Lenke 6型特发性脊柱侧凸有限元建模及后路三维矫形的生物力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究应用计算机辅助工程(computer aided engineering, CAE)软件,建立了基于CT图像的完整Lenke6型特发性脊柱侧凸三维非线性有限元模型;采用正交试验对初步模型进行优化,然后对优化模型进行有效性验证;在此基础上,仿真模拟Lenke6型特发性脊柱侧凸后路CD矫形技术各个步骤;进而利用CD矫形模拟不同的矫形策略工况,探讨关键椎置钉技术和选择性融合的矫形效果。
     目的应用CAE软件,建立基于CT图像的Lenke6型特发性脊柱侧凸三维非线性有限元模型。
     方法选择1例14岁女性Lenke6型特发性脊柱侧凸志愿者作为研究对象。取仰卧位,应用螺旋CT从T1上缘至尾骨以1mm间距进行连续扫描,获得Dicom格式CT图像511张。导入逆向工程软件Mimics10.01,建立包括胸-腰-骶椎和胸廓等结构的完整脊柱侧凸三维几何模型。对模型进行几何清理,然后导入有限元前处理软件HyperMesh8.0划分有限元实体网格,并参照文献添加椎间盘及韧带结构单元,生成完整的特发性脊柱侧凸三维有限元模型。参照文献赋予模型材料参数和实常数。
     结果建立了完整的Lenke6CN型特发性脊柱侧凸三维非线性有限元模型,包括12节胸椎、5节腰椎、椎间盘、骶尾骨、胸廓及脊柱所有韧带、关节结构。模型共采用4种单元类型,13种材料性质;划分节点208739个,全部单元849787个,四面体单元758197个,壳单元90776个,线缆单元680个和杆单元134个。网格划分后的整体图形和仰卧位的X线片对比,外观基本上吻合。
     结论成功构建了基于CT图像的Lenke6CN型特发性脊柱侧凸三维有限元模型,模型完整、逼真地还原了被模拟对象的脊柱特点。
     目的对初步建立的有限元模型进行进一步参数优化,使模型的形态和材料属性均实现个体化;验证优化的Lenke6型特发性脊柱侧凸三维有限元模型的有效性。
     方法将上胸段、主胸段、胸腰段和下腰段等4个区域的椎间盘材料属性分为柔软型、中间型和僵硬型三个水平,系数分别为0.2、1、8。按照正交试验设计进行四因素三水平分析,找出使模拟结果和实际情况差异最小的系数搭配,进而生成优化后的个体化模型。
     将仰卧位的优化模型进行加载,模拟出左右侧屈位,和站立位,并分别与实际对应的X线片比较外形、侧凸Cobb角度和各椎体质心与CSVL的偏移距离。在优化的模型中提取T1-T4、L4-S1两个节段,分别参照同类体外(尸体)实验对有限元节段模型进行约束加载,并将加载结果与各自参照的体外实验结果进行比较,验证模型的有效性。
     结果正交试验结果显示使模型和实际差异最小化的较好组合是:椎间盘属性在上胸段为0.2,主胸凸段为1,胸腰段为1,下腰段为8。
     验证结果:优化后各个体位的有限元模型Cobb角度与临床X线片相比较,角度最大相差2.5°,最小为0;椎体质心偏离骶骨中线的距离:仰卧位、站立位、仰卧左右侧屈位X线片与有限元模型相比较,P>0.10,两者没有差别;T1-T4、L4-S1两个节段与相关的生物力学实验研究相比较,活动度均在相关生物力学实验研究的范围内。
     结论有限元模型建立后采用正交试验对于模型材料属性进行个体化的方法是可行的,也是必要的,优化后的模型与实际更为相符。
     从几何外形、仰卧位左右侧屈试验、站立-仰卧试验及分段加载实验,验证了优化后的Lenke6型特发型脊柱侧凸模型的可靠性和有效性,为下一步生物力学模拟研究奠定了基础。
     目的利用优化后的Lenke6型特发性脊柱侧凸有限元模型,按步骤模拟后路CD矫形技术。
     方法建立椎弓根钉及矫形棒的有限元模型,并在侧凸模型上去除矫形融合段的棘间韧带、棘上韧带和上下关节囊,模拟脊柱松解。于融合段各椎体双侧按解剖结构置入椎弓根钉,在左侧(矫形侧)生成矫形棒,并予X、Y方向位移使矫形棒成为目的形状。在棒上生成手柄模拟手术钳功能,将棒旋转90°,把冠状面的侧凸畸形转化为矢状面的正常生理后凸和前凸。安置右侧稳定棒并依次将螺钉逐步靠拢稳定棒的位置。锁定钉棒间关节活动度,释放应力,完成手术。
     结果顺利完成了CD矫形手术各步骤的模拟,模拟完成后胸腰弯Cobb角度为29.2°,主胸弯Cobb角度为24.4°,胸腰弯矫形率47.8%,主胸弯矫形率43.9%,冠状面序列基本恢复正常,矢状面胸椎后凸及腰椎前凸均较术前有改善。
     结论首次在完整的Lenke6型脊柱侧凸有限元模型上按CD矫形技术各步骤完成侧凸后路钉棒矫形手术的模拟,为预测病人治疗效果、旋转矫形策略、探讨脊柱侧凸治疗中的争议等提供参考意见,也为本研究下一步矫形策略的选择的有限元研究奠定基础。
     目的通过有限元模型矫形手术模拟的方法探讨关键椎置钉技术的可行性及矫形效果,分析Lenke6型脊柱侧凸是否适合采用选择性融合策略。
     方法利用后路CD矫形手术模拟技术,分别模拟全节段椎弓根钉技术矫形工况、关键椎置钉技术矫形工况、胸腰弯选择性融合工况等。测量各种工况完成后双弯Cobb角度、计算矫形率,分析各种工况的矫形效果。
     结果全节段椎弓根钉技术(非选择性融合):胸腰弯矫形率47.8%,主胸弯矫形率43.9%;关键椎置钉技术:胸腰弯矫形率44.2%,主胸弯矫形率19.1%;胸腰弯选择性融合:胸腰弯矫形率43.5%,主胸弯矫形率14.3%。
     结论全节段椎弓根钉技术因矫形力施加点更多,矫形效果较关键椎置钉技术更佳;Lenke6型脊柱侧凸采用选择性融合策略应慎重,非选择性融合策略能明显矫正双弯,纠正脊柱序列,更适合该类型病例。
In this study, computer aided engineering (CAE) software was used to establish a complete three-dimensional finite element model of Lenke 6 idiopathic scoliosis based on CT images, including all thoraco-lumbar-sacral vertebrae and thoracic cage. Then optimized the model parameters and validated the final model. On the basis, we simulated all the main steps of posterior Cotrel-Dubousset (CD) technique correction surgery using this IS finite element model. Then simulated different correction strategy to explore the effect of key-segment instrumentation technique and selective fusion strategy.
     Objective The CAE softwares was used to build three-dimensional finite element model of Lenke 6 idiopathic scoliosis based on CT images.
     Methods A 14-year-old female Lenke 6 idiopathic scoliosis patient was included as volunteer for current study. CT transverse scanning in supine position was done from T1 to caudal end in lmm layer interval, to obtain 511 CT dicom images. All CT images were imported into Mimics 10.01 to form qualified IS three-dimensional geometric model after geometry clean, including all thoraco-lumbar-sacral vertebrae and thoracic cage, which was further delivered to HypherMesh 7.0 to build 3d finite element IS model by mesh partition and quality control. A variety of material parameters were given to different mesh according to references.
     Results A three-dimensional finite element model of Lenke 6 idiopathic scoliosis was built successfully, including all thoraco-lumbar-sacral spine and thoracic cage, using 4 mesh types and 13 kinds of material parameters, in consist of 208739 nodes,758197 tetrahedron elements,90776 shell elements,680 cable elements and 138 rod elements.
     Conclusions A three-dimensional finite element model of Lenke 6 IS in details, was built successfully based on CT transverse scanning images.
     Objective To personalized the mechanical properties of finite element model of Lenke 6 IS built in chapter one, verify the validity of the optimized model.
     Methods The personalization of the mechanical properties is done using the flexible tests routinely done prior to the surgery-based on preoperative stereoradiography and flexibility test radiographs. And using the orthogonal experimental design analysis of four factors and three levels of disc material property to optimize the parameters, and then achieve the biomechanical property of the individual.
     Compared the model with upstanding posterior-anterior X-Ray, supine posterior-anterior X-Ray and lateral flexion X-Ray of supine posterior-anterior position. Chose T1-T4 and L4-S1 to compare with related results of biomechanics empirical study.
     Results Orthogonal experiment results showed that the best combinations, which mimimized the difference of model and the actual, were dise property in the proximal thoracic segments is 0.2, the main thoracic segments is 1, the thoracolumbar segments is 1, and the lower lumbar segments is 8.
     Compared the Cobb angles of optimized model and actual X-ray film, the largest difference was 2.5°, and the mibimum is 0. Compared the center of mass deviated from sacral middle line between X-Ray and optimized model, P>0.10, which considered no differences between them. Chose T1-T4 and L4-S1 to compare with related results of biomechanics empirical study, the rotation of the model was in the boundary of related results.
     Conclusions The way using orthogonal experimental design analysis to optimize the parameters was feasible and necessary. The optimized model was more in line with the actual.
     The optimized three-dimensional finite element model of Lenke 6 idiopathic scoliosis was well validated by geometry appearance, left and right supine bending test, standing-spuine test and segment validation, which was qualified for further biomechanical simulation study.
     Objective To simulate posterior CD correction surgery using the optimized finite element model step by step.
     Methods Established the pedicle screws and rods finite element model. Simulated posterior release by removing the interspinous ligaments, supraspinous ligaments and joint capsule of instrumented segments. Anatomically implanted the pedicle screws into the sconliosis model. Generated the correctted rod in the left side. Given the rod displacement of X, Y direction to shape the prupose correctted rod. Generated handles and rotated the rod 90°, which translated the coronal scoliosis into sagittal kyphosis and lordosis. Then placed the stable rod. Turned the screws to move closer to the rod. Locked the joint activity of screw-rod, released the stress.
     Results Successfully completed each step simulation of CD correction technique. After correction the Cobb angle of thoracolumbar curve was 29.2°with the 47.8% correction rate, and the Cobb angle of the main thoracic curve was 24.4°with the 43.9% correction rate. The alignment of the spine was improved.
     Conclusion It was the first time to completely simulate all main steps of Cotrel-Dubousset (CD) surgery in the finite element model of Lenke 6 scoliosis. This could help to evaluation, prediction and even optimize the surgical plan and provide a theoretical support.
     Objective To explore the feasibility and effect of key-segment instrumentation and the suitability of selective fusion strategy for Lenke 6 scoliosis by finite element analysis.
     Methods Simulated the following conditions:all-segment pedicle screw instrumentation surgery, key-segment pedicle screw instrumentation surgery, selective thoracolumbar curve fusion surgery. Measured the curve Cobb angles and calculated the correction rate in all above conditions. Analyzed the correctted effect of these conditions.
     Results The correction rates of thoracolumbar curve and main thoracic curve were:47.8% and 43.9% in all-segment pedicle screw instrumentation surgery (non-selective fusion),44.2% and 19.1% in key-segment pedicle screw instrumentation surgery,43.5% and 14.3% in selective thoracolumbar curve fusion surgery.
     Conclusions The effect of all-segment pedicle screw instrumentation surgery was better than key-segment pedicle screw instrumentation surgery for the more force placements. Non-selective fusion, which could correct the two curve and improve the alignment significantly, was more suitable for Lenke 6 scoliosis.
引文
[1]Weinstein SL. Natural history. Spine,1999,24(24):2592-2600.
    [2]Lonstein JE. Scoliosis:surgical versus nonsurgical treatment. Clin Orthop Relat Res,2006,443:248-259.
    [3]Carr AJ. Adolescent idiopathic scoliosis in identical twins. J Bone Joint Surg (Br), 1990,72(6):1077.
    [4]Kesling KL, Reinker KA. Scoliosis in twins. A meta-analysis of the literature and report of six cases. Spine,1997,22(17):2009-2015.
    [5]Giampietro PF, Raggio CL,Blank RD. Synteny-defined candidate genes for congenital and idiopathic scoliosis. Am J Med Genet,1999,83(3):164-177.
    [6]Qiu XS, Tang NL, Yeung HY, Lack of association between the promoter polymorphism of the MTNR1A gene and adolescent idiopathic scoliosis. Spine. 2008,33(20):2204-2207.
    [7]Qiu XS, Tang NL, Yeung HY, et al. Melatonin receptor 1B (MTNR1B) gene polymorphism is associated with the occurrence of adolescent idiopathic scoliosis. Spine,2007,32(16):1748-1753.
    [8]Qiu XS, Tang NL, Yeung HY,et al. Genetic association study of growth hormone receptor and idiopathic scoliosis. Clin Orthop Relat Res.2007,462:53-58.
    [9]Machida M,Dubousset J, Imamura Y, et al. An experimental study in chickens for the pathogenesis of idiopathic scoliosis. Spine,1993,18(12):1609-1615.
    [10]Brodner W, Krepler P,Nicolakis M, et al. Melatonin and adolescent idiopathic scoliosis. J Bone Joint Surg (Br),2000,82(3):399-403.
    [11]Stokes IA,Laible JP. Three-dimensional osseo-ligamentous model of the thorax representing initiation of scoliosis by a symmeric growth. J Biomech,1990, 23:589-595.
    [12]Azegami H, Murachi S,Kitoh J,et al. Etiology of idiopathic scoliosis computational study. Clinical Orthopaedics & Related Research,1998, (357):229-236.
    [13]Goto M,Kawakami N,Azegami H,et al.Buckling and bone modeling as factors in the development of idiopathic scolisis.J Biomec Eng,2002,124(6):784-790.
    [14]Huynh AM, Aubin CE, Rajwani T,et al. Pedicle growth asymmetry as a cause of adolescent idiopathic scoliosis:a biomechanical study. Eur Spine J.2007, 16(4):523-529.
    [15]Belytschko T, Finite element stress analysis of an intervertebral disc. J Biomech, 1974,7:277.
    [16]Rybicki EF, Simonen FA,Weis EB Jr. On the mathematical analysis of stress in the human femur. J Biomech,1972,5(2):203-215.
    [17]Brekelmans WA, Poort HW,Slooff TJ. A new method to analyse the mechanical behaviour of skeletal parts. Acta Orthop Scand,1972,43(5):301-317.
    [18]Andriacchi TP, Schultz AB, Belytschko TB, et al. Milwaukee brace correction of idiopathic scoliosis. A biomechanical analysis and a restrospective study. J Bone Joint Surg Am,1976,58(6):806-815.
    [19]Viviani GR, Ghista DN, Lozada PJ, et al. Biomechanical analysis and simulation of scoliosis surgical correction. Clin Orthop Relat Res,1986(208):40-47.
    [1]DU Ping-an, GAN E-zhong, YU Ya-ting, et al. Finite Element Method:Principle, Modeling and Application. Bingjin:National Defence Industry Press,2004:1-6.
    [2]Van Rietbergen B, Odgaard A, Kabel J, et al. Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture. J Biomech, 1996,29(12):1653-1657.
    [3]Rybicki EF, Simonen FA,Weis EB Jr. On the mathematical analysis of stress in the human femur. J Biomech,1972,5(2):203-215.
    [4]Brekelmans WA, Poort HW,Slooff TJ. A new method to analyse the mechanical behaviour of skeletal parts. Acta Orthop Scand,1972,43(5):301-317.
    [5]Liu YK, Ray G,Hirsch C. The resistance of the lumbar spine to direct shear. Orthop Clin North Am,1975,6(1):33-49.
    [6]Lafage V, Dubousset J, Lavaste F, et al.3D finite element simulation of Cotrel-Dubousset correction. Comput Aided Surg,2004,9(1-2):17-25.
    [7]Lafon Y, Steib JP,Skalli W. Intraoperative Three Dimensional Correction During In Situ Contouring Surgery by Using a Numerical Model. Spine,2010, 35(4):453-459..
    [8]Villemure I, Aubin CE, Dansereau J, et al. Biomechanical simulations of the spine deformation process in adolescent idiopathic scoliosis from different pathogenesis hypotheses. Eur Spine J,2004,13(1):83-90.
    [9]杨晓明,顾苏熙,李明,等.特发性脊柱侧凸椎体楔形变有限元模型分析.中国矫形外科杂志,2008,16(19):1493-1495.
    [10]胡明涛,韦兴,赵红平,等.后路椎弓根螺钉系统治疗特发性腰椎侧凸的有限元分型.医用生物力学,2007,22(4):367-372.
    [11]余慧琴,顾苏熙,李明,等.脊柱侧凸三维有限元模型的建立及其意义.医用生物力学,2008,23(2):136-139.
    [12]汪正宇,刘祖德,王哲,等.青少年特发性脊柱侧凸有限元模型的建立及其意义.生物医学工程杂志,2008,25(5):1084-1088.
    [13]汪学松,吴志宏,王以朋.三维有限元法构建青少年特发性脊柱侧弯模型.中国组织工程研究与临床康复杂志,2008,12(44):8610-8614.
    [14]Cao KD, Grimm MJ,Yang KH. Load sharing within a human lumbar vertebral body using the finite element method. Spine,2001,26(12):E253-260.
    [15]Smit TH, Odgaard A,Schneider E. Structure and function of vertebral trabecular bone. Spine,1997,22(24):2823-2833.
    [16]Shirazi-Adl A, Ahmed AM,Shrivastava SC. Mechanical response of a lumbar motion segment in axial torque alone and combined with compression. Spine, 1986,11(9):914-927.
    [17]Sharma M, Langrana NA,Rodriguez J. Role of ligaments and facets in lumbar spinal stability. Spine,1995,20(8):887-900.
    [18]Polikeit A, Ferguson SJ, Nolte LP, et al. Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages:finite element analysis. Eur Spine J,2003,12(4):413-420.
    [19]Sylvestre PL, Villemure I, Aubin CE. Finite element modeling of the growth plate in a detailed spine model. Med Biol Eng Comput,2007,45(10):977-988.
    [20]Nie WZ, Ye M, Liu ZD, et al. The patient-specific brace design and biomechanical analysis of adolescent idiopathic scoliosis. J Biomech Eng, 2009,131(4):041007.
    [21]Silva MJ, Keaveny TM,Hayes WC. Load sharing between the shell and centrum in the lumbar vertebral body. Spine,1997,22(2):140-150.
    [22]桂鉴超,周强,顾湘杰,等.股骨质量对人工髋关节置换之影响的三维有限元分析.骨与关节损伤杂志.15(3),2000.212-214.
    [23]Guo LX, Teo EC, Lee KK, et al. Vibration characteristics of the human spine under axial cyclic loads:effect of frequency and damping. Spine, 2005,30(6):631-637.
    [24]魏斌.牙颌系统三维有限元建模方法的进展.口腔材料器械杂志,2002,11(2):86-87.
    [25]Andriacchi TP, Schultz AB, Belytschko TB, et al. Milwaukee brace correction of idiopathic scoliosis. A biomechanical analysis and a restrospective study. J Bone Joint Surg Am,1976,58(6):806-815.
    [26]Viviani GR, Ghista DN, Lozada PJ, et al. Biomechanical analysis and simulation of scoliosis surgical correction. Clin Orthop Relat Res,1986(208):40-47.
    [27]Stokes IA, Gardner-Morse M. Three-dimensional simulation of Harrington distraction instrumentation for surgical correction of scoliosis. Spine, 1993,18(16):2457-2464.
    [28]Noone G, Mazumdar J, Kothiyal KP, et al. Biomechanical simulations of scoliotic spinal deformity and correction. Australas Phys Eng Sci Med, 1993,16(2):63-74.
    [29]Gardner-Morse M, Stokes IA. Three-dimensional simulations of the scoliosis derotation maneuver with Cotrel-Dubousset instrumentation. J Biomech, 1994,27(2):177-181.
    [30]Azegami H, Murachi S, Kitoh J, et al. Etiology of idiopathic scoliosis. Computational study. Clin Orthop Relat Res,1998(357):229-236.
    [31]Gignac D, Aubin CE, Dansereau J, et al. Optimization method for 3D bracing correction of scoliosis using a finite element model. Eur Spine J, 2000,9(3):185-190.
    [32]Grealou L, Aubin CE,Labelle H. Rib cage surgery for the treatment of scoliosis:a biomechanical study of correction mechanisms. J Orthop Res, 2002,20(5):1121-1128.
    [33]Huynh AM, Aubin CE, Rajwani T, et al. Pedicle growth asymmetry as a cause of adolescent idiopathic scoliosis:a biomechanical study. Eur Spine J, 2007,16(4):523-529.
    [34]Liao YC, Feng CK, Tsai MW, et al. Shape modification of the Boston brace using
    a finite-element method with topology optimization. Spine, 2007,32(26):3014-3019.
    [35]Clin J, Aubin CE,Labelle H. Virtual prototyping of a brace design for the correction of scoliotic deformities. Med Biol Eng Comput,2007,45(5):467-473.
    [36]Duke K, Aubin CE, Dansereau J, et al. Computer simulation for the optimization of patient positioning in spinal deformity instrumentation surgery. Med Biol Eng Comput,2008,46(1)33-41.
    [37]Poulin F, Aubin CE, Stokes IA, et al. [Biomechanical modeling of instrumentation for the scoliotic spine using flexible elements:a feasibility study]. Ann Chir,1998,52(8):761-767.
    [38]Perie D, Hobatho MC, Baunin C, et al. Personalised mechanical properties of scoliotic vertebrae determined in vivo using tomodensitometry. Comput Methods Biomech Biomed Engin,2002,5(2):161-165.
    [39]Aubin CE, Petit Y, Stokes IA, et al. Biomechanical modeling of posterior instrumentation of the scoliotic spine. Comput Methods Biomech Biomed Engin, 2003,6(1):27-32.
    [40]Lafage V, Dubousset J, Lavaste F, et al. Finite element simulation of various strategies for CD correction. Stud Health Technol Inform,2002,91:428-432.
    [41]Lafon Y, Lafage V, Dubousset J, et al. Intraoperative three-dimensional correction during rod rotation technique. Spine,2009,34(5):512-519.
    [42]Nie WZ, Ye M,Wang ZY. Infinite models in scoliosis:a review of the literature and analysis of personal experience. Biomed Tech (Berl),2008,53(4):174-180.
    [43]聂文忠,叶铭,王成焘.脊柱侧凸个性化支具的生物力学研究.生物医学工程学杂志,2009,26(2):313-317.
    [44]吴立忠.特发性胸腰段脊柱侧凸畸形三维有限元模型矫形生物力学分析:[硕士学位论文].福州:福建医科大学,2002.
    [1]汪正宇,刘祖德,王哲,等.脊柱侧凸有限元模型的建立和参数优化.北京生物医学工程,2008,27(1):28-32.
    [2]汪正宇,刘祖德,王哲,等.青少年特发性脊柱侧凸有限元模型的建立及其意义.生物医学工程杂志,2008,25(5):1084-1085.
    [3]汪学松,吴志宏,王以朋,等.三维有限元法构建青少年特发性脊柱侧弯模型.中国组织工程研究与临床康复,2008,12(44):8610-8614.
    [4]王哲,汪正宇,王冬梅,等.基于CT图像的侧凸脊柱胸腰段及骶骨整体三维有限元模型的建立.计算机应用技术,2007,34(4):24-26.
    [5]Petit Y, Aubin CE,Labelle H. Patient-specific mechanical properties of a flexible multi-body model of the scoliotic spine. Med Biol Eng Comput, 2004,42(1):55-60.
    [6]Nachemson A. The load on lumbar disks in different positions of the body. Clin Orthop Relat Res,1966,45:107-122.
    [7]Schultz A, Andersson G, Ortengren R, et al. Loads on the lumbar spine. Validation of a biomechanical analysis by measurements of intradiscal pressures and myoelectric signals. J Bone Joint Surg Am,1982,64(5):713-720.
    [8]Villemure I, Aubin CE, Dansereau J, et al. Biomechanical simulations of the spine deformation process in adolescent idiopathic scoliosis from different pathogenesis hypotheses. Eur Spine J,2004,13(1):83-90.
    [9]Busscher I, van Dieen JH, Kingma I, et al. Biomechanical characteristics of different regions of the human spine:an in vitro study on multilevel spinal segments. Spine,2009,34(26):2858-2864.
    [10]Yamamoto I, Panjabi MM, Crisco T, et al. Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine,1989,14(11):1256-1260.
    [11]Heth JA, Hitchon PW, Goel VK, et al. A biomechanical comparison between anterior and transverse interbody fusion cages. Spine,2001,26(12):E261-267.
    [12]张德盛.L3-L5三维有限元模型的建立及其临床意义.生物医学工程杂志,2006,23(6):1250-1252.
    [13]King HA, Moe JH, Bradford DS, et al. The selection of fusion levels in thoracic idiopathic scoliosis. J Bone Joint Surg Am,1983,65(9):1302-1313.
    [14]Lenke LG, Edwards CC 2nd,Bridwell KH. The Lenke classification of adolescent idiopathic scoliosis:how it organizes curve patterns as a template to perform selective fusions of the spine. Spine,2003,28(20):S199-207.
    [15]邱贵兴,仉建国,王以鹏,等.特发性脊柱侧凸的PUMC(协和)分型系统.中华骨科杂志,2003,23(1):1-9.
    [16]汪正宇.个体化青少年特发性脊柱侧凸有限元模型的建立和应用:[博士学位
    论文].上海:上海交通大学,2008.
    [17]顾苏熙.Lenke 1型特发性脊柱侧凸有限元建模及手术矫形的生物力学评价与比较研究:[博士学位论文].上海:第二军医大学,2009.
    [18]Viviani GR, Ghista DN, Lozada PJ, et al. Biomechanical analysis and simulation of scoliosis surgical correction. Clin Orthop Relat Res,1986(208):40-47.
    [19]Stokes IA, Gardner-Morse M. Three-dimensional simulation of Harrington distraction instrumentation for surgical correction of scoliosis. Spine, 1993,18(16):2457-2464.
    [20]Azegami H, Murachi S, Kitoh J, et al. Etiology of idiopathic scoliosis. Computational study. Clin Orthop Relat Res,1998(357):229-236.
    [1]Cotrel Y, Dubousset J. [A new technic for segmental spinal osteosynthesis using the posterior approach]. Rev Chir Orthop Reparatrice Appar Mot, 1984,70(6):489-494.
    [2]Lenke LG, Betz RR, Harms J, et al. Adolescent idiopathic scoliosis:a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am, 2001,83-A(8):1169-1181.
    [3]Lenke LG, Betz RR, Clements D, et al. Curve prevalence of a new classification of operative adolescent idiopathic scoliosis:does classification correlate with treatment. Spine,2002,27(6):604-611.
    [4]Helenius I, Remes V, Yrjonen T, et al. Harrington and Cotrel-Dubousset instrumentation in adolescent idiopathic scoliosis. Long-term functional and radiographic outcomes. J Bone Joint Surg Am,2003,85-A(12):2303-2309.
    [5]Viviani GR, Ghista DN, Lozada PJ, et al. Biomechanical analysis and simulation of scoliosis surgical correction. Clin Orthop Relat Res,1986(208):40-47.
    [6]Stokes IA, Laible JP. Three-dimensional osseo-ligamentous model of the thorax representing initiation of scoliosis by asymmetric growth. J Biomech, 1990,23(6):589-595.
    [7]Stokes IA, Gardner-Morse M. Three-dimensional simulation of Harrington distraction instrumentation for surgical correction of scoliosis. Spine, 1993,18(16):2457-2464.
    [8]吴立忠.特发性胸腰段脊柱侧凸畸形三维有限元模型矫形生物力学分析:[硕
    士学位论文].福州:福建医科大学,2002.
    [9]Poulin F, Aubin CE, Stokes IA, et al. [Biomechanical modeling of instrumentation for the scoliotic spine using flexible elements:a feasibility study]. Ann Chir,1998,52(8):761-7.Aubin CE, Petit Y, Stokes IA, et al. Biomechanical modeling of posterior instrumentation of the scoliotic spine. Comput Methods Biomech Biomed Engin,2003,6(1):27-32.
    [10]Aubin CE, Petit Y, Stokes IA, et al. Biomechanical modeling of posterior instrumentation of the scoliotic spine. Comput Methods Biomech Biomed Engin, 2003,6(1):27-32.
    [11]Gardner-Morse M, Stokes IA. Three-dimensional simulations of the scoliosis derotation maneuver with Cotrel-Dubousset instrumentation. J Biomech, 1994,27(2):177-181.
    [12]Lafage V, Dubousset J, Lavaste F, et al. Finite element simulation of various strategies for CD correction. Stud Health Technol Inform,2002,91:428-432.
    [13]Lafage V, Dubousset J, Lavaste F, et al.3D finite element simulation of Cotrel-Dubousset correction. Comput Aided Surg,2004,9(1-2):17-25.
    [14]Lafon Y, Lafage V, Dubousset J, et al. Intraoperative three-dimensional correction during rod rotation technique. Spine,2009,34(5):512-519.
    [15]Dumas R, Lafage V, Lafon Y, et al. Finite element simulation of spinal deformities correction by in situ contouring technique. Comput Methods Biomech Biomed Engin,2005,8(5):331-337.
    [16]Lafon Y, Steib JP,Skalli W. Intraoperative Three Dimensional Correction During In Situ Contouring Surgery by Using a Numerical Model. Spine,2010.
    [17]Wang X, Aubin CE, Labelle H, et al. Biomechanical modelling of a direct vertebral translation instrumentation system:preliminary results. Stud Health Technol Inform,2008,140:128-132.
    [18]顾苏熙.Lenke 1型特发性脊柱侧凸有限元建模及手术矫形的生物力学评价与比较研究:[博士学位论文].上海:第二军医大学,2009.
    [19]胡明涛,韦兴,赵红平,等.后路椎弓根螺钉系统治疗特发性腰椎侧凸的有限元分析.医用生物力学,2007,22(4):367-372.
    [20]汪学松.PUMC ⅡdⅡ型青少年特发性脊柱侧凸仿真模型和有限元模型的建立和相关生物力学分析:[中国博士学位论文].北京:协和医院,2008.
    [21]Shufflebarger HL, Crawford AH. Is Cotrel-Dubousset Instrumentation the
    treatment of choice for idiopathic scoliosis in the adolescent who has an operative thoracic curve?. Orthopedics,1988,11(11):1579-1588.
    [22]Shufflebarger HL, Geck MJ,Clark CE. The posterior approach for lumbar and thoracolumbar adolescent idiopathic scoliosis:posterior shortening and pedicle screws. Spine,2004,29(3):269-76; discussion 276.
    [23]张宏其,鲁世金,陈静,等.广泛后路松解三维矫形治疗重度特发性脊柱侧凸.中国脊柱脊髓杂志.17(4),2007.274-279.
    [24]Ghanem IB, Hagnere F, Dubousset JF, et al. Intraoperative optoelectronic analysis of three-dimensional vertebral displacement after Cotrel-Dubousset rod rotation. A preliminary report. Spine,1997,22(16):1913-1921.
    [1]Suk SI, Lee CK, Kim WJ, et al. Segmental pedicle screw fixation in the treatment of thoracic idiopathic scoliosis. Spine,1995,20(12):1399-1405.
    [2]Kim YJ, Lenke LG, Cho SK, et al. Comparative analysis of pedicle screw versus hook instrumentation in posterior spinal fusion of adolescent idiopathic scoliosis. Spine,2004,29(18):2040-2048.
    [3]Kim YJ, Lenke LG, Kim J, et al. Comparative analysis of pedicle screw versus hybrid instrumentation in posterior spinal fusion of adolescent idiopathic scoliosis. Spine,2006,31(3):291-298.
    [4]Lowenstein JE, Matsumoto H, Vitale MG, et al. Coronal and sagittal plane correction in adolescent idiopathic scoliosis:a comparison between all pedicle screw versus hybrid thoracic hook lumbar screw constructs. Spine,2007,32(4):448-452.
    [5]Asghar J, Samdani AF, Pahys JM, et al. Computed tomography evaluation of rotation correction in adolescent idiopathic scoliosis:a comparison of an all pedicle screw construct versus a hook-rod system. Spine,2009,34(8):804-807.
    [6]Liljenqvist U, Hackenberg L, Link T, et al. Pullout strength of pedicle screws versus pedicle and laminar hooks in the thoracic spine. Acta Orthop Belg, 2001,67(2):157-163.
    [7]Hackenberg L, Link T,Liljenqvist U. Axial and tangential fixation strength of pedicle screws versus hooks in the thoracic spine in relation to bone mineral density. Spine,2002,27(9):937-942.
    [8]Suk SI, Kim WJ, Kim JH, et al. Restoration of thoracic kyphosis in the hypokyphotic spine:a comparison between multiple-hook and segmental pedicle screw fixation in adolescent idiopathic scoliosis. J Spinal Disord, 1999,12(6):489-495.
    [9]张鹏,刘国辉,杨述华,等.后路选择性内固定矫形治疗青少年特发性脊柱侧凸.临床骨科杂志.12(2),2009.133-136.
    [10]李明,刘洋,倪春鸿,等.全椎弓根螺钉技术在脊柱畸形矫治术中应用的疗效分析.脊柱外科杂志,2005,3(4):208-211.
    [11]Lenke LG, Betz RR, Harms J, et al. Adolescent idiopathic scoliosis:a new classification to determine extent of spinal arthrodesis. J Bone Joint Surg Am, 2001,83-A(8):1169-1181.
    [12]Sanders AE, Baumann R, Brown H, et al. Selective anterior fusion of thoracolumbar/lumbar curves in adolescents:when can the associated thoracic curve be left unfused?. Spine,2003,28(7):706-13; discussion 714.
    [13]King HA, Moe JH, Bradford DS, et al. The selection of fusion levels in thoracic idiopathic scoliosis. J Bone Joint Surg Am,1983,65(9):1302-1313.
    [14]Dubousset J, Cotrel Y. Application technique of Cotrel-Dubousset instrumentation for scoliosis deformities. Clin Orthop Relat Res,1991(264): 103-110.
    [15]Lenke LG, Betz RR, Bridwell KH, et al. Intraobserver and interobserver reliability of the classification of thoracic adolescent idiopathic scoliosis. J Bone Joint Surg Am,1998,80(8):1097-1106.
    [16]Suk SI, Lee SM, Chung ER, et al. Determination of distal fusion level with segmental pedicle screw fixation in single thoracic idiopathic scoliosis. Spine, 2003,28(5):484-491.
    [17]Chang KW. Cantilever bending technique for treatment of large and rigid scoliosis. Spine,2003,28(21):2452-2458.
    [18]Lee SM, Suk SI,Chung ER. Direct vertebral rotation:a new technique of three-dimensional deformity correction with segmental pedicle screw fixation in adolescent idiopathic scoliosis. Spine,2004,29(3):343-349.
    [19]Barr SJ, Schuette AM,Emans JB. Lumbar pedicle screws versus hooks. Results in double major curves in adolescent idiopathic scoliosis. Spine,1997, 22(12):1369-1379.
    [20]Halm H, Niemeyer T, Link T, et al. Segmental pedicle screw instrumentation in idiopathic thoracolumbar and lumbar scoliosis. Eur Spine J,2000,9(3):191-197.
    [21]Hamill CL, Lenke LG, Bridwell KH, et al. The use of pedicle screw fixation to improve correction in the lumbar spine of patients with idiopathic scoliosis. Is it warranted?. Spine,1996,21(10):1241-1249.
    [22]Kuklo TR, Potter BK, Polly DW Jr, et al. Monaxial versus multiaxial thoracic pedicle screws in the correction of adolescent idiopathic scoliosis. Spine, 2005,30(18):2113-2120.
    [23]Liljenqvist UR, Halm HF,Link TM. Pedicle screw instrumentation of the thoracic spine in idiopathic scoliosis. Spine,1997,22(19):2239-2245.
    [24]Liljenqvist U, Lepsien U, Hackenberg L, et al. Comparative analysis of pedicle screw and hook instrumentation in posterior correction and fusion of idiopathic thoracic scoliosis. Eur Spine J,2002,11(4):336-343.
    [25]Robitaille M, Aubin CE,Labelle H. Intra and interobserver variability of preoperative planning for surgical instrumentation in adolescent idiopathic scoliosis. Eur Spine J,2007,16(10):1604-1614.
    [26]Karatoprak 0, Unay K, Tezer M, et al. Comparative analysis of pedicle screw versus hybrid instrumentation in adolescent idiopathic scoliosis surgery. Int Orthop,2008,32(4):523-8; discussion 529.
    [27]Kuklo TR, Potter BK, Lenke LG, et al. Surgical revision rates of hooks versus hybrid versus screws versus combined anteroposterior spinal fusion for adolescent idiopathic scoliosis. Spine,2007,32(20):2258-2264.
    [28]Takeshita K, Maruyama T, Murakami M, et al. Correction of scoliosis using segmental pedicle screw instrumentation versus hybrid constructs with hooks and screws. Stud Health Technol Inform,2006,123:571-576.
    [29]Dobbs MB, Lenke LG, Kim YJ, et al. Selective posterior thoracic fusions for adolescent idiopathic scoliosis:comparison of hooks versus pedicle screws. Spine, 2006,31(20):2400-2404.
    [30]Wu X, Yang S, Xu W, et al. Comparative Intermediate and Long-term Results of Pedicle Screw and Hook Instrumentation in Posterior Correction and Fusion of Idiopathic Thoracic Scoliosis. J Spinal Disord Tech,2010, [Epub ahead of print].
    [31]Lenke LG, Kuklo TR, Ondra S, et al. Rationale behind the current state-of-the-art treatment of scoliosis (in the pedicle screw era). Spine,2008,33(10):1051-1054.
    [32]李明,顾苏熙,朱晓东,等.全节段椎弓根螺钉系统矫治青少年特发性胸腰椎/腰椎侧凸的疗效.中国脊柱脊髓杂志,2007,17(4):261-265.
    [33]Suk SI, Lee SM, Chung ER, et al. Selective thoracic fusion with segmental pedicle screw fixation in the treatment of thoracic idiopathic scoliosis:more than 5-year follow-up. Spine,2005,30(14):1602-1609.
    [34]王岩,张永刚,张雪松,等.侧弯全节段椎弓根螺钉固定矫治单胸弯特发性脊柱侧凸的下固定融合椎选择.中国脊柱脊髓杂志,2005,15(4):203-206.
    [35]Lenke LG, Betz RR, Bridwell KH, et al. Spontaneous lumbar curve coronal correction after selective anterior or posterior thoracic fusion in adolescent idiopathic scoliosis. Spine,1999,24(16):1663-1671; discussion 1672.
    [36]Puno RM, An KC, Puno RL, et al. Treatment recommendations for idiopathic scoliosis:an assessment of the Lenke classification. Spine, 2003,28(18):2102-2114; discussion 2114-2115.
    [37]Newton PO, Faro FD, Lenke LG, et al. Factors involved in the decision to perform a selective versus nonselective fusion of Lenke 1B and 1C (King-Moe Ⅱ) curves in adolescent idiopathic scoliosis. Spine,2003,28(20):S217-223.
    [38]Lenke LG, Edwards CC 2nd,Bridwell KH. The Lenke classification of adolescent idiopathic scoliosis:how it organizes curve patterns as a template to perform selective fusions of the spine. Spine,2003,28(20):S199-207.
    [39]Winter RB. The idiopathic double thoracic curve pattern. Its recognition and surgical management. Spine,1989,14(12):1287-1292.
    [40]Suk SI, Kim WJ, Lee CS, et al. Indications of proximal thoracic curve fusion in thoracic adolescent idiopathic scoliosis:recognition and treatment of double thoracic curve pattern in adolescent idiopathic scoliosis treated with segmental instrumentation. Spine,2000,25(18):23.42-2349.
    [41]Majd ME, Holt RT,Castro FP. Selection of fusion levels in scoliosis surgery. J Spinal Disord Tech,2003,16(1):71-82.
    [1]Rybicki EF, Simonen FA,Weis EB Jr. On the mathematical analysis of stress in the human femur. J Biomech,1972,5(2):203-215.
    [2]Brekelmans WA, Poort HW,Slooff TJ. A new method to analyse the mechanical behaviour of skeletal parts. Acta Orthop Scand,1972,43(5):301-317.
    [3]Andriacchi TP, Schultz AB, Belytschko TB, et al. Milwaukee brace correction of idiopathic scoliosis. A biomechanical analysis and a restrospective study. J Bone Joint Surg Am,1976,58(6):806-815.
    [4]Viviani GR, Ghista DN, Lozada PJ, et al. Biomechanical analysis and simulation of scoliosis surgical correction. Clin Orthop Relat Res,1986(208):40-47.
    [5]Stokes IA, Laible JP. Three-dimensional osseo-ligamentous model of the thorax representing initiation of scoliosis by asymmetric growth. J Biomech, 1990,23(6):589-595.
    [6]Stokes IA, Gardner-Morse M. Analysis of the interaction between vertebral lateral deviation and axial rotation in scoliosis. J Biomech,1991,24(8):753-759.
    [7]Azegami H, Murachi S, Kitoh J, et al. Etiology of idiopathic scoliosis. Computational study. Clin Orthop Relat Res,1998(357):229-236.
    [8]Villemure I, Aubin CE, Dansereau J, et al. Biomechanical modelling of spinal growth modulation for the study of adolescent scoliotic deformities:a feasibility study. Stud Health Technol Inform,2002,88:373-377.
    [9]Villemure I, Aubin CE, Dansereau J, et al. Simulation of progressive deformities in adolescent idiopathic scoliosis using a biomechanical model integrating vertebral growth modulation. J Biomech Eng,2002,124(6):784-790.
    [10]Villemure I, Aubin CE, Dansereau J, et al. Biomechanical simulations of the spine deformation process in adolescent idiopathic scoliosis from different pathogenesis hypotheses. Eur Spine J,2004,13(1):83-90.
    [11]Garceau P, Beausejour M, Cheriet F, et al. Investigation of muscle recruitment
    patterns in scoliosis using a biomechanical finite element model. Stud Health Technol Inform,2002,88:331-335.
    [12]Goto M, Kawakami N, Azegami H, et al. Buckling and bone modeling as factors in the development of idiopathic scoliosis. Spine,2003,28(4):364-370; discussion 371.
    [13]van der Plaats A, Veldhuizen AG,Verkerke GJ. Numerical simulation of asymmetrically altered growth as initiation mechanism of scoliosis. Ann Biomed Eng,2007,35(7):1206-1215.
    [14]Perie D, Hobatho MC, Baunin C, et al. Personalised mechanical properties of scoliotic vertebrae determined in vivo using tomodensitometry. Comput Methods Biomech Biomed Engin,2002,5(2):161-165.
    [15]Huynh AM, Aubin CE, Rajwani T, et al. Pedicle growth asymmetry as a cause of adolescent idiopathic scoliosis:a biomechanical study. Eur Spine J, 2007,16(4):523-529.
    [16]Drevelle X, Dubousset J, Lafon Y, et al. Analysis of the mechanisms of idiopathic scoliosis progression using finite element simulation. Stud Health Technol Inform,2008,140:85-89.
    [17]Driscoll M, Aubin CE, Moreau A, et al. The role of spinal concave-convex biases in the progression of idiopathic scoliosis. Eur Spine J,2009,18(2):180-187.
    [18]杨晓明,顾苏熙,李明,等.特发性脊柱侧凸椎体楔形变有限元模型分析.中国矫形外科杂志.16(19),2008.1493-1495.
    [19]Huynh AM, Aubin CE, Mathieu PA, et al. Simulation of progressive spinal deformities in Duchenne muscular dystrophy using a biomechanical model integrating muscles and vertebral growth modulation. Clin Biomech (Bristol, Avon),2007,22(4):392-399.
    [20]Kim HJ, Chun HJ, Kang KT, et al. A validated finite element analysis of nerve root stress in degenerative lumbar scoliosis. Med Biol Eng Comput, 2009,47(6):599-605.
    [21]Nachemson AL, Peterson LE. Effectiveness of treatment with a brace in girls who have adolescent idiopathic scoliosis. A prospective, controlled study based on data from the Brace Study of the Scoliosis Research Society. J Bone Joint Surg Am,1995,77(6):815-822.
    [22]Weiss HR. Adolescent idiopathic scoliosis:the effect of brace treatment on the incidence of surgery. Spine,2001,26(18):2058-2059.
    [23]Noonan KJ, Weinstein SL, Jacobson WC, et al. Use of the Milwaukee brace for progressive idiopathic scoliosis. J Bone Joint Surg Am,1996,78(4):557-567.
    [24]Labelle H, Dansereau J, Bellefleur C, et al. Three-dimensional effect of the Boston brace on the thoracic spine and rib cage. Spine,1996,21(1):59-64.
    [25]Willner S. Effect of the Boston thoracic brace on the frontal and sagittal curves of the spine. Acta Orthop Scand,1984,55(4):457-460.
    [26]Clin J, Aubin CE,Labelle H. Virtual prototyping of a brace design for the correction of scoliotic deformities. Med Biol Eng Comput,2007,45(5):467-473.
    [27]Rigo M, Negrini S, Weiss HR, et al.'SOSORT consensus paper on brace action: TLSO biomechanics of correction (investigating the rationale for force vector selection)'. Scoliosis,2006,1:11.
    [28]Patwardhan AG, Bunch WH, Meade KP, et al. A biomechanical analog of curve progression and orthotic stabilization in idiopathic scoliosis. J Biomech, 1986,19(2):103-117.
    [29]Wynarsky GT, Schultz AB. Optimization of skeletal configuration:studies of scoliosis correction biomechanics. J Biomech,1991,24(8):721-732.
    [30]Gignac D, Aubin CE, Dansereau J, et al. Optimization method for 3D bracing correction of scoliosis using a finite element model. Eur Spine J, 2000,9(3):185-190.
    [31]Aubin CE, Dansereau J,Labelle H. [Biomechanical simulation of the effect of the Boston brace on a model of the scoliotic spine and thorax]. Ann Chir, 1993,47(9):881-887.
    [32]Aubin CE, Dansereau J, De Guise JA, et al. [A study of biomechanical coupling between spine and rib cage in the treatment by orthosis of scoliosis]. Ann Chir, 1996,50(8):641-650.
    [33]Perie D, Aubin CE, Lacroix M, et al. Personalized biomechanical modeling of Boston brace treatment in idiopathic scoliosis. Stud Health Technol Inform, 2002,91:393-396.
    [34]Perie D, Aubin CE, Petit Y, et al. Boston brace correction in idiopathic scoliosis: a biomechanical study. Spine,2003,28(15):1672-1677.
    [35]Perie D, Aubin CE, Petit Y, et al. Personalized biomechanical simulations of orthotic treatment in idiopathic scoliosis. Clin Biomech (Bristol, Avon), 2004,19(2):190-195.
    [36]Perie D, Aubin CE, Lacroix M, et al. Biomechanical modelling of orthotic
    treatment of the scoliotic spine including a detailed representation of the brace-torso interface. Med Biol Eng Comput,2004,42(3):339-344.
    [37]Clin J, Aubin CE, Parent S, et al. Comparison of the biomechanical 3D efficiency of different brace designs for the treatment of scoliosis using a finite element model. Eur Spine J,2010, [Epub ahead of print].
    [38]Liao YC, Feng CK, Tsai MW, et al. Shape modification of the Boston brace using a finite-element method with topology optimization. Spine,2007,32(26):3014-9.
    [39]聂文忠,叶铭,王成焘.脊柱侧凸个性化支具的生物力学研究.生物医学工程学杂志,2009,26(2):313-317.
    [40]Nie WZ, Ye M,Wang ZY. Infinite models in scoliosis:a review of the literature and analysis of personal experience. Biomed Tech (Berl),2008,53(4):174-180.
    [41]Nie WZ, Ye M, Liu ZD, et al. The patient-specific brace design and biomechanical analysis of adolescent idiopathic scoliosis. J Biomech Eng, 2009,131(4):041007.
    [42]唐明星.LenkelA-型青少年特发性脊柱侧凸有限元模型建立及其生物力学研究:[博士学位论文].长沙:中南大学,2009.
    [43]Ghista DN, Viviani GR, Subbaraj K, et al. Biomechanical basis of optimal scoliosis surgical correction. J Biomech,1988,21(2):77-88.
    [44]Polly DW Jr, Sturm PF. Traction versus supine side bending. Which technique best determines curve flexibility?. Spine,1998,23(7):804-808.
    [45]Hamzaoglu A, Talu U, Tezer M, et al. Assessment of curve flexibility in adolescent idiopathic scoliosis. Spine,2005,30(14):1637-1642.
    [46]Kleinman RG, Csongradi JJ, Rinksy LA, et al. The radiographic assessment of spinal flexibility in scoliosis:a study of the efficacy of the prone push film. Clin Orthop Relat Res,1982(162):47-53.
    [47]Cheung KM, Luk KD. Prediction of correction of scoliosis with use of the fulcrum bending radiograph. J Bone Joint Surg Am,1997,79(8):1144-1150.
    [48]Little JP, Adam CJ. The effect of soft tissue properties on spinal flexibility in scoliosis:biomechanical simulation of fulcrum bending. Spine, 2009,34(2):E76-82.
    [49]Torell G, Nachemson A, Haderspeck-Grib K, et al. Standing and supine Cobb measures in girls with idiopathic scoliosis. Spine,1985,10(5):425-427.
    [50]Klepps SJ, Lenke LG, Bridwell KH, et al. Prospective comparison of flexibility radiographs in adolescent idiopathic scoliosis. Spine,2001,26(5):E74-79.
    [51]Behairy YM, Hauser DL, Hill D, et al. Partial correction of Cobb angle prior to posterior spinal instrumentation. Ann Saudi Med,2000,20(5-6):398-401.
    [52]Delorme S, Labelle H, Poitras B, et al. Pre-, intra-, and postoperative three-dimensional evaluation of adolescent idiopathic scoliosis. J Spinal Disord, 2000,13(2):93-101.
    [53]Duke K, Aubin CE, Dansereau J, et al. Biomechanical simulations of scoliotic spine correction due to prone position and anaesthesia prior to surgical instrumentation. Clin Biomech (Bristol, Avon),2005,20(9):923-931.
    [54]Duke K, Aubin CE, Dansereau J, et al. Computer simulation for the optimization of patient positioning in spinal deformity instrumentation surgery. Med Biol Eng Comput,2008,46(1):33-41.
    [55]Stokes IA, Laible JP. Three-dimensional osseo-ligamentous model of the thorax representing initiation of scoliosis by asymmetric growth. J Biomech, 1990,23(6):589-595.
    [56]Stokes IA, Gardner-Morse M. Three-dimensional simulation of Harrington distraction instrumentation for surgical correction of scoliosis. Spine, 1993,18(16):2457-2464.
    [57]吴立忠.特发性胸腰段脊柱侧凸畸形三维有限元模型矫形生物力学分析:[硕士学位论文].福州:福建医科大学,2002.
    [58]汪学松.PUMC ⅡdⅡ型青少年特发性脊柱侧凸仿真模型和有限元模型的建立和相关生物力学分析:[中国博士学位论文].北京:协和医院,2008.
    [59]Poulin F, Aubin CE, Stokes IA, et al. [Biomechanical modeling of instrumentation for the scoliotic spine using flexible elements:a feasibility study]. Ann Chir,1998,52(8):761-767.
    [60]Aubin CE, Petit Y, Stokes IA, et al. Biomechanical modeling of posterior instrumentation of the scoliotic spine. Comput Methods Biomech Biomed Engin, 2003,6(1):27-32.
    [61]Gardner-Morse M, Stokes IA. Three-dimensional simulations of the scoliosis derotation maneuver with Cotrel-Dubousset instrumentation. J Biomech, 1994,27(2):177-181.
    [62]Lenke LG, Bridwell KH, Baldus C, et al. Analysis of pulmonary function and axis rotation in adolescent and young adult idiopathic scoliosis patients treated with Cotrel-Dubousset instrumentation. J Spinal Disord,1992,5(1):16-25.
    [63]Lafage V, Dubousset J, Lavaste F, et al. Finite element simulation of various
    strategies for CD correction. Stud Health Technol Inform,2002,91:428-432.
    [64]Lafage V, Dubousset J, Lavaste F, et al.3D finite element simulation of Cotrel-Dubousset correction. Comput Aided Surg,2004,9(1-2):17-25.
    [65]Lafon Y, Lafage V, Dubousset J, et al. Intraoperative three-dimensional correction during rod rotation technique. Spine,2009,34(5):512-519.
    [66]顾苏熙.Lenke 1型特发性脊柱侧凸有限元建模及手术矫形的生物力学评价与比较研究:[博士学位论文].上海:第二军医大学,2009.
    [67]郭超峰.Lenke1BN型特发性脊柱侧凸有限元模型的建立及后路三维矫形生物力学研究:[博士学位论文].长沙:中南大学,2009.
    [68]胡明涛,韦兴,赵红平,等.后路椎弓根螺钉系统治疗特发性腰椎侧凸的有限元分析.医用生物力学,2007,22(4):367-372.
    [69]Dumas R, Lafage V, Lafon Y, et al. Finite element simulation of spinal deformities correction by in situ contouring technique. Comput Methods Biomech Biomed Engin,2005,8(5):331-337.
    [70]Lafon Y, Steib JP,Skalli W. Intraoperative Three Dimensional Correction During In Situ Contouring Surgery by Using a Numerical Model. Spine, 2010,35(4):453-459.
    [71]Wang X, Aubin CE, Labelle H, et al. Biomechanical modelling of a direct vertebral translation instrumentation system:preliminary results. Stud Health Technol Inform,2008,140:128-132.
    [72]Lalonde NM, Aubin CE, Pannetier R, et al. Finite element modeling of vertebral body stapling applied for the correction of idiopathic scoliosis:preliminary results. Stud Health Technol Inform,2008,140:111-115.
    [73]Rohlmann A, Zander T, Burra NK, et al. Flexible non-fusion scoliosis correction systems reduce intervertebral rotation less than rigid implants and allow growth of the spine:a finite element analysis of different features of orthobiom. Eur Spine J,2008,17(2):217-223.
    [74]Grealou L, Aubin CE, Sevastik JA, et al. Simulations of rib cage surgery for the management of scoliotic deformities. Stud Health Technol Inform, 2002,88:345-349.
    [75]Grealou L, Aubin CE,Labelle H. Rib cage surgery for the treatment of scoliosis:a biomechanical study of correction mechanisms. J Orthop Res, 2002,20(5):1121-1128.
    [76]Carrier J, Aubin CE, Villemure I, et al. Biomechanical modelling of growth
    modulation following rib shortening or lengthening in adolescent idiopathic scoliosis. Med Biol Eng Comput,2004,42(4):541-548.
    [77]Desroches G, Aubin CE, Sucato DJ, et al. Simulation of an anterior spine instrumentation in adolescent idiopathic scoliosis using a flexible multi-body model. Med Biol Eng Comput,2007,45(8):759-768.
    [78]Desroches G, Aubin CE,Rivard CH. Biomechanical modeling of anterior spine instrumentation in AIS. Stud Health Technol Inform,2006,123:415-418.
    [79]Rohlmann A, Richter M, Zander T, et al. Effect of different surgical strategies on screw forces after correction of scoliosis with a VDS implant. Eur Spine J, 2006,15(4):457-464.
    [80]汪正宇.个体化青少年特发性脊柱侧凸有限元模型的建立和应用:[博士学位论文].上海:上海交通大学,2008.
    [81]Skalli W, Robin S, Lavaste F, et al. A biomechanical analysis of short segment spinal fixation using a three-dimensional geometric and mechanical model. Spine, 1993,18(5):536-545.
    [82]Azlan AM, Mohammad AR,Ariffin AK. The HUKM Spinal Instrumentation System for adolescent idiopathic scoliosis. A biomechanical comparison study using finite element analysis. Med J Malaysia,2005,60 Suppl C:30-34.
    [83]Chao CK, Hsu CC, Wang JL, et al. Increasing bending strength and pullout strength in conical pedicle screws:biomechanical tests and finite element analyses. J Spinal Disord Tech,2008,21(2):130-138.
    [84]王春,刘卫军.脊柱椎弓根螺钉内固定效果的生物力学评价.医用生物力学.13(3),1998.179-184.
    [85]Benfield D, Lou E,Moussa W. Development of a MEMS-based sensor array to characterise in situ loads during scoliosis correction surgery. Comput Methods Biomech Biomed Engin,2008,11(4):335-350.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700