TiAl基合金的组织超塑性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiAl基合金因其具有高的比强度、比刚度,以及较好的高温抗蠕变、抗氧化性能等优点,引起了国内外学者的广泛关注。但这类材料具有本质脆性,一般难以加工成形,阻碍了其实用化。在超塑性状态下成形是目前解决TiAl基合金成形最为有效的方法之一。为此,本文开展了TiAl基合金的超塑性研究工作。首先,采用快速包套锻热机械处理和非晶晶化法两种工艺制备了细晶TiAl基合金,为超塑性变形提供条件;然后深入、系统地研究了TiAl基合金锻态变形组织、锻态双态组织的拉伸超塑性性能和粉末冶金态组织的压缩超塑性性能,包括力学性能和显微组织演变;分析了TiAl基合金的超塑性变形机理;并对超塑性变形过程中的孔洞行为与断裂机理进行了研究。
     快速包套锻热机械处理和非晶晶化法分别是制备细晶TiAl基合金的有效IM(铸锭冶金)和PM(粉末冶金)方法。采用终锻温度为950℃的三步快速包套锻热机械处理工艺,得到了晶粒尺寸约为0.6μm的亚微米级TiAl基合金。对于铸造TiAl基合金而言,晶粒细化主要表现为层片细化,通过研究层片结构在热压力下的塑性变形行为和热处理时组织的演变,分析了层片的细化机理。非晶晶化法是一种新颖的非平衡技术,该技术采用机械合金化法制备Ti-50 at.%Al非晶粉末,经预压成形,然后在40MPa,1000℃,1h条件下热压,得到了晶粒尺寸为0.15μm的微细晶TiAl基合金。在机械合金化过程中,Ti-Al元素粉末的结构演变过程为:Ti+Al→Ti(Al)过饱和固溶体(h.c.p)→非晶相。在本研究所采用的成分范围内,Ti-Al系具有大而负的混合热,Ti,Al两元素间存在不均衡扩散,符合形成非晶的SSAR(固态非晶化反应)机制。Ti-50 at.%Al非晶粉末在660-750℃之间发生晶化反应,其晶化过程为:非晶→α相(h.c.P)→γ,其中,α相是由无序非晶相向有序γ相转变的介稳相。
     采用上述工艺制备的细晶TiAl基合金获得了良好的拉伸超塑性。其中,锻态变形组织在1050℃,8×10~(-5)S~(-1)条件下得到了566%的延伸率;锻态双态组织在1050℃,1×10~(-4)S~(-1)条件下,得到了350%的延伸率。尤其令人关注的是,锻态变形组织表现出了优良的低温超塑性,它在800℃即出现超塑性,其延伸率达到313%;在900℃,5×10~(-4)S~(-1),常压空气中
    
    博士学位论文
    摘要
    得到了413%的最大延伸率;并且,在lx10一35一‘的较高应变速率和常压空
    气中,还得到了350%的延伸率。这个结果对于TIAI基合金超塑性成形
    技术的工业化应用具有重要意义。在压缩状态下,T认1基合金也表现出
    超塑性。
     采用恒应变速率和应变速率递增法研究了TIAI基合金超塑性变形
    的力学性能:延伸率、应力一应变曲线、应变速率敏感性因子和变形激
    活能。不同组织形态TIAI基合金的超塑性力学性能不同,它们受变形
    条件、显微组织、晶粒尺寸、预变形、晶界结构等因素的影响。重点研
    究了锻态变形组织的力学性能,发现超塑性变形时,其流变应力、应变
    速率、变形温度和晶粒尺寸间存在特殊的依赖关系,并且这种依赖关系
    随温度区间而转变。在大量实验数据的基础上,通过计算表征各变形量
    间依赖关系的参数,包括:应变速率敏感性因子m值、表观激活能QaPP
    值、晶粒尺寸因子p值,经实验拟合首次得到了TIAI基合金锻态变形组
    织超塑性变形的经验状态方程。此方程为分析TIAI基合金的超塑性变
    形机理提供了依据。在锻态变形组织中,超塑性流变曲线中存在强烈的
    加工硬化现象,组织中由预变形引起的高密度位错是引起这种现象的主
    要原因。
     采用光学显微镜(0A)、扫描电镜(SEM)、透射电镜(T EM)等分
    析手段对TIAI基合金超塑性变形过程中组织演变研究的结果表明,经
    过超塑性变形,三种组态TIAI基合金具有基本相同的组织特征,包括
    (l)晶粒仍然保持等轴晶形状;(2)有动态再结晶发生;(3)有位错运
    动。其中,经过超塑性变形的TIAI基合金中的位错密度较小,主要分
    布在晶界和三角晶界附近,晶内位错在晶界处容易被晶界“吸收”而产
    生强烈的攀移和相消现象。晶界、三角晶界、晶界上的QZ相及杂质相
    是位错的“源”。在铸态双态合金中,经超塑性变形后,组织中还有亚
    晶存在。
     提出了TIAI基合金的超塑性变形机理。在TIAI基合金中,超塑性
    流变是以晶粒群沿剪切带共同滑动的形式进行的。由晶界位错的滑移和
    攀移运动共同协调的晶粒群协同滑动是TIAI基合金的超塑性变形机
    理,其中,晶界位错的攀移运动是变形的回复机制,晶界位错的滑移运
    动既是变形机制又是变形的回复机制。这个机理对晶界滑动的微观过程
    作出了合理的解释。采用该机理本文对T认1基合金超塑性本构方程进
    行了理论推导,推导出的方程与实验得到的方程具有相同的形式,说明
    —11—
    
    博士学位论文
    摘要
    本研究给出的超塑性变形机理具有相当程度的合理性。另外,在TIAI
    基合金中,动态再结晶和亚晶对超塑性变形亦有贡献。
     研究了超塑性TIAI基合金中的孔洞行为,提出了一种新的孔洞形
    核机制—在晶粒群协调滑移带(CGBS)交割处形核。在TIAI基合金
    中,超塑性变形时,孔洞形核于晶/相界、三叉晶界和晶粒群协调滑移
    带(CGBS)交割处。张应力作用下,过饱和空位向晶界汇流,
TiAl-based alloys have high specific strength, specific stiffness, excellent oxidation and creep resistance, which have been paid broad attentions to for years. However, the major factors limiting structural applications in this material are their ambient temperature brittleness and poor workability. It is said that superplastic forming is a novel process for fabricating titanium aluminides. So, a research on the superplasticity of the alloy is done in the paper. First, a fine-grained TiAl-based alloy is obtained by a quickly canned-forging thermo-mechanical processing or by crystallization of mechanically alloyed amorphous Ti-50at%Al. Then the tensile superplasticity of the IM (ingot metallurgy) TiAl alloy with deformed microstructure or with duplex microstructure obtained by the quickly canned-forging thermo-mechanical processing and the compress superplasticity of the PM (powder metallurgy) TiAl alloy obtained by crystallization of amorphous Ti-50at%Al powders are investigated systemically and deeply. The
     superplastic mechanism of the alloy is discussed. The cavitation behavior and the fracture mechanism under superplastic deformation are analyzed too.
    Quickly canned-forging thermo-mechanical processing is an efficient and economical IM technology. By this technology, a sub-microstructure titanium aluminide with mean grain size of about 0.6μm is obtained after 3-step forging with the final forging temperature of 950℃. For a cast TiAl-based alloy, lamellar globularization is the mechanism of grain refining. By analyzing the deformation behaviors and the microstructure evolution of lamellas during forging and the following heat treatment, the lamellar globularization mechanism of the alloy is discussed. The technology of crystallization of mechanically alloyed amorphous Ti-50at%Al powders is a novel process. By this technology, a titanium aluminide with mean grain size of about 0.15*m is obtained under 40Mpa, 1000℃,lh hot-pressing. During mechanical alloying, the amorphous phase formation process can be described by: Ti+Al→Ti (Al) supersaturated solid solution (h.c.p)→morphous phase. In our research, the Ti-Al system has a large and negative heat of mixing,
     the
    ?IV ?
    
    
    ABSTRACT
    diffusivities of the two components are great different, so, the formation of the amorphous phase obeys SSRA (solid state amorphisation reaction) mechanism. Crystallization of the amorphous phase occurs at 660-750, the process can be described by: Amorphous phase disordered a phase (.c.p) ordered y phase, during the process, the disordered a phase is a metastable phase.
    The fine-grained TiAl-based alloys obtained by above technologies exhibit good tensile superplastic characters. An elongation of 566% is obtained at lOSO'C^SxlO'V1 in the TiAl-based alloy with deformed microstructure, and an elongation of 350% is obtained at 1050,lxloV in the alloy with duplex microstructure. It worth especially noting that the alloy with deformed microstructure exhibits excellent low temperature superplasticity. The alloy shows superplastic characters at very low temperature- 800 (the elongation is 313%). A maximal elongation of 413% is obtained at 900,5xlO~V in air. Even at a higher strain rate of 1x1 0'V1 and in air, the elongation also reaches 350%. In addition, under compress condition, the alloy also exhibits superplastic characters.
    Mechanically properties of the superplastic deformation are investigated by constant strain rate tests and incremental strain rate tests. These properties include: elongation, curves of flow stress-true strain, strain rate sensitivity (m), and apparent activation energy. Results show that these mechanically properties are affect by deforming conditions, microstructure, grain size, pre-deformation, and grain boundary structure. In the research, a large amount of work is done in TiAl-based alloy with deformed microstructure. A phenomenon of strain hardening resulting from pre-deformation is observed in the alloy. And the phenomenological relationship of superplastic flow is investigated in the alloy. It is found
引文
[1] W.贝脱立治.尼莫尼克镍铬耐热合金.北京:中国工业出版社,1964
    [2] 黄乾尧,李汉康等编著.高温合金.北京:冶金工业出版社,2000
    [3] 黄伯云.钛铝基金属间化合物.长沙:中南工业大学出版社,1998
    [4] J Doychak. Metal- and intemetallic-matrix composites for aerospace propulsion and power systems. JOM, 1992,7:46-51
    [5] D M Dimiduk, D B Miracle and C H Ward. Development of intermetallic materials for aerospace systems. Materials Science and Technology. 1992,8(4):367-375
    [6] Fores F H, Suryanarayana C, Eliezer D. Review synthesis properties and applications of titanium aluminides. J Mater Sci, 1992,27:5113-5140.
    [7] Bartolotta P, Barret J, Kelly T, Smashey R. The use of cast Ti-48Al-2Cr-2Nb in jet engines. JOM, 1997,49(5):48-50.
    [8] C M Austin, T J Kelley, K G Mcallister and J C Chesnult. Aircraft engine applications for gamma titanium aluminide. Structural Intermetallics, edited by M V Nathal, R Darolia, C T Liu and P L Martin, 1997, 413-426.
    [9] U R Kattner, J C Liu, Y A Chang. Thermodynamic assessment and calculation of Ti-Al system. Metal Trans, 1992, 23A:2081
    [10] 山口正治,马越佑吉著.金属间化合物(,丁树泽译).北京:科学出版社,1994
    [11] Yamaguchi M and Umakoshi Y. The deformation of intermetallic superlattic compounds. Progress in Materials Science, 1990,34:1-148.
    [12] 陈国良,林品均编著.有序金属间化合物结构材料物理金属学基础.北京:冶金出版社,1999
    [13] R V Ramanujan. Phase transformation in γ based titanium aluminides. Internayional Materials Reviews, 2000, 45(6):217-240
    [14] Y W Kim. Intermetallic phases based on gamma titanium aluminide. JOM, 1989, 41(7):24-28
    [15] Y W Kim. Microstructural evolution and mechanical properties of a forged gamma titanium alloy. Acta Metall. Mater. 1992, 40:1121-1134
    [16] W Y Chu and W A Thompson. Effects of grain size on yield strength in TiAl. Scripta Metall.Mater.1.Mater.., 1991, 25(3):641-644
    [17] Y W Kim. Overview: Ordered intermetallic alloys, Part Ⅲ: Gamma titanium
    
    aluminides. JOM, 1994, 46(7):30
    [18] F H Froes, D Eliezer. Relationship between microstructures and properties of titanium aluminides. J.Mater.Sci, 1993,28:2766
    [19] 信木捻,高桥顺次,迁本得藏.TiAl金属间化合物大型溶制材高温变形.日本金属学会志,1989,53(8):809-813
    [20] H Y Kim, W H Sohn, S H Hong. High tempertature deformation of Ti-(46-46)Al-2W intermetallic compounds. Mater. Sci. and Eng.A, 1998, A251:216-225.
    [21] Y W Kim.Gamma titanium aluminides. JOM, 1995, 7: 38-40.
    [22] Y W Kim. Effects of microstructure on the deformation and fracture of γ-TiAlalloy. Mater. Sci. and Eng.A, 1995, A192/193:519-538
    [23] V M Imayev, G A Salishchev, R M Imayev, M R Shayiev. An approach to ductility improvement of TiAl and Ti_3Al titanium aluminides based on microstructure control. Structural Intermetallics, 1997
    [24] C T Liu, J H Schneibel, P J Maziasz, J L Wright, D S Easten. Tensile properties ang fracture toughness of TiAl alloys. Intermetallics,1996,4:429-440
    [25] C T Liu, P J Maziasz. Microstructure control and mechanical properties of dual-phase TiAl alloy. Intermetallics, 1998,6:653-661
    [26] 王道荫主编.迈向21世纪的航空科学技术.北京:航空工业出版社,1994
    [27] C M Austin and T J Kelly. Progress in implementation of cast gamma titanium aluminides, ed. Y W Kim, et al., Gamma Titanium Aluminides, TMS, Warrendate, PA, 1995:21-32
    [28] Y G Nakagawa, et al., Analysis of cast TiAl properties for engine materials, ed. Y W Kim et al., Gamma Titanium Aluminides, TMS, Warrendate, PA, 1995,415-424
    [29] C M Austin and T J Kelly, K G Mcallister. Aircraft engine applications for gamma titanium aluminide, ed. M V Nathal et al, Structure Intermetallics 1997, MRS, 1997:413-425
    [30] D M Dimiduk, D B Miracle, Y W Kim, M G Mendiratta. Rencent pyogress on intermetallic alloys for advanced aerospace systems. ISIJ international,1991,31(10):1223-1234
    [31] E Donald, J Larsen. Mater. Sci. Eng.A, Status of intvesment cast gamma titanium aluminides in the USA. 1996, A213:128-133
    [32] M M Keller, P E Jones, W J PorterⅢ and D Eylon. The development of low-cost TiAl automotive valves. JOM, 1997,5:42-44
    
    
    [33] T S Bieler, Superplasticity in hard-to-machine materials. Annu. Rev. Mater. Sci.,1996,26:75-106.
    [34] S Taketo, H Kenji. Summary in the project "Towdards Innovation in Superplasticity". JIM, 1999,40(8):702-715
    [35] 林兆荣主编.金属超塑性成形原理及应用.北京:航空工业出版社,1990
    [36] H Clemens. Intermetallic γ-TiAl based alloy sheet materials-processing and mechanical properties. Z. Metallkd, 1995, 86(12):814-822
    [37] H Clemens, I Rumberg, P Schretter. Characterization of Ti-48Al-2Cr sheet material. Intermetallics, 1994, 2:179-184
    [38] C Koeppe, A Bartels, H Clemens, P Schretter and W Glatz. Optimizing the properties of TiAl sheet material for application in heat protection shields or propulsion systems. Mater. Sci. Eng.A, 1995, A201:182-193
    [39] A Yoshio. Manufacturing process of TiAl sheets. Light Metal, 1994, 44(11): 604-608
    [40] T G Nieh and J Wadsworth, Recent advance in superplastic intermetallics with emphases on titanium and iron aluminide. Mater Sci Forum, 1999,vol 304-306: 169-176.
    [41] 何景素,王燕文.金属的超塑性.北京:科学出版社,1996
    [42] V M Imayev, O A Kaibyshev and G A Salishev. Mechanical behavior of fine grained TiAl intermetallic compound-1. Superplasticity, Acta Metall. Mater., 1992,40(3):581-587
    [43] V M Imayev, R M Imayev. Mechanical behavior of TiAl submicrocrystalline intermetallic compaund at eveted temperatures. Scripta Metall.Mater.1. 1991,25:2041-2046
    [44] R M Imayev, G A Salishchev, O N Senkov, V M Imayev, M R Shagiev, N K Gabdullin, A V Kuznetsov and F H Froes, Low-temperature superplasticity of titanium aluminides. Mater Sci Forum, 1999,vol 304-306:195-200
    [45] R M Imayev, M Shagiev, G A Salishev, V M Imayev and V Valitov. Superplasticity and hot rolling of two-phase intermetallic alloy based on TiAl. Scripta Metall.Mater..1996, 34(6):985-991
    [46] S C Cheng, J Wolfenstine, O D Sherby, Superplastic behavior of two-phase titanium aluminuides. Metall Trans A, 1992,23A: 1509-1513
    [47] M Tokizane, Y Takaki. Superplastic TiAl-Ti_3Al two-phase compact made from mechanicalling alloyed powder. Advances in powder metallurgy, 1992, vol 7:315-318
    
    
    [48] M Tokizane. Fabrication of the compacts of intermallics by powder metallurgical process and their characteristics. Funtai Oyobi Fummatsu Yakin, 1995,42(11):1215-1222
    [49] R Bohn, T Klassen and R Bormann, Mechanical behavior of submicro-grained γ-TiAl-based alloys at elevated temperatures. Intermetallic, 2001,9:559-569
    [50] C M Lambard, A K Ghosh, S L Semiatin. Superplastic deformation of a rolled gamma titanium aluminide alloy, in Y W Kim, R Wagner and M Yamaguchi, eds., Gamma Titanium Aluminides, 1995, 579-586
    [51] B Y Hang, Z Y Deng, Y Liu, X H Qu and Y H He, Superplastic behavior of a TiAl-based alloy. Intermetallics, 2000,(8):559-562.
    [52] 黄伯云,贺跃辉,邓忠勇,王健农.热变形TiAl基合金的超塑性行为.金属学报,1998,34(11),1173-1177
    [53] J Sun, J Wu and Y He, Improved superplasticity in a TiAl-based alloy subjected to thermo-mechanical processing. Z Metallkd, 2000,91(6):472-476
    [54] 孙坚,吴建生,张惠以等.近γ组织TiAl合金的超塑性.稀有金属材料与工程,2000,29(1):13-16
    [55] 孙坚,刘润开,吴建生,贺跃辉.1073-1173K温度范围内TiAl合金的超塑性行为.金属学报,2001,37(1):95-98
    [56] W Takayuki, I Kazuo, A Kei and T Masaharu. Superplasticity in TiAl and Ti_3Al two phase material made from PREPed powder. ISIJ, 1993,33:884-888
    [57] S H Kim, H H Chung, S G Pyo, S J Hwang and N J Kim. Effect of B on the microstructure and mechanical properties of mechanically milled TiAl alloy. Metal Trans, 1998, 29A:2273-2283
    [58] M R Shagiev, O N Senkov, G A Salishchev, F H Froes. High temperature mechanical properties of a submicrocrystalline Ti-47Al-3Cr alloy produced by mechanical alloying and hot isostatic pressing. Journal of alloys and compounds, 2000,313:201-208
    [59] E Paransky, E Y Gutmanas, I Gotman and M Koczak. Pressure-assisted reactive synthesis of titanium aluminides from dense 50Al-50Tielemental powder blends. Metal Trans, 1996, 27A:2130-2138
    [60] D L Liu, Y Wang, Y Lin and Y W Kim. Strain rate sensitivity of mechanical properties and related thermal activation process in a two-phase γ titanium aluminide, MRS, 1997,vol 460:64-70
    
    
    [61] J Sun, J S Wu, Y H He. Superplastic properties of a TIAl based alloy with a duplex microstructure. Journal of materials science, 2000, 35:4949-4922
    [62] W B Lee, H S Yang, K W Kim and A K Muhkerjee. Superplastic behavior in a two-phase TiAl alloy [J]. Scripta Metall.Mater.., 1993,29:1403-1408.
    [63] W B Lee, H S Yang, A K Muhkerjee. Mechanical propertities and microstructural characterization of a superplastic TiAl alloy. Mater. Sci. Eng.A, 1995, A192/193:733-740
    [64] D Vanderschueren, M Nobuki and M Nakamura. Superplasticity in a vanadium alloyed gamma plus beta phased Ti-Al intermetallic. Scripta Metall.Mater.., 1993,28:605-610
    [65] N Masahashi, Y Mizuhara, M Matsuo, J Hanamura. High temperature deformation behavior of titanium-aluminide based gamma plus beta microduplex alloy. ISIJ.,1991,31(7):728-737
    [66] T G Nieh and J Wadsworth. Microstructural characteristics and deformation properties in superplastic intermetallics. Mater. Sci. Eng.A, 1997, A239/240:88-96
    [67] T G Nieh, J N Wang, L M Hsiung, J Wadsworth. Low temperature superplasticity in a TiAl alloy with a metastable microstructure. Scripta Metall.Mater. 1997, 37(6):773-779
    [68] T G Nieh, L M Hsiung, J Wadsworth. Superplastic behavior of a powder metallurgy TiAl alloy with a metastable microstructure. Intermetallics, 1999,7:163-170
    [69] R M Imayev, G A Salishchev, M R Shagiev. Low-temperature superplasticity of submicrocrystalline intermetallics. Mater Sci and Eng,2001,A300:263-277.
    [70] S Li, J Zhang. Study on superplasticity of deformed Ti_3Al and TiAl based alloys, Structural Intermetallics, 1997:361-367
    [71] 陈浦泉.组织超塑性.哈尔滨:哈尔滨工业大学出版社,1990
    [72] J Sun, J S Wu, G X He, Y H He. The influence of microstructure on superplastic behaviors of γ-TiAl alloys. MRS, 1999, vol.552:kk8.13.5
    [73] 刘勤.金属的超塑性.上海:上海交通大学出版社,1989
    [74] O.A.卡依勃舍夫著.金属的塑性和超塑性(,王燕文译).北京:机械工业出版社,1982
    [75] R S Mishra, A K Mukherjee. An analysis of the role of grain size on superplasticity of γ titanium aluminides. Journal of materials science, 2000, 35:147-151
    [76] R M Imayev, O A Kaibyshev, G A Salishchev. Low-temperature superplasticity of submicrocrystalline Ti-48Al-2Cr-2Nb alloy produced by mutiple forging. Scripta
    
    Metall.Mater.., 1999, 40(2):183-189
    [77] O A Kaibyshev. Superplasticity of Alloys, Intermetallides, and Ceramics. Springer-Verlag Berlin Heidelberg, 1992, Printed in Germay
    [78] M G Zelin, W B Lee and A K Mukherjee. Evidence of cooperative grain sliding in superplastically deformed γ-TiAl. J. Mater. Res. 1994, 9(10):245-67-2469
    [79] V M Imayev, R M Imayev, G A Salishev. Porosity of TiAl intermetallic compound with micro- and submicrocrystalline structure after superplastic deformation. Mater. Sci. Eng.A, 1996, A208:226-231
    [80] 张荻,覃继宁,施幸华,张国定.热轧态TiAl基金属间化合物超塑性变形的组织研究.稀有金属材料与工程,1998,27(4):210-214
    [81] Z Y Deng, B Y Hang. Superplasticity of a hot forged TiAl-based alloy. Trans. Nonferrous Met. Soc. China, 1998,8(1): 107-108
    [82] 邓忠勇.热变形态TiAl基超塑性拉伸过程中应变速率敏感系数的分析.稀有金属材料与工程,1999,28(4):228-230
    [83] K Ameyama, H Uno and M Tokizane, Superplastic behavior of Ti-48Al two-phase titanium aluminide compacts made from mechanically alloyed powder. Intermillics, 1994,2:315-319
    [84] G Frmneyer, Rommerski. Superplastic deformation of a Ti-46Al-0.2Si alloy. Titanium'95, vol. 1 Birmingham, UK, 1995:22-26
    [85] R S Mishra, A K Mukherjee. High trmpersture deformation behavior of a nanocrystalline titanium aluminide. Scripta Metall.Mater.., 1996,34(11):1765-1769
    [86] H Clemens, N Ebahard. Processing and properties of gamma titanium aluminids. Structure Intermetallics, 1997,edited by MY Nathal, R Dardia, C T Liu, P L Martin
    [87] O A Kaibyshev,李良福译.利用超塑性变形规范制造金属间化合物制件.国内钛合金动态,1999,7:7-10
    [88] 欧文沛.TiAl金属间化合物超塑性研究现状.材料导报,1996,10(5):22-26
    [89] G Cam. The fracture behavior of diffusion-bonded duplex gamma TiAl. JOM,1996,11:66
    [90] 鲁世强,黄伯云,贺跃辉,等.TiAl基合金的超塑性力学性能.材料导报,2002,16(6):1-4
    [91] 黄伯云,贺跃辉,王彬,等.TiAl基合金固相焊接界面及其显微组织分析.中南工业大学学报,1997,28(6):555
    [92] 贺跃辉,黄伯云,王彬,等.TiAl基合金固相焊接.金属学报,1998,34
    
    (11):1167
    [93] K Sadananda, C R Feng. The creep of intermetallics and their composites. JOM, 1993(5):45-47
    [94] A Hirose, K Abotani, R Aoki, K F Kobayashi. Properties of NbC-TiAl and TiB_2-TiAl composites produced by Plasma Transferred Arc process. Mateials Science and Technology, 1996,12(12):1057-1063
    [95] A Szaruga, L Rothenflue, R Scrinvasan, H A Lipsitt. The workability of "XD"titanium aluminide alloys with low volume fractions of TiB_2. Scripta Metall.Mater..,1992,26(10): 1565-1570
    [96] Brant. Effect of TiB additions on the colony size of near gamma titanium aluminides. Scripta Metall.Mater.., 1990,24:33-38
    [97] W J Zhang, E Evangelista, L Francesconi. Effect of prior cooling rate on the grain size of fully-lamellar TiAl-based alloy developed by tempering/quenching. Scripta Metall. Mater.., 1996,35(1):41-45
    [98] W J Zhang, L Francesconi, E Evangelista. Novel heat treatment to develop very fine lamellar structure in cast gamma-based TiAl alloys. Mater. Leter., 1996,27(4/5):135-138
    [99] W J Zhang, E Evangelista, L Francesconi. Microstructure variation of a cast Ti-48Al-2W-0.5Si alloy during quenching and tempering. Mater. Sci. Eng.A, 1996, A220:15-25.
    [100] 100.W J Zhang, L Francesconi, E Evangelista. Homogenization kinetics of a cast Ti-48Al-2W-0.5Si alloy. Mater. Sci. Eng.A, 1996, A220:168-175
    [101] G X Cao, J G Lin. Phase transformation of fully lamellar γ-TiAl alloy in α+γ field. Trans. Nonferrous Met. Soc. China, 2000,10(4):425-429
    [102] 王勇.TiAl基合金显微组织的热处理细化研究:硕士学位论文,中南大学,长沙,2001
    [103] 谢鲲,王健农.循环热处理细化TiAl晶粒.稀有金属材料科学与工程,1999,28(4):248-251
    [104] 彭超群.循环热处理对TiAl基合金组织与性能的影响:博士学位论文.长沙:中南大学,2001
    [105] J N Wang, K Xie. Grain size refinement of a TiAl alloy by rapid heat treatment. Scripta Metall.Mater.., 2000,43:441-446
    [106] 李书江,刘自成.快速细化低铝含量钛铝合金铸态组织的热处理工艺,稀有金属,1997,21(2):109-114
    
    
    [107] J Beddoes. The isothermal compression response of a near γ-TiAl+W intermetallic. Mater. Sci. Eng.A, 1994, A183:211-222
    [108] N Fujitsuna, H Ohyama, Y Miyamoto, Y Ashida. Isothermal forging of TiAl-based intermetallic compounds. ISIJ international, 1991, 31(10): 1147-1153
    [109] G A Salishev, R M Imayev, O N Senkov, F H Froes. Microstructural control in Ti-Al for enhanced mechanical properties. JOM, 2000,17:46-48
    [110] F H Froes, O N Senkov, E G Baburaj. Some aspects of synthesis of nanocrystalline material. Mater. Sci. Techno, 2001,17:119
    [111] F H Froes, O N Senkov, E G Baburaj. synthesis of nanocrystalline material- an overview. Mater. Sci. Eng.A, 2001, A301:44-53
    [112] G A Salishev, R M Imayev, O N Senkov. Formation of a submicrocrystalline structure. JOM, 1992:26-29
    [113] V Seetharaman, S L Semiatin. Influence of temperature transients on the hot workability of a two-phase gamma titanium alunimide alloy. Mater. Trans. 1996, 27A: 1987-2003
    [114] S L Semiatin, V Seetharaman, V K Jain. Microstructure development during conventional and isothermal hot forging of a near-gamma titanium alunimide. Mater Trans., 1994,25A:2753-2767
    [115] S L Semiatin, N Frey. Softing and microstructure evolution during hot pressing of wrought near-gamma titanium alunimides. Mater. Trans. 1992, 23A:1719-1724
    [116] H Y Kim, S H Hong. Effect of microstructure on the high-temperature deformation behavior of Ti-48Al-2W intermetallic compounds. Mater. Sci. Eng.A, 1999, A271:382-389
    [117] H Y Kim, W H Soho, S H Hong. High temperature deformation of Ti-(46-48)Al-2W intermetallic compounds. Mater. Sci. Eng.A, 1998, A251:216-225
    [118] 陈伶辉,黄伯云,曲选辉等.TiAl基合金的热机械处理,中国有色金属学报,1996,6:120
    [119] 贺跃辉.TiAl基合金强韧化技术及机理分析:博士学位论文.长沙:中南工业大学,1994
    [120] V Seetharaman, J C Malas, C M Lombard, in L A Johnson. etal, eds., High-Temperature Ordered Intermetallic Alloys Ⅳ. Pittsburgh, PA:MRS,1991, 889-894
    [121] S L Semiatin, V M Segal, R L Goetz. Gamma titanium aluminide alloy during equal channel anqular extrusion. Scripta Metall.Mater.. Mater., 1995,33(4):535-540
    
    
    [122] S L Semiatin, J C Chesnutt, C Austin and V Seetharaman. Processing of intermetallic alloys. Structural Intermetallics, 1997:263-267
    [123] 刘咏.元素粉末冶金TiAl基合金制备工艺及成型技术:博士学位论文.长沙:中南工业大学,1999
    [124] J C Rawers, W R Wrzesinski. Reaction-sintered hot-pressed TiAl. Journal of Materials Science, 1992(27):2877-2886
    [125] 王学成,张小明,柴惠芬.燃烧合成TiAl合金结构转变动力学的端部淬火熄灭法分析.稀有金属材料与工程,1999,28(3):161-165
    [126] 熊翔,黄伯云.高温反应合成TiAl金属间化合物的研究.粉末冶金技术,1994,(5):83-86
    [127] E Szewczak, J Paszula, A V Leonav, H Matgja. Explosive consolidation of mechanicclly alloyed Ti-Al alloys. Mater. Sci. Eng.A, 1997, A226-228:115-118
    [128] M A Morris, M Leboeuf. Influence of microstructure refinement on strength, ductility and toughness of TiAl alloys. MRS, 1997, 460:177-182
    [129] 苏彦庆.TiAl金属间化合物感应宁可熔炼过程研究:博士学位论文,哈尔滨:哈尔滨工业大学,1997
    [130] Y Liu, D Li, T L Lin and S Chen. The microstructural evolution during superplastic deformation in FeAl intermetallic compound. Scripta Metall.Mater 1996,34(7):1095-1100
    [131] L Zhao, K Tangri. Transmission electron microscopy characterization of interfacial boundaries in heat-treated Ti_3Al+TiAl two-phase alloy. Philosophical Magazine A,1991,64(2):361-386
    [132] 唐建成.TiAl基合金组织演变与室温拉伸性能变形的研究:博士学位论文,长沙:中南工业大学,2000
    [133] B M Dao, B K Kad, R J Asaro. Deformation and fracture under compressive loading in lamellar TiAl microstructures. Philosophical Magazine A, 1996, 74(3): 569-591
    [134] M Yamaguchi, H Inui, K Ito. High temperature structural intermatallics. Acta Metall. Mater., 2000, 48:307-322
    [135] Y Umakoshi, I Nakano. The role of ordered domains and slip mode of α_2 phase in the plastic behavior of TiAl crystals containing oriented lamellae Acta Metall. Mater., 1993,41(4):1155-1161
    [136] L C Zhang, G L Chen, J G Wang, H Q Ye. TEM study on lamellar microstructure and α_2/γ interfacial structure in a hot deformed two-phase γ-TiAl-based alloy. Mater. Sci.
    
    Eng. A, 1998, A247:1-7
    [137] W J Zhang, U Lorenz, F Appel. Recovery, recrystallization and phase transformations during thermomachanical processing and treatment of TiAl-based alloys. Acta Metall. Mater., 2000, 48:2803-2813
    [138] R V Ramanujan, P J Maziasz, CT Liu. The thermal stability of the microstructure of γ-based titanium aluminides. Acta Metall. Mater., 1996,44(7): 2611-2642
    [139] G Sharma, R V Ramanujan, G P Tiwai. Instability mechanism in lamellar microstructures. Acta Metall. Mater., 2000, 48:875-889
    [140] R V Ramanujan. The coarsing of lamellar in Ti-48Al-2Mn-2Nb. Acta Metall. Mater.,1994, 42(8): 2775-2781
    [141] 汪小平,郑运荣.Ti_3Al+TiAl层片组织不连续粗化转变的研究.中国有色金属学报,1998,8:233-238
    [142] F H Froes, R Sundaresan, K Russell, C G Li. Synthesis of intermetallics by mechanical alloying. Mater. Sci. Eng. A, 1995, A192/193:612-623
    [143] C Suryanary, R Sundaresan, F H Froes. TiAl formation by mechanical alloying. Mater. Sci. Eng. A, 1992,A150:117-121
    [144] C Suryanarayna, C H Chen. A Frefer, F H Froes. Structural evolution of mechanically alloyed Ti-Al alloys. Mater. Sci. Eng. A, 1992, A158:93-101
    [145] M Qi, M Zhu, G B Li, H X Sui, D Z Yang. Double amorphization in the TiAl binary system during high-energy milling. Journal of Materials Science Letters, 1993, 12: 66-69
    [146] W Guo, A Iasoma, M Magini. Systhesis of amorphous and metastable Ti_(40)Al_(60) alloys by mechanical alloying of elemental powders. Journal of Materials Science, 1994, 29:2436-2444
    [147] K Y Wang, G L Chen, J G Wang. Mechanical alloying Ti_(50)Al_(50) in nitrogen atmosphere. Scripta Metall.Mater., 1994, 31(1): 87-92
    [148] O N Senkov, M D Uchic, S Menon, D B Miracle. Crystallization kinetics of an amorphous TiAl sheet produced by PVD. Scripta Metall.Mater., 2002, 46:187-192
    [149] T Abe, S Akiyama, H Onodera. Crystallization of sputter deposited amorphous Ti-52at%Al alloying, ISIJ international, 1994, 34(5): 429-434
    [150] C Suryanarayana. Mechanical alloying and milling. Progress in Materials Science, 2001, 46:1-84
    [151] B S Mutty, S Ranganathan. Novel materials systhesis by mechanical alloying/milling.
    
    International Materials Review, 1998, 13(3):101
    [152] C Suryanarayana, G E Korth, H Froes. Compaction and characterization of mechanically alloyed nanocrystalline titanium aluminides. Metall Trans, 1997, 28A:293-301
    [153] K Y Wang. Formation and characteristics of nanocrystalline composites γ-TiAl+Ti_2AlN by mechanical alloying and subsequent annealing treatment. Journal of Materials Research, 1995, 10(5): 1247-1255
    [154] K W Liu, J S Zhang, J G Wang, G L Chen. Structure evolution of amorphous Ti-Al-Si during alloying. Journal of Noncrystalline solids, 1997, 215:140-145
    [155] K Y Wang. Thermal behaviors of mechanically alloyed TiAl in a nitrogen atmosphere. Journal of Materials Science, 1995, 30:5427-5432
    [156] P.W卡恩主编.金属与合金.材料科学与技术丛书.北京:科学工业出版社,1999
    [157] R B Schwarz, W L Johnson. Formation of an amorphous in La-Au alloy. Phys, Rev Letter, 1983, 51:415-418
    [158] O N Senkov, M Carusoglu, F H Froes. Synthesis and characterization of a TiAl/Ti_5Si3 composite with a submicrocrystalline structure. Mater. Sci. Eng. A, 2001, A300:85-93
    [159] 张二林,曾松岩,蒋祖龄,李庆春.机械强化Fe-Ti合金非晶形成能力的研究.材料科学与工艺,1995,3(3):74-77
    [160] G Cocco, I Soleta. Mechanical alloying of the Ti-Al system. Philosophical Magazine A,1991,61(4):473-486
    [161] J L Murray. The Al-Ti(Aluminium-Titanium) system, in Phase Diagrams of Titanium Alloys: 12-22
    [162] R S Murty, M D Naik, S Ranganathan. Mechanical alloying in Ti-Al alloys, Mater. Forum., 1992, 16:19-26
    [163] C J Smithells. Metals reference book, 6th. London, Butterworths, 1983:13-10
    [164] M Kambarra, K Venishi, K F Kobayashi. Nano-structural intermetallic compound TiAl obtained by crystallization of mechanicalliy alloyed amorphous TiAl and its subsequent grain growth. Journal of Materials Science, 2000, 35:2897-2905
    [165] E Abr, M Ohnuma and M Nakamura, The structure of a new ε-phase formed during the early stage of crystallization of Ti-48Al% amorphous film., Acta Metall. Mater. 1999, 47(13):3607-3614.
    [166] M L (?)vecoglu, O N Senkov, N Srisukumbowornchai and F H Froes, Mrcrostructure
    
    evolution of a nanocrystalline Ti-47Al-3Cr alloy during annealing in the α+γ-phase field. Metall. Mater. Trans., 1999,30A:751-761
    [167] M Shimono, H Onodera. Molecular dynamics study on formation and crystallization of Ti-Al amorphous alloys. Mater. Sci. Eng.A,, 2001, A304-306, 515-519
    [168] K N Ishihara, M Maeda, P H Shingu. The nucleation of metastable phases from undercooled liquids., Acta Metall. Mater. 1985,33(12): 2113-2117
    [169] E Ma,.Consolidation and mechanical behavior of nanophase iron alloy powders prepared by mechanical milling. Powder Metallurgy, 2000, 43(4): 306-310
    [170] S C Liao, W E Mayo, K D Pae. Theory of high pressure/low temperature sintering of bulk nanocrystalloine TiO_2. Acta Metall. Mater., 1997,45(10):4027-4040
    [171] V M Imayev, R M Imayev, G A Salishchev. On two stages of brittle-to-ductile transition in TiAl intermetallic. Intermetallics, 2000,8:1-6
    [172] T Takasugi, S R Kukawa, S Hanada. Superplastic deformation in Ni(Si, Ti) alloys. Acta Metall. Mater., 1992, 40(8): 1895-1906
    [173] M S Kim, S Handa, S Watanke, 'O Izum. Superplasticity in a recrystallized Ni_3Al polycrystale doped with Boron. JIM, 1989,30(1): 77-85
    [174] 吴诗惇.金属超塑性变形理论,北京:国防工业出版社,1997
    [175] S Kroll. H Mehrer, H Stolwijk, C Herzig, R Rozenkranz and G Frommeyer. Titanium self-diffusion in the intermetallic compound γ-TiAl. Z Metallkd, 1992,83:591-595
    [176] S L Kampe, J D Bryant and L Christodoulou, Creep deformation of Ti_2B-reinforced near-γ titanium alunimides. Metall Trans., 1991,22A:447-454.
    [177] J P Poirier.晶体的高温塑性变形(,关德林译).大连:大连理工大学出版社,1989
    [178] M S Mishra, R Z Valiev, S X McFadden. A K Mukherjee. Tensile superplasticity in a nanocrystalline nickel aluminide. Mater. Sci. Eng. A, 1998, A252:174-178
    [179] A C季霍诺夫著.金属与合金的超塑性效应(,刘春林译).北京:科学出版社,1983
    [180] T G Nieh, J Wadsworth. Fine structure superplastic intermetallics. International Mater Reviews, 1999, 44(2): 59
    [181] B Y Hang, J H Zhang, Y H He et al, Superplastic Behaviors of TiAl based alloy at relatively low temperatures ranging from 800℃ to 1075℃. Trans Nonferrous Met Soc Chin, 2002, 12(4):577-581.
    [182] O D Sherby, J Wadsworth. Superplasticity-recent advance and future directions.
    
    Process in Materials Science, 1989, 33: 169-221
    [183] R E Schafrik. Communication:Dynamic elastic moduli of the titanium aluminides. Mater. Trans., 1997,8A: 1003-1005
    [184] H S Yang, P Jin, A K Mukherjee. Superplastic behavior of regular α_2 and super α_2 titanium aluminides. Mater. Sci. Eng.A, 1992, A153:457
    [185] B Derby., The dependence of grain size on stress during dynamic recrystallization. Acta Metall. Mater., 1991, 39(5): 955-962
    [186] T Sakai, J J Jones. Dynamic recrystallization: mechanical and microstructural considerations. Acta Metall. Mater., 1984, 32:189-209
    [187] T R Bieler, R S Mishra, A K Mukherjee. Superplaticity in hard-to-machine materials. Annu Rev Mater Sci, 1996,26:75-106
    [188] R S Mishra, A K Mukherjee. In, A K Ghost,. T R Bieler, eds: superplasticity and superplastic forming—1998, TMS, Warrendale,, 1998:171
    [189] M F Ashby, R A Verrall. Diffusion-accommodated flow and superplasticity. Acta Metall. Mater., 1973, 21:149-163
    [190] A ball, M M Butchison. Superplaticity in the aluminium-zinc eutectoid. Met. Sci. J, 1969, 3:1-7
    [191] H Fukuyo, H C Tsai, T Oyama, O D Sherby. Superplasticity and Newtonian-Viscous flow in fine grained class solid solution alloys. ISIJ international, 1991, 31(1): 76-85
    [192] O D Sherby. Advances in superplasticity and in superplastic materials. ISIJ international, 1989, 29(8): 698-716
    [193] M G Zelin, A K Mukherjee. Cooperative phenomena at grain boundaries during superplastic flow. Acta Metall. Mater., 1995, 43(6): 2359-2372
    [194] MG Zelin, N A Krasilnikov, R Z Valiev, M W Grabski. On the microstructural aspects of the nonhomogeneity of superplastic deformation at the level of grain groups. Acta Metall. Mater., 1994, 42(1): 119-126
    [195] V V Astanin, A V Sisanbaev, A I Pshenichnyuk, O A Kaibyshev. Self-organization of cooperative grain boundary sliding in aluminium tricrystals. Scripta Metall.Mater.,1997, 36(1): 117-122
    [196] V V Astanin, O A Kaibyshev, S N Fainzova. The role of deformation localization in superplastic flow. Acta Metall. Mater., 1994, 42(8): 2617-2622
    [197] V V Astanin, O A Kaibyshev, S N Fainzova. Cooperative grain boundary sliding under superplastic flow. Scripta Metall.Mater., 1991, 25: 2663-2668
    
    
    [198] V V Astanin, S N Fainzova, K A Padmanbham. Model of grain boundary sliding and its relevance to optimal structural superplasticity Part 2-Evidence for cooperative grain/interphase boundary sliding and plane interface formation. Mater, Sci Techno, 1996, 12:489
    [199] Taketo Sakuma, Kenji Higashi. Summary in the project "Towards Innovation in Superplasticity". JIM, 1999,40(8):702-715
    [200] O A Kaibyshev. Grain boundary sliding-the main mechanism of superplastic flow. Superplasticity: 60 years after Pearson: 63-73, edited by Norman Ridley, printed and finished in the UK by Boume Press,Bournemouth
    [201] H W Hayden, S Floreen, P D Goodell. The deformation mechanisms of superplasticity. Metall Trans A, 1971, 3A:833-842
    [202] N Ridley, Z C Wang. Cavivation in superplastic materials. Superplasticity: 60 years after Pearson: 63-73, edited by Norman Ridley, printed and finished in the UK by Boume Press,Bournemouth
    [203] R Raj. Nucleation of cavities at second phase particles in grain boundaries. Acta Metall. Mater., 1978,26: 995-1006
    [204] A H Chokshi. T G Langdon. A model for diffusional cavity growth in superplasticity. Acta Metall. Mater., 1987, 35(5): 1089-1101
    [205] A H Chokshi. The development of cavity growth maps for superplastic materials. J Mater Sci, 1986, 21:2073-2082
    [206] C M Lombard, A K Ghosh, S L Semiatin. An analysis of cavitations occurring in near-γ titanium aluminide during superplastic deformation. Metall Trans A, 2001, 32A:2761-2779
    [207] A K Ghost, D H Bae, S L Semiatin. Initiation and early states of cavity growth during superplastic and hot deformation. Materials Science forum, 1999, 304-306:609-616
    [208] C M bombard, K Ghost, S L Semiatin. Analysis of cavitation in a near-γ titanium aluminide during high temperature superplastic deformation. MRS, 2000, 601:73-78
    [209] H Wu. Influence of strain rates and strain states on the formability of a superplastic 8090 aluminium alloy. Journal of Materials Processing Technology, 2000, 101:76-80
    [210] A H Chokshi. The influence of grain size on cavitation in superplasticity. Materials Science forum, 1997, 233/234:89-108
    [211] Q H Rao, Y H He, B Y Huang, W S Liu. Stress analysis of canned hot forged specimen of TiAl intermetallic compound. Trans Nonferrous Met Soc China, 1997,7:91
    
    
    [212] Liu Yong, et al. Effect of canned parameters on the canned-forging process of TiAl base alloy (Ⅰ)-microstructural analyses. Transactions of Nonferrous Metals Society of China, 2002, 12(4): 596
    [213] Liu Yong, He Shuangzhen, et al. Effect of canned parameters on the canned-forging process of TiAl base alloy (Ⅱ)-mechanical behavior. Transactions of Nonferrous Metals Society of China, 2002, 12(4): 601
    [214] 李小强,胡连喜,王尔德.机械球磨对Ti/Al混合粉末组织和热稳定性影响的研究.材料科学与工艺,2002,10(1):14-18

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700