与结构特点。计算了试样输入能量。研究发现短时高密度脉
    
    武汉理工大学博士学位论文
    冲作用下反应主要集中于边界,边界反应区的成分呈梯度分布。
     分析和计算了Ni/AI、Ti/Al系金属间化合物的热力学参数。计算了坯料
    在高密度脉冲电流作用下粉坯的宏观温升。提出了坯料在高密度脉冲电流作
    用下粉坯微观温升的计算方法。建立了粉粒反应的缩球模型,推导了颗粒反
    应转换率随时间的变化规律,提出了颗粒反应转换率取决于界面化学反应速
    率和已反应层内的扩散速率两个因素并与反应进程有关。
     分析了坯料的扩散过程,探讨了高密度电脉冲对扩散过程的影响。在高
    密度电脉冲作用下,表面扩散起主导作用。提出了在高密度电脉冲作用下,
    试样两端电场引起的扩散驱动力远大于浓度梯度引起的扩散驱动力。
     计算了脉冲电流作用下,坯料内部各点的磁压强。分析了粉末材料的变
    形特点,并从塑性力学角度计算了粉坯在致密化变形过程中在几种不同应力
    状态下的变形和致密化规律,论述了电脉冲在致密化成形中的主要作用。
Being a new generation of high temperature structure materials, Ni/Al and Ti/Al system intermetallic compounds are most potentially. They possess many excellent capabilities at high temperature such as high strength, corrosion resistance, contrast intensity and contrast rigidity. But a lot of information show that their properties of cutting and deformation are very dissatisfactory. At present there are some problems in SHS researches of Ni/Al and Ti/Al system intermetallic compound such as lack of detail description of reaction characters, low density of SHS products, dissatisfactory in precision of shapes and sizes, difficult in practical manufacture.
    Subsidized by the National Natural Science Foundation of China, "Tenth Five-year" Plan of Hubei province and so on, this dissertation systematically discussed the author's researches on synthesis and deformation of Ni/Al and Ti/Al system intermetallic compound. The major contents and innovation of the research are listed as following:
    The organization and structure reasons of low plasticity of Ni/Al and Ti/Al system intermetallic compound at room temperature are analyzed. The measure of grains' comminution is brought forward to improve plasticity at room temperature. The key of micro-crystal's production is that the time of sample's being at high temperature is shorter. The process of crystal's growing up will be restrained.
    The preparation and activation methods of machine milling (MM for short) for Ni/Al and Ti/Al system tiny powder are researched. The technical treatment of MM makes metal powder a lot of changes in mechanical properties, chemical properties and organization structure. An arithmetic solution of comminution rule for pure metal powder in MM is put forward and then used to calculate the processes of pure metal powder such as Ni and Fe in MM. The effects of
    
    
    
    different MM parameters to different materials such as Ni powder, Al powder, Ti powder, Ni/Al powder, and Ti/Al powder are researched.
    The processes and characters of synthesis reaction for Ni/Al and Ti/Al under the influence of lower pulsating electric current are researched. Reasonable technology of MM will make the organization and micro-hardness of synthesis products more uniformity. The treatment of pulsating electric current at room temperature can break up oxidation surface of grains and improve the conditions of reaction. The effects of pulsating amounts, pulsating time, height of sample, pressure to rising speed of temperature, Tig and Tmax, pulsating sensitivity, and density of products are analyzed.
    The processes and characters of synthesis reaction for Ni/Al and Ti/Al under the influence of high intensity of pulsating electric current are researched. The characters of organization and structure of products under different parameters such as charge voltage, charge capacitance, pulsating electric current, pulsating amounts and pulsating duration are summarized. The input energy of sample is calculated. Some discovers are made in research. The reactions are concentrated in interface and the components of reaction areas are grads distributed.
    Thermodynamics parameters of Ni/Al and Ti/Al system intermetallic compound are analyzed and calculated. The macro temperature rising velocity of powder sample under the influence of high intensity of pulsating electric current are calculated. An arithmetic solution of micro temperature rising velocity of powder sample under the influence of high intensity of pulsating electric current are brought forward. Upon the foundation of contracted-ball, function equations of conversion rates of grains and time are deduced. It is brought forward that the conversion rates of grains rely on reaction velocity at interface and diffusion velocity in reacted layer and at the same time relate to reaction process.
    The diffusion processes of samples are analyzed. The effects of high intensity of pulsating electric current are discussed. It is found that the interface
    
    
    
    diffusions are dominant under the influence of high intensity of pulsati
引文
[1] DeAngelis,T.P. Proc 1 st US-Japanese Workshop on combustion Synthesis,Japan, 1990, 147.
    [2] Word,R. et al., Proc 1 st Inter Symp on Combustion and Plasma Synthesis.San Francisco,US A, 1988,294.
    [3] 徐颂波,新一代高温结构材料,金属间化合物Ni3Al,上海有色金 属,1997,18(2) ,88.
    [4] Rabin,B.et al.,J Amer Ceram Soc,1990,73(7) ,2156.
    [5] Rabin,B.H.et al.,Metall Trans,1991,22A,277.
    [6] Bose,A.,Moore,B.et al.,J Metals,1988,40,14.
    [7] Bose,A.,Rabin,B.H.et al.,Powder Metall Inter,1988,20,25.
    [8] News and Views,Powder Metall, 1991,34, 17.
    [9] 松崎佑司等,粉体粉末冶金,1990, 37 (7) , 937.
    [10] Rice,R.W.,J Mater Sci,1991,26,6533.
    [11] Deevi,S.C., J Mater Sci, 1991,26,2662.
    [12] Armstrong,R., Metall Trans A,1992,23A(9) ,2339.
    [13] Armstrong,R.et al.,In:Munir,Z. A. ,Holt.J.B.eds. Combustion and Plasma Synthesis of High Temperatyre Materials, 1988, 88.
    [14] Munir,Z.A.,Ceramic Bulletin, 1988,67(2) ,342.
    [15] Hlavacek,V.etal.,In:Munir,Z. A. ,Holt,J.B.eds. Combustion and Plasma Synthesis of High Temperature Materials. 1988,83.
    [16] Margolis,S.B.,Metall Trans A,1992,23a(1) ,15.
    [17] Munir,Z.A., Metall Trans A,1992,23a(1) ,7.
    [18] Merzhanov,A.G., Combustion and Plasma Synthesis of High Temperature Materials,edited by Munir,Z.A.and Holt J.B.1990, 1-51.
    [19] Yoshinarj,K., Processings of 93 Powder Metallurgy World
    
    Congress, 1993,3 95.
    [20] Merzhanov,A.G., 2 nd International Symposium om SHS, 1993.
    [21] Tang,Q.,Sheng,Y.,Proceedings of 94 Powder Metallurgy World Congress, 1994,2,1299.
    [22] Merzhanov,A.G., Proceedings of 92 Powder Metallurgy World Congress, 1992,341.
    [23] Merzhanov,A.G.,Proc.l st Inter.Symp.on Combustion and Plasma Synthesis,San Francisco,USA,1988,1.
    [24] Miyamoto,Y.,Ceramic Bulletin, 1990,69(4) ,686.
    [25] Dummead,S.D.et al.. J.Mater.Sci..1991,26,2410.
    [26] Cutler,R.A.,J Amer Ceram Soc,1992,75(1) ,86.
    [27] Cutler,R.A.,Proc 1 st US-Japanese Workshop on Combustion Synthesis, Japan, 1990. 73.
    [28] Misiolek,W.Z. et al.,Advances in powder Metallurgy and Particulate Materials.1992,9,411.
    [29] Cutler,R.A. et al.,Ceram Eng Sci Proc,1985,6(7-8) ,715.
    [30] Cameron,C.P. et al.,Ceram Eng Sci Proc, 1986,7,761.
    [31] Merzhanov,A.G.,In:Munir,Z. A.,Holt,J.B.eds.Combustion and Plasma Synthesis of High Temperature Materials, 1988,1.
    [32] Urabe,K.,Proc 1 st Inter Symp on Combustion and Plasma Synthesis,San Francisco,USA, 1988,281.
    [33] Niiler,A. et al.,Proc 1 st US-Japanese Workshop on Combustion Synthesis,Japan, 1990,53.
    [34] Merzhanov,A.G.,Paper of 2 nd Inter Symp on SHS,Honolulu,USA,Nov.,8-10,1993.
    [35] Merzhanov,A.G.,In:Merzhanov,A.G.eds.Combustion Processes in Chemical Technology and Metallurgy, 1975,1.
    
    
    [36] Lasalvia,J.C. et al.,Shock Waves and High-Strain-Rate Phenomena in Materials, 1992,261.
    [37] Hoke D.A. et al., Metall.Trans.A, 1992,23A(1) ,77
    [38] Matsuzaki,Y.et al., Proc 1 st US-Japanese Workshop on Combustion Synthesis,Japan, 1990,89.
    [39] Miyamoto,Y.et al.,Comm Amer Ceram Soc,Nov.,1984,c-224.
    [40] Zavitsanos,P.D.et al., Proc 1 st Inter Symp on Combustion and Plasma Synthesis,San Francisco,USA,1988,170.
    [41] Yanagisawa,N.et al., Proc 1 st US-Japanese Workshop on combustion Synthesis, Japan, 1990,147.
    [42] Yin S.et al.,Proc 1993 Powder Metallurgy World Congress, 1993.
    [43] Tang Q.et al., Proc 1994 Powder Metallurgy World Congress, 1994.
    [44] Aoki,K.,Izumi,O.,J.Jpn.Inst.Met., 1979,43,1190.
    [45] Liu,C.T.,Sikka,V.,J Met., 1986,38,19.
    [46] Hirano,T.,Acta Met., 1990,38,2667.
    [47] Sen,S.,Stefanescu,D.M. JOM, 1991 ,May,30.
    [48] Barzykin,V.V.,Pure & Appl.Chem.,1992,64,909.
    [49] Santandrea,R.P.,Bchrens,G.et al.,Mat Res Soc Symp Proc, 1987,18,467.
    [50] Merzhanov,A.G.,Advances in Powder Metallurgy and Paniculate Materials 9,1992,341.
    [51] Moore, JJ.,Yi,H.C.,Proceeding of the First US-Japanese Workshop on Combustion Synthesis, 1990,Tokyo Japan,33.
    [52] Topor,L.,Kleppa,O.J.,Metall Trans, 1988,19A, 1827.
    [53] Naiborondenko,Y.S.,Itin,V.I.,Comb Explos Shock Wave,1975,11,293.
    [54] Deevi,S.C.,J Mater Sci.1991,26,3343.
    [55] Bhattacharya,A.K.,J Am.Ceram. 1991,74,2113
    [56] Yi,H.C.,Moore,J.J.,J Mater Sci, 1989,24,3456.
    
    
    [57] Hardt,A.P.et al.,Combust Flame, 1973,21,77.
    [58] German,R.M.,Bose,A.,Mater Sci Eng, 1988,A107,107.
    [59] Nishimura,C.,Liu, C.T.,Scrip Metall Mater, 1992,26,381.
    [60] Philpot,K.A.,Munir,Z.A.et al.,J Mater Sci. 1987,22,159.
    [61] Atzmon,M.,Metall Trans., 1992.23A,49.
    [62] Pampuch,P.et al.,In:Tayler,D.eds. Science of Ceramics, 1988,14.15.
    [63] Lebrat,J.P.,Varman,A.et al.,Metall Trans.,1992,23A,69.
    [64] Stoff.N.S.,Alman,D .E.,Mater Sci and Eng, 1991,A144,51.
    [65] Munir,Z.A.,Advances in Powder Metallurgy and Particulate Materials, 1992,9,251.
    [66] Merzhanov,A.G.,et al.,Process in Energy and Combustion Science, 1988,14(1). 1
    [67] 垣迁笃、谷原正晟等.粉体粉末冶金,1990,37,665.
    [68] 新宫秀夫等.粉体粉末冶金,1990,37,78.
    [69] 赖和怡等.自蔓延高温合成法(SHS)基础理论研究的进展,94中国材料研讨会,1994.
    [70] 唐清等.燃烧合成-致密化技术的研究与进展,自蔓延高温合成技术和材料,冶金工业出版社,1995,21.
    [71] 殷声等.超硬材料的超高压反应烧结,自蔓延高温合成技术和材料,冶金工业出版社,1995,90.
    [72] 张少卿等.材料工程,1993,7,41.
    [73] 果世驹等.金属间化合物的自蔓延高温合成,兵器材料科学与工程,1997,17(1),56.
    [74] 严新炎等.Ni3Si的螺旋燃烧合成,自蔓延高温合成技术研究进展,武汉工业大学出版社,1994.
    [75] 唐清等.Ti-C-Ni-Mo系燃烧合成动力学研究,自蔓延高温合成技术和材料,冶金工业出版社,1995,40.
    
    
    [76] 殷声等.超硬材料与工程,1994,1(3),4.
    [77] 日比野敦.Ni-Al系金属间化合物燃烧合成时燃烧波伝播解析,日本金属学会志,第59卷第7号(1995)717-725.
    [78] Sata,N.et al.,In:Kaieda, Y,Holt,J.B.eds. Proc 1 st US-Japaness Workshop on Combustion Synthesis, 1990,139.
    [79] 贾成厂等.Ni-Al系中γ,γ′,β相平衡的实验与热力学分析,金属学报,1999,35(2),193.
    [80] 欧阳义芳等.贵金属-Al二元合金形成焓的EAM计算,金属学报,1999.35(5),551.
    [81] 张柏清等.Al-Ti系中间合金的铝热反应,金属学报,1999,35(5),473.
    [82] 唐建成等.锻造Ti-Al基合金的晶粒长大及其动力学分析,金属学报,2000,36(1),25.
    [83] 周亦胄等.脉冲电流作用下碳钢淬火裂纹的愈合,金属学报,2000,36(1),43.
    [84] 万胜狄.金属塑性成形原理,机械工业出版社,1995,108-123.
    [85] 沈其文等.材料成形工艺基础,华中理工大学出版社,1999,33-51
    [86] 陈炳光.液态金属模锻模具设计,华中理工大学出版社,1989.
    [89] 郭建亭,周兰章,李谷松等.纳米金属间化合物NiAl的机械合金化合成及性能,金属学报,1999(35):846
    [87] K.H.马图哈主编.非铁合金的结构与性能.非铁合金的结构与性能.北京:科学出版社
    [88] Aoki K, Izutni O.Boron addition in Ni_3Al. Nippon Kinzoku Gakkaishi. 1973,43:1190
    [90] 刘铁、侍新琳.TiAl金属间化合物研究,沈阳航空工业学院学报,2001,18(1)27-29
    [91] 柳林,秦勇.球磨能量对Mo-Si混合粉末机械合金化的影响,金属学报,1996;4:423
    
    
    [92] 吴进明,吴年强,郑史烈等.球磨时间对机械合金化Al-8Ti合金组织的影响,材料科学与工程,1998;2:72
    [93] Magini M,Collela C.Int J Mechanochem Mech Alloying, 1994; 1:14
    [94] Magini M.Mater Sci For, 1992;88-90:121
    [95] Chen J,Gao L,Huang J. Preparation of Nanosized Titanin Powder Via the Controlled Hydrolysis of Titanium Alkoxide. Journal of Materials Science. 1996,31:3497--3500
    [96] 陆厚根.CaCO_3粉体的分散性研究,上海化工,1996(4):15~17
    [97] 王军,王夏兵.球磨过程中微粉的行为变化,甘肃工业大学学报,1999,25(1):26
    [98] R.W.卡恩主编.金属与合金工艺,北京:科学出版社.1999年
    [99] D.R.Maurice,T.H.Courtney, An in situ transmission electron micrscope deformation study of the slip transfer mechanisms in metals. Metall trans. 1990;26A:2437
    [100] T.H.Courtney, D.R.Maurice. Scripta Mater. 1996;34(1):5
    [101] 李凡,吴炳尧.机械合金化——新型的固态合金化方法,机械工程材料,1999(23)4:22~25
    [102] 张振忠,宋广生,杨根仓等.块状金属纳米材料的制备技术进展及展望,兵器材料科学与工程,1999(3)
    [103] Keisuke Uenishi, Toshio Matsubara, Tomohide Shibutani. Wear and oxidation resistance of Al_2O_3 particle dispersed Al_3Ti composite with a nanostructure prepared by pulsed electric current sintering of mechanical alloyed powders. Intermetallics 2002(10): 105~111
    [104] V. Gauthier, F. Bernard. Synthesis of nanocrystalline NbAl_3 by mechanical and field activation. Intermetallics 2002(10):571--580
    [105] 何德孚.焊接与连接工程学导论,上海交通大学出版社,1998,12
    [106] 韦唯.SHS焊接工艺研究,武汉交通科技大学硕士学位论文,1999
    
    
    [107] 牛济泰.材料和热加工领域的物理模拟技术,国防工业出版社,1999,9
    [108] 鲁玉祥,杨德庄,陶春虎.NiAl金属间化合物热爆合成动力学的实验研究,材料科学与工程,1997,5(4):5~8
    [109] 刘长松,殷声.自蔓延高温合成(SHS)反应机械合金化,稀有金属,1999,23(2):137~140
    [110] 罗锡裕,杨凤环,谭益钦等.电火化烧结技术及应用,粉末冶金技术,1992.10(3):189~193
    [111] 虞觉奇,易文质.二元合金状态图集,上海科学出版社,1987
    [112] Atsushi Hibino. Analysis of Combustion Wave in Self Propagating High Temperature Synthesis of Ni--Al Intermetallic Compounds. J.Japan Inst. Metals, Vol.59, No.7(1995), pp.717-725
    [113] Schulson E M. Physical Metallurgy and Processing of Intermetallic Compound [M],Stoloff N S and Sikka V Keds.Chapman & Hall.New York. 1995
    [114] 张永刚,韩雅芳,陈国良等主编.金属间化合物结构材料,北京:国防工业出版社,2001年
    [115] 马兹.希拉特著,赖和怡,刘国勋译.合金扩散与热力学,冶金工业出版社
    [116] Y. Mishin,Chr. Herzig. Diffusion in the Ti-Al System. Acta mater. 48(2000)589~623
    [117] 方芳,朱敏.纳米材料中的界面,材料导报,2001(15)9:17~19
    [118] Hans Conrad. Effects of electric current on solid state phase transformations in metals. Materials Science and Engineering A287(2000)227~237
    [119] Porter D A, Easterling K E. Phrase Transformation in Metals and Alloys, England. Van Nostrand reinho, 1988p. 186
    [120] Orling T.T. Welding with Self-propagating High-temperature Synthesis. Welding Journal, 1995(10): 37~41
    
    
    [121] 卢光熙主编.金属学原理,机械工业出版社,1992
    [122] 宋维锡主编.金属学,冶金工业出版社,1989
    [123] Stephen D Dunmead, Zuhair A Munir. Temperature Profile Analysis in Comdustion Synthesis: H, Theory and Background. J Am Ceram Soc,1992,75(1): 180
    [124] John J. Moore Feng HJ. Combustion Synthesis of Advanced Materials: Part H, Classification Applications and Modelling. Progress in Material Science, 1995, 39:275
    [125] Dunmead S D, Readey D W, Semler C E, et al. J. AM. Ceram. Soc., 1989, 72(12): 2318
    [126] 牛济泰.材料和热加工领域的物理模拟技术.国防工业出版社,1999,9
    [127] E.R.G.埃克特,R.M.德雷克.传热与传质分析.科学出版社,1983
    [128] 周立章,郭建亭等.NiAl/TiC纳米材料的机械合金化合成机理.金属学报.1997 Vol.33 No.11
    [129] 李冬剑等.块状Cu-Ti纳米晶合金的直接形成—高压下从高温固相淬火.科学通报.1994,vol.39 No.19
    [130] 水沼,友清,三牧敏等.粉体粉末冶金,43-7(1996):924
    [131] 黄培云.粉末冶金原理,冶金工业出版社,1982
    [132] 汪大年主编.金属塑性成形原理,机械工业出版社,1986
    [133] Kuhn H.A.,Downey C.L. Deformation Characteristics and Plasticity Theory of Sintered Powder Materials.Intern. J.of Powder. Met., 7(1971): 1,15
    [134] 王祖唐等.金属塑性成形理论,机械工业出版社,1989
    [135] 日比野敦.Ni-Al系金属间化合物燃烧合成时燃烧波伝播解析.日本金属学会志,1995,vol.59 No.7:717-725
    [136] 戚正风.固态金属中的扩散与相变,机械工业出版社,1998
    [137] 秦荣山,周本濂.直接晶化法制备块状纳米材料的探索.材料研究学报,1997,vol.11 No.1:69-72

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700