Lenke1A-型青少年特发性脊柱侧凸有限元模型建立及其生物力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     青少年特发性脊柱侧凸(adolescent idiopathic scoliosis,AIS)在青少年中的发病率约为2%~3%,严重威胁着青少年的身心健康。其治疗方法较前大有改进,疗效也明显提升。但是,很多问题仍有待进一步研究,其中脊柱侧凸的生物力学研究是最为重要的一方面。脊柱生物力学研究方法有多种,包括动物实验、物理实验、尸体实验等。脊柱侧凸在自然界的动物中尚未发现,模型选材困难,而脊柱侧凸的人体标本获取更是困难。随着电子计算机的发展,有限元法已经迅速发展成为一种现代计算方法。其可在研究中重复,并可改变任何质量与定量变化,同时提供了局部以及内部的反应机制。
     Hueter-Volkmann定律认为:骨骼所受到的应力增加,骨的生长就会受到抑制;骨骼所受到的应力减小,骨的生长就会加速。上述定律可解释AIS在生长高峰时侧凸的进展。而支具就是通过施加矫形力将凸侧和凹侧的椎间盘应力平衡,从而达到治疗效果的。在本次研究中我们选取一名青少年特发性脊柱侧凸患者,Lenke分型1A-型(PUMC分型Ⅱa型),Risser征3级,通过建立特发性脊柱侧凸的有限元模型,研究不同矫形力的生物力学特性,并模拟支具治疗后椎间盘凸侧、凹侧应力的分布变化,预测支具治疗的效果,为AIS的生物力学研究提供一个量化指标。
     第一章
     目的:
     建立青少年特发性脊柱侧凸的三维有限元模型,并验证模型的有效性,为下一步研究提供平台。
     方法:
     选取一名青少年特发性脊柱侧凸患者,螺旋CT对其脊柱进行层厚1mm的连续扫描,以Dicom格式文件储存所得的扫描图像。用Mimics软件生成脊柱侧凸的三维几何模型,导入Hypermesh软件进行网格划分,并对网格赋予特定的材料属性。将患者建立的模型与仰卧位、站立位、仰卧左右侧屈位X线片进行比较,并选取T12-L2、L3-S1节段与相关的生物力学实验研究相比较。
     结果:
     1、仰卧位、站立位、仰卧左、右侧屈位X线片的Cobb角分别为31°、40°、44°、19°,而有限元模型中相应的角度分别为30°、41°、40°、20°。
     2、椎体质心偏离骶骨中线的距离:仰卧位、站立位、仰卧左右侧屈位X线片与有限元模型相比较,P>0.10,可以认为两者没有差别。
     3、T12-L2、L3-S1节段与相关的生物力学实验研究相比较,平均刚度均在相关生物力学实验研究的范围内。
     结论:
     1、基于CT扫描的Dicom格式文件,采用Mimics及Hypermesh软件,构建了T1至骶骨的青少年脊柱侧凸有限元模型,该模型包括了T1至骶骨的所有椎体、椎间盘、韧带,同时还包括了胸廓的肋骨、肋软骨及胸骨。
     2、将该模型与临床仰卧位、站立位、仰卧左、右侧屈位X线片及体外生物力学实验结果相对比,验证结果显示X线片与模型符合程度高,充分说明了该模型的可靠性和有效性,为脊柱侧凸生物力学的进一步研究提供了数值化平台。
     第二章
     目的:
     利用上一章节所建立的脊柱侧凸有限元模型,研究不同矫形力的生物力学特性。
     方法:
     1、胸1椎体约束X、Y方向的移动,固定骨盆,限制其X、Y、Z三个方向的移动。于顶椎凸侧所对应的三根肋骨侧面均匀施加20N,40N,60N大小的力,观察矫形效果。
     2、限制胸1椎体约束X、Y方向的移动,固定骨盆,限制其X、Y、Z三个方向的移动。在胸1椎体上加载100N,200N,400N的撑开力,观察矫形效果。
     3、限制胸1椎体约束X、Y方向的移动,固定骨盆,限制其X、Y、Z三个方向的移动。在胸8、胸9椎体上加载总共大小为10N.m,20N.m,40N.m的旋转力矩,观察矫形效果。
     结果:
     1、施加20N、40N、60N的横向矫正力时,胸弯的Cobb角度由最初仰卧位的31度分别减少至26°、20°、15°,顶椎旋转角度减小了1.234°、2.501°、3.674°。
     2、加载100N、200N、400N撑开力后,侧弯的Cobb角度分别减少至25°、18°、13°,顶椎旋转角度减小了0.09°、0.21°、0.33°。
     3、在T8至T9这两个椎体加载总共大小为10N.m、20N.m、40N.m的旋转力矩后,脊柱的Cobb角度分别减少至26°、24°、25°,顶椎旋转角度减小了10.781°、18.423°、30.795°。
     结论:
     (1)利用有限元方法分析不同矫形力的生物力学特点,为临床器械矫形及支具治疗提供生物力学依据。
     (2)利用有限元方法研究脊柱侧凸的矫形力,为脊柱侧凸三维矫形提供了全域性和区域性的量化指标。
     (3)侧凸畸形的Cobb角度较小时,横向矫形力对侧凸畸形矫正效率高于撑开力。
     (4)三种不同矫形力对三维矫形的效率不相同:施加撑开力、横向矫形力主要起脊柱去旋转的作用,而旋转力主要起椎体去旋转的作用。
     第三章
     目的:
     利用已建立的脊柱侧凸模型,分析支具治疗后椎间盘凸侧、凹侧椎间盘应力分布的变化,预测支具治疗效果。
     方法:
     1、站立位下脊柱生物力学特点
     约束条件:固定骨盆,限制其在各个方向的活动,在椎体各个节段施加相应的重力载荷。
     观察并测量椎间盘应力、韧带应力分布情况,预测1年后椎体增加的高度及椎体契形病变角度。
     2、支具矫形效果
     约束条件:为达到较好的模拟佩戴支具条件下的工况,需固定骨盆,约束其X、Y、Z轴三个方向的活动,限制T3、T4的肋骨在X、Y方向的活动。
     施加载荷:在椎体各个节段施加相应的重力载荷,再在T8、T9、T10椎体凸侧的肋骨上施加横向力,力的大小分别为0N、10N、20N、30N、40N、60N、80N、100N。
     观察并计算凸侧和凹侧椎间盘平均应力变化、凸/凹应力比值,预测1年后椎体增加的高度及椎体契形病变角度。
     结果:
     1、站立位下,患者T6-T11之间的椎间盘凹侧应力值高于凸侧,凸/凹侧应力比值均小于1,T8/9椎间盘凸/凹侧应力比值最小,为0.23。
     2、随着施加横向矫形力的增加,T6-T11之间的椎间盘凸/凹侧应力比值也相应的增加,当施加的力达到30N时,T6/7椎间盘凸/凹侧应力比值达到了1.00,而T8/9、T9/10椎间盘凸/凹侧应力比值在施加100N力时,仍小于1。
     3、随着横向矫形力的增加,T6-T11之间椎体的契形病变逐渐减小,预计1年后总的椎体契形病变也呈减小趋势。其中在加载100N矫形力后,主胸弯椎体契形病变角度总和被逆转为负数。
     结论:
     (1)首次利用有限元方法研究脊柱侧凸椎间盘凸、凹侧应力值,并应用凸、凹侧应力值预测支具治疗的效果,为预测支具治疗效果提供了一种新的方法。
     (2)有限元方法对椎间盘凸、凹侧应力值的研究,为支具的改良设计提供了一个新的量化指标。
     (3)站立位下,脊柱侧凸项椎附近椎间盘应力值凹侧高于凸侧,凸/凹侧应力比值有向顶椎逐渐减小的趋势。
Background
     Adolescent idiopathic scoliosis(AIS) has a morbility of 2%~3%in teenagers,which threatens physical and mental health of teenagers seriously.And the therapic method has been improved greatly,the curative effect has raised a lot.But there are many problems that wait us for studying,in which the biomechanics study of scoliosis is the most important aspect.Spinal biomechanical research methods include animal experiment,physical experiment,cadaver experiment,and so on.The model of scoliosis had not been found in natural animals,and it is difficult to select material.And it is very difficult to get human specimen of scoliosis.With the development of computer,finite element method has been becoming a modern computing method,which can be repeated in study,and it can change any quality and quantitation,and also can provid local and internal reaction mechanism
     Hueter-Volkmann law presumes that the growth of the bone will be suppressed when the stress adding to the bone increases,and the growth of the bone will be accelerated when the stress adding to the bone decreases.The law can explain the progression of AIS in the period of growth peak.The brace can get therapic effect through balancing the stress of convex and concave disc by exerting orthopedic force.In our research,we chose a patients of AIS with Risser sign 3 degree,whose AIS type is Lenk type IA-and PUMC typeⅡa.We construct a FEM of AIS,and research the characteristics of different orthopedic force,and also research distribution change of disc stress after brace treatment in order to predict the effect of brace therapy,which provides a quantization index for AIS biomechanical study.
     Part one
     Objective:Construct a 3-diamensions finite element model of AIS and check the validity of the model,which provides a platform for the next study.
     Methods:Chose a patient with AIS,and used spiral CT to get spinal successive scanning with layer thickness of 1 millimeter.And the images were saved as a form of DICOM.Used the Mimics to form a 3-diamensions geometric model of AIS,and divided mesh in Hypermesh, and assign the mesh with specific materials attribute.Compared the model with upstanding posterior-anterior X-Ray,supine posterior-anterior X-Ray and lateral flexion X-Ray of supine posterior-anterior position.Chose T12-L2 and L3-S1 to compare with related results of biomechanics empirical study.
     Results:
     1.The Cobb'angle of upstanding posterior-anterior X-Ray,supine posterior-anterior X-Ray and lateral flexion X-Ray in left and right supine position were 40°,31°,44°,19°,and 41°,30°,40°,20°in finite element model corresponding.
     2.Compared the center of mass deviated from sacral middle line between X-Ray and finite element model,P>0.10,which considered no differences between them.
     3.Chose T12-L2 and L3-S1 to compare with related results of biomechanics empirical study,the stiffness of the model was in the boundary of related results.
     Conclusions:
     1.Based on Dicom document with CT scanning,used software of Mimics and Hypermesh,we constructed a finite element model of AIS from T1 to sacral bone.The model included vertebral body,intervertebral discs,ligaments,costal bone,costal cartilage and sternum from T1 to sacral bone.
     2.Compared the model with X-Ray and related results of biomechanics,the model meet them very well,which demonstrated the reliability and validity of the model,and it provides a digital platform for the next study.
     Part two
     Objective:To make use of the model constructed in upper chapter in researching characteristics of different orthopedic forces.
     Methods:
     1.Limitate the movement of T1 in X and Y orientation,fix the pelvis,and exert 20N,40N,60N at three costal bones in convex side of apex vertebrae,and compare the reshaping effect.
     2.Limitate the movement of T1 in X and Y orientation,fix the pelvis,exert longitudinal force of 100N,200N,400N at the upper surface of T1 vertebrae,and compare the reshaping effect.
     3.Limitate the movement of T1 in X and Y orientation,fix the pelvis,exert torque of 10N.m,20N.m,40N.m at T8 and T9,and compare the reshaping effect.
     Results:
     1.After exerting transversal force of 20N,40N and 60N,the Cobb's degree change from 31°initially to be 26°,20°and 15°correspondingly, and the rotational angle of T9 decreased by 1.234°,2.501°,3.674°.
     2.After exerting longitudinal force of 100N,200N and 400N,the Cobb's degree change from 31°initially to be 25°,18°and 13°correspondingly,and the rotational angle of T9 decreased by 0.09°、0.21°、0.33.
     3.After exerting torque of 10N.m,20N.m and 40N.m in vertebraes of T8 and T9,the Cobb's degree change from 31°initially to be 26°,24°and 22°correspondingly,and the rotational angle of T9 decreased by 10.781°、18.423°、30.795°.
     Conclusions:
     1.Analyzing biomechanical characterastics of different orthopedic force using finite element method,which provides biomechanical basis for deformity correction with instrument and brace therapy.
     2.Analyzing scoliotic orthopedic force using finite element method, which provides general and local quantization index for 3D correction of scoliosis.
     3.The reshaping effect of transversal force is much more great than longitudinal force when the Cobb's degree is small.
     4.The efficiency of orthopedic forces are different:transversal force and longitudinal force perform spinal derotation function mainly,and rotary strength perform vertebral derotation function mainly.
     Part three
     Objective:Make use of the FEM of AIS in part one to analyse distribution change of disc stress in the convex side and concave side in order to predict curative effect of brace.
     Methods:
     1.Characteristic of spinal biomechanics in standing position
     Constrained condition:fix the pelvis and restrict its movement,and exert gravity load correspondingly.Measure the distribution of disc stress and ligament stress,and predict the increasing height of vertebrae and wedge angle of vertebrae after one year.
     2.Reshaping effect of brace
     Constrained condition:fix the pelvis and restrict its movement,and restrict T3 and T4 movement in X-axis and Y-axis.
     Loading:exert gravity load in each segment of spine correspondingly,and exert lateral force of 0N,10N,20N,30N,40N,60N, 80N,100N at three costal bones in convex side of apex vertebrae.
     Calculate the mean stress in convex side and concave side,and also the stress ratio between the convex side and the concave side,and predict the increasing height of vertebrae and wedge angle of vertebrae after one year.
     Results:
     1.In up standing position,the stress in concave side is higher than the convex side in the discs between T6 to T11 segment,and the stress ratio between the convex side and the concave side is smaller than one. And the ratio in the disc of T8/9 is the most smallest,which is 0.23.
     2.The stress ratio between the convex side and the concave side is increasing following with the increasement of orthopedic force.When the orthopedic force increases to 30N,the stress ratio between the convex side and the concave side get to 1.00 in T6/7 disc.But when the orthopedic force increases to 100N,the stress ratio between the convex side and the concave side is still smaller than one.
     3.With the increasing of orthopedic force,the wedge angle in T6-T11 are decreasing gradually,and the total wedge angle change predicted in one year is becoming decrease.And when the force adds up to 100N, the total wedge angle change predicted in one year becomes negative number.
     Conclusions:
     1.It is the first time we use finite element method to research the disc stress in the convex side and concave side,and use the disc stress in the convex side and concave side to predict therapeutic efficacy of the brace,which provides a new method for predicting therapeutic efficacy of the brace.
     2.The study of the disc stress in the convex side and concave side using finite element method provides a new quantization index for improvement of the brace.
     3.In standing position,the stress in the concave side is much more higher than the convex side,and the ratio of disc stress in the convex side to the concave side has a tendency of becoming small towards apex vertebrae.
引文
[1]DU Ping-an,GAN E-zhong,YU Ya-ting,et al.Finite Element Method:Principle,Modeling and Application(M).Bingjin:National Defence Industry Press,2004:1-6.
    [2]Liu YK,Ray G,Hirsch C,et al.The resistance of the lumbar spine to direct shear[J].Orthop Clin North Am,1975,6(1):33-49.
    [3]Andriacchi TP,Schultz AB,Belytschko TB,et al.Milwaukee brace correction of idiopathic scoliosis.A biomechanical analysis and a restrospective study[J].J Bone Joint Surg Am.1976 Sep;58(6):806-815.
    [4]Viviani GR,Ghista DN,Lozada P J,et al.,Biomechanical analysis and simulation of scoliosis surgical correction[J].Clin Orthop Relat Res,1986,20(8):40-47.
    [5]Teo EC,Lee KK,Ng HW,et al.Determination of load transmission and contract force at facet joints of L2-L3 segment using finite element method[J],Journal of Musculoskeletal Research,2003,7(2):97-109.
    [6]杨志明.组织工程[M].北京:化学工业出版社,2002:160-164
    [7]司徒镇强.细胞培养[M].西安:世界图书出版西安公司,2004:110-116.
    [8]Silva MJ,Keaveny TM,Hayes WC.Load sharing between the shell and centrum in the lumbar vertebral body[J].Spine,1997,22(2):140-150.
    [9]Goel VK,Monroe BT,Gilbertson LG,et al.Interlaminar shear stresses and laminae sepration in a disc.Finite element analysis of L3-L4 motion segment subjected to axial compressive loads[J].Spine,1995,20(6):689-698.
    [10]Smit TH,Odgaard A,Schneider E,et al.Structure and function of vertebral trabecular bone[J].Spine,1997,22(24):2823-2833.
    [11]Shirazi Adl A,Ahmed AM,Shrivastava SC,et al.Mechanical response of a lumbar motion segment in axial torque alone and combined with comeprssion[J].Spine,1986,11(9):914-927.
    [12]Sharma M,Langrana NA,Rodriguez J,et al.Role of ligaments and facets in lumbar spinal stability[J].Spine,1995,20(8):887-990.
    [13]Nachemson A.The load on lumbar discs in different positions of thebody[J].Clin Orthop,1964,45:107-122
    [14]Schultz A,Andersson G;Ortengren R,et al.Loads on the lumbar spine-validation of a biomechanical analysis by measurements of intradiscal pressures and myoelectric signals[J].J Bone Joint Surg Am,1982,64:713-720.
    [15]Yamamoto I,Panjabi MM,Crisco T,et al.Three-dimensional movements of the whole lumber spine and lumbosacral joint[J].Spine,1989,14(11):1256-60.
    [16]Heth JA,Hitchon PW,Goel VK,et al.A biomechanical comparison between anterior and transverse interbody fusion cages[J].Spine,2001,26(12):261-27.
    [17]张德盛,宋跃明.L3-L5三维有限元模型的建立及其临床意义[J].生物 医学工程杂志,2006;23(6):1250-1252.
    [18]Panjabi MM,Greenstein G;Duranceau J,et al.Three-dimensional quantitative morphology of lumbar spinal ligament[J].J Spinal Disord,1991,4:54-62.
    [19]Markolf KL..Deformation of the thoracolumbar intervertebral joints in response to external load:a biomechanical study using autopsy material[J].J Bone Joint Surg Am,1972,54:511-533.
    [20]Tencer AF,Ahmed AM,Burke DL.Some static mechanical properties of the lumbar intervertebral joint:intact and injured[J].Biomech Eng,1982,104:193-201.
    [21]Birhton CT,Adler S,Black J.Cathodic oxygen consumption and electrically induced osteogenesis[J].Clin Orthop,1985,107:277-282.
    [22]Lamarre ME,Parent S,Labelle H,et al.Assessment of spinal flexibility in adolescent idiopathic scoliosis:suspension versus side-bending radiography[J].SPine.2009 Mar 15,34(6):623-628.
    [23]Sangole AP,Aubin CE,Labelle H,et al.Three-dimensional classification of thoracic scoliotic curves[J].Spine.2009 Jan 1,34(1):91-99.
    [24]Yoganadan N,KumaresanS,VooL,et al.Finite element applications in human cervical spine modeling[J].Spine,1996,21(15):1824-1834.
    [25]桂鉴超,周强,等.股骨质量对人工髋关节置换之影响的三维有限元分析[J].骨与关节损伤杂志,2000,3:212-214.
    [26]Guo LX,Teo EC,Lee KK,et al.Vibration characteristics of the human spine under axial cyclic loads:effect of frequency and damping[J].Spine,2005,30(6):631-637.
    [27]潘炜娟,张保卫,叶少波,等.牙齿与桩核三维有限元建模的初步探讨[J].口腔颌面修复学杂志,2000,1(3):1432-144.
    [28]夏荣.有限元法及其进展[J].中国口腔种植学杂志,1997,2(3):96-100.
    [29]魏斌.牙颌系统三维有限元建模方法的进展[J].口腔材料器械杂志,2002,11(2):86-87.
    [30]韩强.应用于口腔医学领域的三维测量技术[J].口腔材料器械杂志,2003,12(1):39-41.
    [31]Anne-Marie Huynh,Carl-Eric Aubin,Talib Rajwani et al.Pedicle growth asymmetry as a cause of adolescent idiopathicscoliosis:a biomechanical study[J].Eur Spine,2007,16:523-529.
    [32]van der Plaats A,Veldhuizen AG,Verkerke GJ.Numerical simulation of asymmetrically altered growth as initiation mechanism of scoliosis[J].Ann Biomed Eng.2007 Jul;35(7):1206-1215.
    [33]Carrier J,Aubin CE,Villemure I,Labelle H.Biomechanical modelling of growth modulation following rib shortening or lengthening in adolescent idiopathic,scoliosis[J].Med Biol Eng Comput.2004,42(4):541-548.
    [34]Aubin CE,Descrimes JL,Dansereau J,et al.Geometrical modeling of the spine and the thorax for the biomechanical analysis of scoliotic deformities using the finite element method[J].Ann Chir,1995,49(8):749.
    [35]汪正宇,刘祖德,王哲等.脊柱侧凸有限元模型的建立和参数优化[J].北京生物医学工程,2008,27(1):28-32.
    [36]杨晓明,顾苏熙,李明等.特发性脊柱侧凸椎体楔形变有限元模型分析[J].中国矫形外科杂志,2008,16(19):3941-943.
    [1]李明,候铁胜.脊柱侧凸三维矫形理论与技术[M].第二军医出版社,2001,2:2.
    [2]Mahar AT,Brown DS,Oka RS,et al.Biomechanics of cantilever“plow”during anterior thoracic scoliosis correcti on[J].Spine J,2006,6(5):572-576.
    [3]Mohamad F,Oka R,Mahar A,et al.Biomechanical comparison of the screw-bone interface:optimization of 1 and 2 screw constructs by varying screw diameter[J].Spine,2006,31(16):535-539.
    [4]Haher T,Felmy W,Baruch H,et al.The contribution of the three columns of the spine to rotational stability:a biomechanial model[J].Spine,1989,14(7):663-669.
    [5]Bjerkreim I,Steen H,Brox JI.Idiopathic scoliosis treated with Cotrel-Dubousset instrumentation: evaluation 10 years after surgery [J]. Spine,2007,32(19):2103-2110.
    [6] Remes V, Helenius I, Schlenzka D, et al. Cotrel-Dubousset (CD) or Universal Spine System (USS) instrumentation in adolescent idiopathic scoliosis (AIS): comparison of midterm clinical, functional, and radiologic outcomes[J]. Spine,2004,29(18):2024-2030.
    [7] Birch JG, Herring JA, Roach JW, et al. Cotrel-Dubousset instrumentation in idiopathic scoliosis. A preliminary report[J]. Clin Orthop Relat Res,1988,227:24-29.
    [8] Luhmann SJ, Lenke LG, Kim YJ, et al. Financial analysis of circumferential fusion versus posterior-only with thoracic pedicle screw constructs for main thoracic idiopathic curves between 70 degrees and 100 degrees[J]. J Child Orthop,2008,2(2):105-112.
    [9] Vora V, Crawford A, Babekhir N, et al. A pedicle screw construct gives an enhanced posterior correction of adolescent idiopathic scoliosis when compared with other constructs: myth or reality[J]. Spine,2007,32(17):1869-1874.
    [10] Crawford MJ, Esses Syndications for pedicle fixation. Results of NASS/SRS faculty questionnaire. North American Spine Society and Scoliosis Research Society[J]. Spine,1994 ,19(22):2584-2589.
    [11] Kadoury S, Cheriet F, Beausejour M, et al. A three-dimensional retrospective analysis of the evolution of spinal instrumentation for the correction of adolescent idiopathic scoliosis[J]. Eur Spine J, 2009,18(1):23-37.
    [12] Lee SM, Suk SI, Chung ER.Direct vertebral rotation: a new technique of three-dimensional deformity correction with segmental pedicle screw fixation in adolescent idiopathic scoliosis[J]. Spine,2004,29(3):343-349.
    [13] Sawatzky BJ, Tredwell SJ, Jang SB, et al. Effects of three-dimensional assessment on surgical correction and on hook strategies in multi-hook instrumentation for adolescent idiopathic scoliosis[J]. Spine,1998,23(2):201-205.
    [14] Delorme S, Labelle H, Poitras B, et al. Pre-, intra-, and postoperative three-dimensional evaluation of adolescent idiopathic scoliosis[J]. J Spinal Disord,2000,13(2):93-101.
    [15] Delorme S, Labelle H, Aubin CE, et al. Intraoperative comparison of two instrumentation techniques for the correction of adolescent idiopathic scoliosis. Rod rotation and translation[J]. Spine,1999,24(19):2011-2017.
    [16] Vallespir GP, Flores JB, Trigueros IS, et al. Vertebral coplanar alignment: a standardized technique for three dimensional correction in scoliosis surgery:technical description and preliminary results in Lenke type 1 curves[J].Spine,2008,33(14):1588-1597.
    [17]Schultz AB,Hirsch C.Mechanical analysis of techniques for improved correction of idiopathic scoliosis[J].Clin Orthop Relat Res,1974,(100):66-73.
    [18]White AA 3rd,Panjabi MM.The clinical biomechanics of scoliosis[J].Clin Orthop Relat Res.1976 Jul-Aug;(118):100-112.
    [19]Roaf R.Spinal deformities[M].Bath(UK):The Pitman Press.1977:177-182.
    [20]田慧中,李佛保,主编.脊柱畸形与截骨术[M].世界图书出版公司,2001:81.
    [21]Roaf R.Spinal deformities.Bath(UK):The Pitman Press.1977:177-182.
    [22]Gardner-Morse M,Stokes IA.Three-dimensional simulations of the scoliosis derotation maneuver with Cotrel-Dubousset instrumentation[J].J Biomech,1994,27(2):177-181.
    [23]Cundy P J,Paterson DC,Hillier TM,et al.Cotrel-Dubousset instrumentation and vertebral rotation in adolescent idiopathic scoliosis[J].J Bone Joint Surg Br,1990Jul;72(4):670-674.
    [24]Ecker ML,Betz RR,Trent PS,et al.Computer tomography evaluation of Cotrel-Dubousset instrumentation in idiopathic scoliosis[J].Spine,1988,13(10):1141-1144.
    [1]Negrini S,Atanasio S,Negrini F,et al.The Sforzesco brace can replace cast in the correction of adolescent idiopathic scoliosis:A controlled prospective cohort study[J].Scoliosis,2008,31(3):15.
    [2]Heary RF,Bono CM,Kumar S.Bracing for scoliosis[J].Neurosurgery,2008,63(3):125-130.
    [3]Jarvis J,Garbedian S,Swamy G.Juvenile idiopathic scoliosis:the effectiveness of part-time bracing[J].Spine,2008,33(10):1074-1078.
    [4]Maruyama T.Bracing adolescent idiopathic scoliosis:a systematic review of the literature of effective conservative treatment looking for end results 5 years after weaning[J].Disabil Rehabil,2008,30(10):786-791.
    [5]Vasiliadis E,Grivas TB.Quality of life after conservative treatment of adolescent idiopathic scoliosis[J].Stud Health Technol Inform,2008,135:409-413.
    [6]Lou E,Hill D,Raso J.Brace treatment for adolescent idiopathic scoliosis[J].Stud Health Technol Inform,2008,135:265-273.
    [7]Shaughnessy WJ.Advances in scoliosis brace treatment for adolescent idiopathic scoliosis[J].Orthop Clin North Am,2007,38(4):469-475.
    [8]Danielsson AJ,Hasserius R,Ohlin A,et al.A prospective study of brace treatment versus observation alone in adolescent idiopathic scoliosis:a follow-up mean of 16 years after maturity[J].Spine,2007,32(20):2198-2207.
    [9]Zhang Y,Zhao L,Wang R,et al.A clinical follow-up study on treatment of adolescent idiopathic scoliosis with brace[J].Zhonghua Wai Ke Za Zhi,2007,45(8):529-532.
    [10]Janicki JA,Poe-Kochert C,Armstrong DG,et al.A comparison of the thoracolumbosacral orthoses and providence orthosis in the treatment of adolescent idiopathic scoliosis:results using the new SRS inclusion and assessment criteria for bracing studies[J].J Pediatr Orthop,2007,27(4):369-374.
    [11]Ryan PM,Puttler EG,Stotler WM,et al.Role of the triradiate cartilage in predicting curve progression in adolescent idiopathic scoliosis[J].J Pediatr Orthop,2007,27(6):671-676.
    [12]Nachemson A.The load on lumbar discs in different positions of thebody[J].Clin Orthop,1964,45:107-122.
    [13]Schultz A,Andersson G,Ortengren R,et al.Loads on the lumbar spine-validation of a biomechanical analysis by measurements of intradiscal pressures and myoelectric signals[J].J Bone Joint Surg Am,1982,64:713-720.
    [14]Carrier J,Aubin CE,Villemure I,et al.Biomechanical modelling of growth modulation following rib shortening or lengthening in adolescent idiopathic scoliosis[J].Med Biol Eng Comput,2004,42(4):541-548.
    [15]Taylor JR.Growth of human intervertebral discs and vertebral bodies[J].J Anat,1975,120(Pt 1):49-68.
    [16]Stokes I A.Mechanical effects on skeletal growth[J].Musculoskel,2002,2:277-280.
    [17]Stokes IA,Windisch L.Vertebral height growth predominates over intervertebral disc height growth in adolescents with scoliosis[J].Spine,2006,31(14):1600-1604.
    [18]Mehlman CT,Araghi A,Roy DR,et al.Hyphenated history:the Hueter-Volkmann law[J].Am J Orthop,1997,26(11):798-800.
    [19]Roaf R.Vertebral growth and its mechanical control[J].J Bone Joint Surg(Br),1960,42:40-59.
    [20]Aronsson DD,Stokes IAF,Rosovsky J,et al.Mechanical modulation of calf vertebral growth:implications for scoliosis progression[J].J Spinal Disord,1999,12:141-146.
    [21]Castro FP Jr.Adolescent idiopathic scoliosis,bracing,and the Hueter-Volkmann principle[J].Spine J,2003,3(3):180-185.
    [22] Weiss HR, Hawes MC. Adolescent idiopathic scoliosis, bracing and the Hueter-Volkmann principle[J]. Spine J, 2004,4(4):484-485; author reply 485-486.
    [23] Braun JT, Hines JL, Akyuz E,et al. Relative versus absolute modulation of growth in the fusionless treatment of experimental scoliosis[J]. Spine, 2006, 3l(16):1776-1782.
    [24] Braun JT, Ogilvie JW, Akyuz E, et al. Creation of an experimental idiopathic-type scoliosis in an immature goat model using a flexible posterior asymmetric tether[J]. Spine, 2006, 31(13).1410-14l4.
    [25] Stokes IA, Spence H, Aronsson DD, et al. Mechanical modulation of vertebral body growth. Implications for scoliosis progression[J].Spine, 1996, 21(10):1162-1167.
    [26] Mente PL, Stokes IA, Spence H, et al. Progression of vertebral wedging in an asymmetrically loaded rat tail model [J]. Spine, 1997, 22(12): 1292-1296.
    [27] Shaughnessy WJ.Advances in scoliosis brace treatment for adolescent idiopathic scoliosis[J]. Orthop Clin North Am, 2007, 38(4):469-475.
    [28] Yrjonen T, Ylikoski M, Schlenzka D, et al. Results of brace treatment of adolescent idiopathic scoliosis in boys compared with girls: a retrospective study of 102 patients treated with the Boston brace[J].Eur Spine J, 2007,16(3):393-397.
    [29] Zhang Y, Zhao L, Wang R, et al. A clinical follow-up study on treatment of adolescent idiopathic scoliosis with brace[J]. Zhonghua Wai Ke Za Zhi, 2007, 45(8):529-532.
    [30] Nachemson AL,Peterson LE. Effectiveness of treatment with a brace in girls who have adolescent idiopathic scoliosis. A prospective,controlled study based on data from the Brace Study of the Scoliosis Research Society [J]. J Bone Surg(Am), 1995,77:815-822.
    [31] Rowe DE,Bernstein SM,Riddick MF,et al,A meta analysis of the efficacy of nonoperative for idiopathic scoliosis[J]. J Bone Surg(Am),1997,79:664-674.
    [32] Noonan KJ,Weinstein SL,Jacobson WC,et al.Use of the Milwaukee brace for progressive idiopathic scoliosis[J]. J Bone Joint Surg(Am),1996,78:557-567.
    [33] Cochran GVB, WaughTR. Scoliosis research society meeting, September, 1968, houston, texas, summaries of papers presented[J]. J Bone Joint Surg(Am), 1969,51:201-208.
    [1]Brekelmans Wam,Rybicki EF,Burdeaux BD,ET et al.A new method to analyse the mechanical behaviour of skeletal parts[J].Acta Ortho Scand 1972;43:301.
    [2]Andriacchi TP,Schultz AB,Belytschko TB,et al.Milwaukee brace correction of idiopathic scoliosis.A biomechanical analysis and a restrospective study[J].J Bone Joint Surg Am,1976,58(6):806-815.
    [3]Viviani GR,Ghista DN,Lozada PJ.,et al.,Biomechanical analysis and simulation of scoliosis surgical correction[J].Clin Orthop Relat Res,1986Jul;(208):40-47.
    [4]Aubin CE,Descrimes JL,Dansereau J,et al.Geometrical modeling of the spine and the thorax for the biomechanical analysis of scoliotic deformities using the finite element method[J].Ann Chir,1995,49(8):749-761.
    [5]汪正宇,刘祖德,王哲等.脊柱侧凸有限元模型的建立和参数优化[J].北京生物医学工程,2008,27(1):28-32.
    [6]Anne-Marie Huynh,Carl-Eric Aubin,Talib Rajwani,et al.Pedicle growth asymmetry as a cause of adolescent idiopathicscoliosis:a biomechanical study[J].Eur Spine J,2007,16:523-529.
    [7]van der Plaats A,Veldhuizen AG,Verkerke G J,et al.Numerical simulation of asymmetrically altered growth as initiation mechanism of scoliosis[J].Ann Biomed Eng,2007,35(7):1206-1215.
    [8]Carrier J,Aubin CE,Villemure I,et al.Biomechanical modelling of growth modulation following rib shortening or lengthening in adolescent idiopathic scoliosis[J].Med Biol Eng Comput,2004,42(4):541-548.
    [9]Ogilvie JW,Braun J,Argyle V,et al.The search for idiopathic scoliosis genes[J].Spine,2006,31(6):679-681.
    [10]Qiu XS,Tang NL,Yeung HY,et al.Melatonin receptor 1B(MTNR1B) gene polymorphism is associated with the occurrence of adolescent idiopathic scoliosis[J].Spine,2007,32(16):1748-1753.
    [11]Yrj(o|¨)nen T,Ylikoski M.Effect of growth velocity on the progression of adolescent idiopathic scoliosis in boys[J].J Pediatr Orthop B,2006,15(5):311-315.
    [12]Ylikoski M.Growth and progression of adolescent idiopathic scoliosis in girls[J].J Pediatr Orthop B,2005,14(5):320-324.
    [13] Mallau S, Bollini G, Jouve JL, et al. Locomotor skills and balance strategies in adolescents idiopathic scoliosis[J].Spine, 2007,32(1):E14-22.
    [14] Chow DH, Kwok ML, Cheng JC, et al. The effect of backpack weight on the standing posture and balance of schoolgirls with adolescent idiopathic scoliosis and normal controls[J].Gait Posture, 2006,24(2): 173-181.
    [15] Xiong B, Sevastik JA. A physiological approach to surgical treatment of progressive early idiopathic scoliosis[J].Eur Spine J, 1998,7(6):505-508.
    [16] Gr(?)alou L, Aubin CE, Labelle H. Rib cage surgery for the treatment of scoliosis: a biomechanical study of correction mechanisms[J].J Orthop Res, 2002, 20(5):1121-1128.
    [17] Carrier J, Aubin CE, Trochu F, et al.Optimization of rib surgery parameters for the correction of scoliotic deformities using approximation models[J].J Biomech Eng,2005,127(4):680-691.
    [18] Burwell RG, Cole AA, Cook TA, et al. Pathogenesis of idiopathic scoliosis. The Nottingham concept[J]. Acta Orthop Belg, 1992, 58 Suppl 1:33-58.
    [19] Perdriolle R, Vidal J. Morphology of scoliosis: three-dimensional evolution[J].Orthopedics, 1987,10(6):909-915.
    [20] Roaf R. The basic anatomy of scoliosis[J]. J Bone Joint Surg Br, 1966, 48(4):786-792.
    [21] Deane G, Duthie RB. A new projectional look at articulated scoliotic spines[J]. Acta Orthop Scand, 1973,44(4):351-365.
    [21] Somerville EW. Rotational lordosis: the development of a single curve [J]. J Bone Joint Surg Br, 1952,34-B(3):421-427.
    [22] Villemure I, Aubin CE, Dansereau J,et al.Biomechanical simulations of the spine deformation process in adolescent idiopathic scoliosis from different pathogenesis hypotheses[J].Eur Spine J, 2004,13(1):83-90.
    [23] Clayton JA, Geoffrey NA, Mark JP, et al. Gravity-Induced Torque and Intravertebral Rotation in Idiopathic Scoliosis[J]. Spine, 2008, 33(2):30-37.
    [24] White AA 3rd.Kinematics of the normal spine as related to scoliosis[J].J Biomech, 1971,4(5):405-411.
    [25] Knutsson FA. contribution to the discussion of the biological cause of idiopathic scoliosis[J]. Acta Orthop Scand ,1963,33:98-104.
    [26] Michelsson JE. The development of spinal deformity in experimental scoliosis[J]. Acta Orthop Scand, 1963,33:91-97.
    [27] Nicoladoni C (1909) Anatomie und mechanismus der skoliose. Urban and Scwarzenburg, Munchen.
    [28] Roaf R. The basic anatomy of scoliosis[J]. J Bone Joint Surg Br, 1966,48:786-792.
    [29] Yamazaki A, Mason DE, Caro PA, et al. Age of closure of the neurocentral cartilage in the thoracic spine[J]. J Pedatr Orthop, 1998,18:168-172.
    [30] Beguiristain JL, De Salis J, Oriaifo A, et al. Experimental scoliosis by epiphysiodesis in pigs[J]. Int Orthop, 1980,3:317-321.
    [31] Huynh AM, Aubin CE, Rajwani T, et al.Pedicle growth asymmetry as a cause of adolescent idiopathic scoliosis: a biomechanical study[J]. Eur Spine J, 2007 ,16(4):523-529.
    [32] Mehlman CT, Araghi A, Roy DR, et al. Hyphenated history: the Hueter-Volkmann law[J]. Am J Orthop, 1997, 26(11):798-800.
    [33] Driscoll M, Aubin CE, Moreau A, et al. The role of spinal concave-convex biases in the progression of idiopathic scoliosis[J]. Eur Spine J, 2009 , 18(2): 180-187.
    [34] Kehl DK, Morrissy RT. Brace treatment in adolescent idiopathic scoliosis[J].An update on concepts and technique.Clin Orthop,1988,22(9):34-42.
    [35] Noonan KJ, Weinstein SL, Jacobson WC, et al. Use of the Milwaukee brace for progessive idiopathic scoliosis[J].J Bone Joint Surg Am,1996, 78:557-567.
    [36] Lonstein JE, Carlson JM. The prediction of curve progession in untreated idiopathic scoliosis during growth[J].J Bone Joint Surg Am, 1984, 66:1061-1071.
    [37] Lonstein JE, Winter RB. The Milwaukee brace for the treatment of adolescent idiopathic scoliosis: A review of 1020 patients[J].J Bone Joint Surg Am 1994;76:1207-1221.
    [38] Mac-Thiong, Petit Y, Aubin CE, et al. Biomechanical evaluation of the Boston brace system for the treatment of adolescent idiopathic scoliosis: relationship between strap tension and brace interface forces[J].Spine, 2004,29(1):26-32.
    [39] Perie D, Sales De, Gauzy J, et al. Biomechanical evaluation of Cheneau-Toulouse-Munster brace in the treatment of scoliosis using optimisation approach and finite element method[J]. Med Biol Eng Comput, 2002,40(3):296-301.
    [40] Perie D, Aubin CE, Petit Y, et al. Boston brace correction in idiopathic scoliosis: a biomechanical study[J]. Spine, 2003, 28(15):1672-1677.
    [41] Perie D, Aubin CE, Petit Y, et al. Personalized biomechanical simulations of orthotic treatment in idiopathic scoliosis[J]. Clin Biomech, 2004,19(2): 190-195.
    [42] Yi-Ching Liao, Chi-Kuang Feng, Mei-Wun Tsai, et al. Shape Modification of the BostonBraceUsing a Finite-Element Method With Topology Optimization[J].Spine, 2007, 32(26) :3014-3019.
    [43] Cotrel Y, Dubousset J.A new technic for segmental spinal osteosynthesis using the posterior approach[J].Rev Chir Orthop Reparatrice Appar Mot, 1984,70(6):489-494.
    [44] Gardner-Morse M, Stokes IA. Three-dimensional simulations of the scoliosis derotation maneuver with Cotrel-Dubousset instrumentation[J]. J Biomech, 1994, 27(2):177-181.
    [45] Lafage V, Dubousset J, Lavaste F, et al. 3D finite element simulation of Cotrel-Dubousset correction[J].Comput Aided Surg, 2004, 9(12):17-25.
    [46] Dumas R, Lafage V, Lafon Y, et al. Finite element simulation of spinal deformities correction by in situ contouring technique[J].Comput Methods Biomech Biomed Engin, 2005, 8(5):331-337.
    [47] Skalli W, Robin S, Lavaste F, et al. A biomechanical analysis of short segment spinal fixation using a three-dimensional geometric and mechanical model[J].Spine, 1993,18(5):536-545.
    [48] Ghista DN, Viviani GR, Subbaraj K, et al.Biomechanical basis of optimal scoliosis surgical correction[J]. J Biomech, 1988, 21:77-88.
    [49] Stokes IA, Gardner-Morse M. Analysis of the interaction between vertebral lateral deviation and axial rotation in scoliosis[J]. J Biomech, 1991,24(8):753-759.
    [50] Stokes IA, Gardner-Morse M. Three-dimensional simulation of Harrington distraction instrumentation for surgical correction of scoliosis[J]. Spine, 1993 , 18(16):2457-2464.
    [51] Gardner-Morse M, Stokes IA. Three-dimensional simulations of the scoliosis derotation maneuver with Cotrel-Dubousset instrumentation[J]. J Biomech, 1994 , 27(2):177-181.
    [52] Ching-Kong Chao,Ching-Chi Hsu,Jaw-Lin Wang, et al. Increasing Bending Strength and Pullout Strength in Conical Pedicle Screws: Biomechanical Tests and Finite Element Analyses[J].J Spinal Disord Tech 2008,21(2): 130-138.
    [1]李青,刘尚礼,徐卓明,等.广东省中山市城乡中小学生脊柱侧凸普查及预防[J].中华骨科杂志,1999,19(5):265-268.
    [2]Negrini S,Atanasio S,Negrini F,et al.The Sforzesco brace can replace cast in the correction of adolescent idiopathic scoliosis:A controlled prospective cohort study[J].Scoliosis,2008,31(3):15.
    [3]Heary RF,Bono CM,Kumar S.Bracing for scoliosis[J].Neurosurgery,2008,63(3):125-130.
    [4]Jarvis J,Garbedian S,Swamy G.Juvenile idiopathic scoliosis:the effectiveness of part-time bracing[J].Spine,2008,33(10):1074-1078.
    [5]Maruyama T.Bracing adolescent idiopathic scoliosis:a systematic review of the literature of effective conservative treatment looking for end results 5 years after weaning[J].Disabil Rehabil,2008,30(10):786-791.
    [6]Vasiliadis E,Grivas TB.Quality of life after conservative treatment of adolescent idiopathic scoliosis[J].Stud Health Technol Inform,2008,135:409-413.
    [7]Lou E,Hill D,Raso J.Brace treatment for adolescent idiopathic scoliosis[J].Stud Health Technol Inform,2008,135:265-73.
    [8]Shaughnessy WJ.Advances in scoliosis brace treatment for adolescent idiopathic scoliosis[J].Orthop Clin North Am,2007,38(4):469-475.
    [9] Danielsson AJ, Hasserius R, Ohlin A, et al. A prospective study of brace treatment versus observation alone in adolescent idiopathic scoliosis: a follow-up mean of 16 years after maturity[J].Spine, 2007, 32(20):2198-2207.
    [10] Zhang Y, Zhao L, Wang R, et al.A clinical follow-up study on treatment of adolescent idiopathic scoliosis with brace[J]. Zhonghua Wai Ke Za Zhi, 2007, 45(8):529-532.
    [11] Janicki JA, Poe-Kochert C, Armstrong DG,et al. A comparison of the thoracolumbosacral orthoses and providence orthosis in the treatment of adolescent idiopathic scoliosis: results using the new SRS inclusion and assessment criteria for bracing studies[J].J Pediatr Orthop, 2007,27(4):369-374.
    [12] Moen KY, Nachemson AL.Treatment of scoliosis. An historical perspective[J].Spine, 1999, 24(24):2570-2575.
    [13] Moe JH.Indications for Milwaukee brace non-operative treatment in idiopathic scoliosis[J].Clin Orthop Relat Res, 1973, (93):38-43.
    [14] Nachemson A, Lonstein JE, Weinstein SL. Prevalence and natural history committee report. The Annual Meeting of the Scoliosis Research Society. Denver: Colorado, 1982:11.
    [15] Lonstein JE, Carlson JM.The prediction of curve progression in untreated idiopathic scoliosis during growth[J].J Bone Joint Surg Am, 1984 ,66(7): 1061-1071.
    [16] Lonstein JE, Winter RB.The Milwaukee brace for the treatment of adolescent idiopathic scoliosis. A review of one thousand and twenty patients[J]. J Bone Joint Surg Am, 1994, 76(8):1207-1221.
    [17] Nachemson AL, Peterson LE.Effectiveness of treatment with a brace in girls who have adolescent idiopathic scoliosis. A prospective, controlled study based on data from the Brace Study of the Scoliosis Research Society[J].J Bone Joint Surg Am, 1995, 77(6):815-822.
    [18] Fernandez-Feliberti R, Flynn J, Ramirez N, et al. Effectiveness of TLSO bracing in the conservative treatment of idiopathic scoliosis[J]. J Pediatr Orthop, 1995,15(2):176-181.
    [19] Howard A, Wright JG, Hedden D.A comparative study of TLSO, Charleston, and Milwaukee braces for idiopathic scoliosis[J].Spine, 1999,24(16):1751.
    [20] Christine C, Alin C, Rivard CH.Treatment of early adolescent idiopathic scoliosis using the SpineCor System[J]. Stud Health Technol Inform, 2008, 135:341-355.
    [21] Castro FP Jr. Adolescent idiopathic scoliosis, bracing, and the Hueter-Volkmann principle[J].Spine J, 2003, 3(3): 180-185.
    [22] Mac-Thiong, Petit Y, Aubin CE, et al. Biomechanical evaluation of the Boston brace system for the treatment of adolescent idiopathic scoliosis: relationship between strap tension and brace interface forces[J]. Spine, 2004, 29(1):26-32.
    [23] Perie D, Sales De, Gauzy J, et al. Biomechanical evaluation of Cheneau-Toulouse-Munster brace in the treatment of scoliosis using optimisation approach and finite element method[J]. Med Biol Eng Comput, 2002,40(3):296-301.
    [24] Perie D, Aubin CE, Petit Y, et al. Boston brace correction in idiopathic scoliosis: a biomechanical study[J]. Spine, 2003,28(15):1672-1677.
    [25] Hopf C.Criteria for treatment of idiopathic scoliosis between 40 degrees and 50 degrees. Surgical vs. conservative therapy[J]. Orthopade, 2000, 29(6):500-506.
    [26] Cochran GVB, WaughTR. Scoliosis research society meeting, September, 1968, Houston Texas, summaries of papers presented[J]. J Bone Joint Surg(Am),1969,51:201-208.
    [27] Andriacchi TP, Schultz AB, Belytschko TB, et al.Milwaukee brace correction of idiopathic scoliosis: A biomechanical analysis and a restrospective study[J].J Bone Joint Surg(Am),1976,58:806-815.
    [28]Carr WA,Moe JH,Winter RB,et al.Treatment of idiopathic scoliosis in the milwaukee brace[J].J Bone Joint Surg(Am),1980,62:599-612.
    [29]Cochran T,Nachemson A.Long-term anatomic functional changes in patients with adolescent idiopathic scoliosis treated with milwaukee brace[J].Spine,1985,10:127-133.
    [30]Laurnen EL,Tupper JW,Mullen MP.The Boston brace in thoracic scoliosis,A preliminary report[J].Spine,1983,8:388-395.
    [31]Hanks GA,Zimmer B,Nogi J.TLSO treatment of idiopathic scliosis.Ananalysis of the wilmington jackat[J].Spine,1988,13:626-629.
    [32]Mc Collough NC3rd,Schultz M,Javech N,et al.Miami TLSO in the management of scoliosis:preliminary results in 100 cases[J].J Pediatr Orthop,1981,1:141-152.
    [33]Price CT,Scott DS,Reed FE Jr,et al.Night time bracing for adolescent idiopathic scoliosis with the charleston bending brace.Preliminary report[J].Spine,1990,15:1294-1299.
    [34]Coillard C,Leroux MA,Zabjek KF,et al.Spine Cor--a non-rigid brace for the treatment of idiopathic scoliosis:post-treatment results[J].Eur Spine J,2003,12(2):141-148.
    [35]Coillard C,Leroux MA,Badeaux J,SPINECOR:a new therapeutic approach for idiopathic scoliosis[J].Stud Health Technol Inform,2002,88:215-217.
    [36]包岳丰,邱勇,朱丽华,等.Milwaukee支具治疗青少年特发性脊柱侧凸的疗效分析与应用体会[J].中国脊柱脊髓杂志,2001,11(4):201-203.
    [37]Nachemson AL,Peterson LE.Effectiveness of treatment with a brace in girls who have adolescent idiopathic scoliosis.A prospective,controlled study based on data from the Brace Study of the Scoliosis Research Society[J].J Bone Surg(Am),1995,77:815-822.
    [38]Rowe DE,Bernstein SM,Riddick MF,et al,A meta analysis of the efficacy of nonoperative for idiopathic scoliosis[J].J Bone Surg(Am),1997,79:664-674.
    [39]Lonstein JE,Winter RB.The Milwaukee brace for the treatment of adolescent idiopathic scoliosis.A review of one thousand and twenty patients[J].J Bone Joint Surg(Am),1994,76:1207-1221.
    [40]Olafsson Y,Saraste H,Soderlund V,et al.Boston brace in the treatment of idiopathic scoliosis[J].J Pediart Orthop,1995,15:524-527.
    [41]Goldberh CJ,Dowing FE,Hall JE,et al.A statistical comparison between natural history of idiopathic scoliosis and brace treatment in skeletally immature adolescent girls[J].Spine,1993,18:902-908.
    [42]Noonan KJ,Weinstein SL,Jacobson WC,et al.Use of the Milwaukee brace for progressive idiopathic scoliosis[J].J Bone Joint Surg(Am),1996,78:557-567.
    [43]戴力扬.特发性脊柱侧凸的支具治疗[J].中国矫形外科杂志,1999,6(7):543.
    [44]Katz DE,Durrani AA.Factors that influence outcome in bracing Large curves in patients with adolescent idiopathic scolisis[J].Spine,2001,26:2351-2354.
    [45]邱勇.应重视青少年特发性脊柱侧凸的早期支具治疗[J].中国脊柱脊髓杂志,2007,17(4):245-247.
    [46]张春阳,李明,侯铁胜.特发性脊柱侧凸支具治疗的研究进展[J].中国脊柱脊髓杂志,1999,9(3):167.
    [47]Emans JB.Scoliosis:diagnosis and current treatment[J].Women Health.1984 Summer-Fall,9(2-3):81-102.
    [48] Howard A, Wright JG, Hedden D.A comparative study of TLSO, Charleston, and Milwaukee braces for idiopathic scoliosis[J]Spine, 1998,23(22):2404-2411.
    [49] Willner S.Effect of the Boston thoracic brace on the frontal and sagittal curves of the spine[J].Acta Orthop Scand, 1984, 55(4):457-460.
    [50] Wong MS, Mak AF, Luk KD, et al. Effect of using prismatic eye lenses on the posture of patients with adolescent idiopathic scoliosis measured by 3-d motion analysis[J]. Prosthet Orthot Int, 2002,26(2):139-153.
    [51] Aubin CE, Labelle H, Ruszkowski A, et al. Variability of strap tension in brace treatment for adolescent idiopathic scoliosis[J]. Spine, 1999,24(4):349-354.
    [52] Gignac D, Aubin CE, Dansereau J, et al. A biomechanical study of new orthotic treatment approaches for the 3D correction of scoliosis[J].Ann Chir, 1998, 52(8):795-800.
    [53] Perie D, Aubin CE, Petit Y, et al. Personalized biomechanical simulations of orthotic treatment in idiopathic scoliosis[J]. Clin Biomech (Bristol, Avon), 2004 , 19(2):190-195.
    [54] Labelle H,Dansereau J,Bellefleur C, et al. Three dimensional effect of the Boston brace on the thoracic spine and rib cage[J]. Spine,1996,21(1):59.
    [55] Aubin CE,Dansereau J,deGuise JA,et al.Rib cage spine coupling patterns involved in brace treatment of adolescent idiopathic scoliosis[J].Spine, 1997, 22(6):629.
    [56] Katsaris G, Loukos A, Valavanis J, et al. The immediate effect of a Boston brace on lung volumes and pulmonary compliance in mild adolescent idiopathic scoliosis[J]. Eur Spine J, 1999, 8(1):2-7.
    [57] Korovessis P, Filos KS, Georgopoulos D.Long-term alterations of respiratory function in adolescents wearing a brace for idiopathic scoliosis[J].Spine, 1996,21(17):1979-1984.
    [58] Thomas KA,Cook SD,Skalley TC,et al. Lumbarspine and femoral neck bone mineral density in idiopathic scoliosis:a follow-up study[J].J Pediatr Orthop,1992,12(2):235.
    [59] Snyder BD,Zaltz I,Breitenbach MA, et al. Does bracing affect bone density in adolescent scoliosis[J].Spine,1995,20(14):1554.
    [60] Vandal S,Rivard CH,Bradet R.Measuring the compliance behavior of adolescent swearing orthopedic braces[J].Issues Compr Pediatr Nurs,1999, 22(223):59.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700