白炭黑填充溶液聚合丁苯橡胶的流变行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绿色轮胎胎面胶是由白炭黑(SiO_2)填充溶聚丁苯橡胶(SSBR)基体并配合适当的硅烷偶联剂而制得。本论文以SSBR/SiO_2复合体系为研究对象,研究SiO_2与偶联剂含量对体系流变学行为和力学性能的影响,探讨不同外界作用模式(稳态剪切、动态剪切和稳态拉伸)下体系的特征流变响应。
     首先以己酰氯与γ-巯丙基三乙氧基硅烷为原料,在低温和N_2保护下合成封端基硅烷偶联剂3-己酰基硫代-1-丙基三乙氧基硅烷(HXT),采用动态流变学方法表征了HXT在SSBR/SiO_2体系中的偶联效果,发现HXT可有效抑制SiO_2粒子在SSBR体系中的团聚。与双-(3-乙氧基硅基丙基)-二硫化物(TESPD)相比较,含HXT体系的Payne效应呈现较高的临界应变值(γ_c)。
     研究了120℃和150℃混炼温度下三种偶联剂(双-(3-乙氧基硅基丙基)-四硫化物TESPT、TESPD、3-辛酰基硫代-1-丙基三乙氧基硅烷NXT)对SiO_2粒子表面改性的影响。结果表面,SiO_2粒子在SSBR中的分散状态既与混炼温度有关,又与硅烷偶联剂分子结构有关。在150℃混炼时,不同偶联剂均对SiO_2粒子起表面改性作用,但同时引起混炼胶不同程度的焦烧,其中以TESPT最为显著。随NXT含量增加,SiO_2粒子表面改性程度逐渐提高,低应变(γ)下的模量降低,γ_c值增大。NXT含量高于4.2 phr时,偶联剂与SiO_2粒子的反应趋于完全,NXT含量不影响流变行为。
     研究了SiO_2含量对SSBR/SiO_2体系储能模量(G′),损耗模量(G″)和损耗角正切(tanδ)等黏弹参数的频率(ω)、应变和时间依赖性的影响。结果发现,Payne效应随SiO_2体积分数((?))的增大而变得更加明显。对于不同(?)的体系,G′~γ与tanδ~γ曲线可平移形成叠加曲线,表明Payne效应主要取决于橡胶分子链解缠结。在触变实验中,填充橡胶的模量回复程度随(?)增大而降低,表明除了橡胶分子链的贡献外,填料团聚网络破坏和重建的贡献随(?)增加逐渐增大。在非线性松弛试验中,阻尼函数(h(γ))的衰减速度随(?)增加而愈加明显。。对于不同(?)的体系,通过平移h(γ)-γ关系可叠加到SSBR曲线上。首次将应变放大效应引入填充橡胶在剪切作用下的非线性流变行为。由于刚性粒子的存在,基体分子链的局部应变远大于宏观应变,导致填充体系的非线性黏弹行为随(?)增大而增强。
     研究了SSBR/SiO_2体系在简单剪切、振荡剪切和稳态拉伸等不同作用模式下的流变行为。发现填充SSBR的粘度(η)、应力(τ和模量(G)等流变学参数的应变速率((?))和γ依赖性类似于未填充SSBR体系,表明基体分子链的缠结网络是流变行为的主导因素。在稳态剪切中,填充体系的屈服现象随(?)增加而逐渐减弱,这是由于填料粒子限制了分子链运动能力。同时,Cox-Merz规则可较好地描述未填充和填充SSBR的η~(?)与复数粘度η~*~(?)关系。在低应变下,未填充和低填充量((?)(?)0.12)SSBR的拉伸粘度(η_E(t))符合η_E(t=3η(t)。在高应变(ε)下,试样发生不均匀拉伸和成颈,拉伸流变行为偏离该理论关系。η_E峰值η_m与应变速率((?))呈指数关系递减,呈现“拉伸变稀”。填充SSBR在高ε下均呈现应力软化,说明聚合物分子链的解缠结过程起主要作用。相应的临界应变(ε_c)随(?)增大而减小,反映了SiO_2粒子的应变放大效应。此外,SiO_2粒子的加入改善了SSBR体系的抗蠕变性。
     研究了偶联剂和SiO_2含量对填充SSBR硫化胶力学性能的影响。结果表明NXT偶联剂显著提高硫化胶拉伸强度,其含量高于4.2 phr时,拉伸强度几乎保持不变,而断裂伸长率随仅略微下降。NXT可改善SiO_2粒子在橡胶基体中的分散,显著降低硫化胶磨耗量与滚动阻力。在动态力学试验中,tanδ曲线在-70℃和80℃附近出现的两个损耗峰,分别对应SSBR橡胶分子链的玻璃化转变和苯乙烯嵌段的玻璃化转变及填料网络的松弛。在SSBR的玻璃化温度(-80~-50℃)附近,填充SSBR体系硫化胶的动态力学行为遵循时温叠加(TTS)原理,频率平移因子(α_T)与温度间的关系满足WLF方程。
Nowadays,great improvements are claimed for the“Green Tire”which isprepared by using commercial rubber filled with silica (SiO_2) with respect to lowerrolling resistance,better traction on water and snow,and lower heat build-upcompared with conventional tires filled with carbon black (CB).However thedispersion of SiO_2 is worse than that of CB due to existence of hydrophilic silanolgroups in SiO_2 surface.Silane coupling agents are usually used to improve thefiller-rubber interaction and to prevent SiO_2 agglomeration.Addition of colloidalparticles affects the rheological behaviors of the rubbery matrix.
     In this thesis,solution-polymerized styrene butadiene rubber (SSBR)/SiO_2compounds have been investigated.Silane coupling agent 3-hexanoylthio-1-propyltriethoxysilane (HXT) was synthesized and used in SSBR/SiO_2 compounds.Dynamic rheological measurement reveals that incorporation of HXT into SSBR/SiO_2compounds inhibit SiO2 agglomeration and improve dispersion of the particles in theSSBR matrix.The characteristic strain (γc) for Payne effect of the compoundscontaining HXT appears higher than that of those containing bis-(triethoxysilylp-ropyl)-disulfide (TESPD).
     The effect of different silane coupling agent (TESPT,TESPD and NXT) on thetheological properties for uncured SSBR/SiO_2 compounds mixed at two differenttemperatures (120℃and 150℃) were investigated.It is found that the dispersion stateof SiO_2 particles in the matrix is related to compounding temperature and themolecular structure of silane coupling agent.For 50 phr SiO_2 filled rubber,NXTcontent above 4.2 phr hardly influences theological behaviors because the reactionbetween SiO_2 and NXT almost approachs saturated.
     On the other hand,the effect of filler volume fraction (φ) on the nonlinearviscoelastic properties for uncured SSBR/SiO_2 compounds was examined.Resultsshow that the curves of dynamic storage modulus (G'),loss tangent (tanδ) anddamping function (h(γ)) versus strain amplitude (γ) for the filled rubber can besuperposed on those for the unfilled SSBR respectively,suggesting that the primary mechanism for the Payne effect is mainly involved in the nature of the entanglementnetwork in rubbery matrix.Moreover,the modulus recovery degree of filled rubber inthe thixotropy experiment becomes worse with increasingφ,indicating that thebreakdown and reformation process of filler network plays an important role in thefilled rubber besides the contribution of macromolecular chain.
     The effect of strain mode (steady shear,oscillatory shear and steady extension) onrheological behaviors for SSBR/SiO_2 compounds was studied.γand strain rate (γ)dependences of steady and complex viscosities (ηandη*),stress (τ) and modulus (G)for filled rubber are qualitatively similar to those for unfilled SSBR.Yielding-likebehavior is gradually weakened with increasingφin steady shear,indicating that themobility of polymer chain is restricted by addition of filler.On the other hand,Cox-Merz rule can be applied to examineηandη~* of SiO_2/SSBR compounds.Goodagreement between steady extensional viscosity (η_E) in the low strain (ε) amplitudeand the linear viscoelastic envelope prediction is observed.An overshoot in the tensilestress growth appears and the maximum valueη_m presents extension thinning with anasymptotic expression close toη_m~ε~(-k).The corresponding characteristic strain value(ε_c) decreases with increasingφ,revealing the strain amplification effect of SiO_2particles.
     The effect of silane coupling agent and filler loading on the mechanical propertiesfor vulcanized SSBR/SiO_2 compounds was investigated.Compared with TESPT andTESPD,tensile strength of vulcanized rubber containing NXT becomes higher.Incase of NXT content above 4.2 phr,tensile strength remains constant and elongationat break only decreases slightly with increasing NXT content.Both tensile strengthand elongation at break increase with increasingφ,and the vulcanites perform best atφ=0.12.It is suggested that in the temperatures from -80℃to -50℃(around Tg ofSSBR),dynamicωsweep curves at different temperatures obey time-temperaturesuperposition (TTS) principle,and WLF equation can be used to fit the shift factor (α_τ)as a function of temperature.
引文
1.杨清芝,现代橡胶工艺学.中国石化出版社:北京,1997.
    2.翁国文,轮胎加工技术.化学工业出版社:北京,2006.
    3.Rainer, P., Trends in Tire Building Technology.Tire Technology International 1999, 32.
    4.Jonathan, L., Tire Design.Tire Technology International 1999, 50.
    5.隆有明,21世纪轮胎工业发展趋势.轮胎工业2001,21,(8),451-456.
    6.李汉堂,现代轮胎技术的发展状况.轮胎工业 2006, 26, (11), 646-652.
    7.Stuchal, F.W., Tire Material Trends into the Nineties.Elastomerics 1984, 116,(1), 13-17.
    8.Noordermeer, J.W.M.In Recent Developments in Rubber Processing, Leading to New Applications such as the “Green Tyre”, 10th Rolduc Polymer Meeting on Petro Polymers vs Green Polymers, Kerkrade, Netherlands, May 05-07, 1997;Wiley-V C H Verlag Gmbh: Kerkrade, Netherlands, 1997; pp 131-139.
    9.李汉堂,绿色轮胎的开发及其发展前景.橡塑技术与装备2007, 33, (6),18-25.
    10.刘力;张立群,绿色轮胎研究的发展.像胶工业 1999, 46, (4), 245-248.
    11.Luginsland, H.D.; Niedermeier, W., New Reinforcing Materials for Rising Tire Performance Demands.Rubber World 2003, 228, (6), 34.
    12.赵敏,降低轮胎滚动阻力的途径.轮胎工业 2006,26,(10),586-593.
    13.马改陵;徐鸿;崔文勇;马良清,子午线轮胎滚动阻力的研究进展.橡胶工业2005, 52, (8), 501-511.
    14.Ebbott, T.G.; Hohman, R.L.; Jeusette, J.P., Tire Temperature and Rolling Resistance Prediction with Finite Element Analysis.Tire Science and Technology 1999, 27, (1), 2-21.
    15.Schuring, D.J.; Futamura, S., Rolling Loss of Pneumatic Highway Tires in the Eighties.Rubber Chemistry and Technology 1990, 63, (3), 315-367.
    16.Chang, L.Y.; Shackleton, J.S., An Overview of Rolling Resistance.Elastomerics 1983, 115, (3), 18-26.
    17.Schuring, D.J., The Rolling Loss of Pneumatic Tires.Rubber Chemistry and Technology 1980, 53, (3), 600-727.
    18.Hiroshi, M., Rolling Resistance is Important to Tires.Rubber and Plastics News 1996, 20, (1),26-29.
    19.Kar, K.K.; Bhowmick, A.K., Hysteresis Loss in Filled Rubber Vulcanizates and its Relationship with Heat Generation.Journal of Applied Polymer Science 1997,64,(8), 1541-1555.
    20.Park, D.M.; Hong, W.H.; Kim, S.G.; Kim, H.J., Heat Generation of Filled Rubber Vulcanizates and its Relationship with Vulcanizate Network Structures.European Polymer Journal 2000, 36, (11), 2429-243 6.
    21.Amino, N.; Uchiyama, Y., Relationships Between the Friction and Viscoelastic Properties of Rubber.Tire Science and Technology 2000, 28, (3), 178-195.
    22.Medalia, A.I., Effect of Carbon-Black on Dynamic Properties of Rubber Vulcanizates.Rubber Chemistry and Technology 1978, 51,(3), 437-523.
    23.Wang, M.J., Effect of Polymer-Filler and Filler-Filler Interactions on Dynamic Properties of Filled Vulcanizates.Rubber Chemistry and Technology 1998, 71,(3), 520-589.
    24.Wang, M.J.; Kutsovsky, Y.In Effect of Fillers on Wet Skid Resistance of Tires.Part I: Water Lubrication Vs.Filler-Elastomer Interactions, Annual Fall Meeting of the Rubber-Division-of-the-American-Chemical-Society, Cleveland,OH, Oct 16-18, 2007; Amer Chemical Soc Inc: Cleveland, OH, 2007; pp 552-575.
    25.Duperray, B.; Leblanc, J.L., The Time-Temperature Superposition Principle as Applied to Filled Elastomers.Kautschuk Gummi Kunststoffe 1982, 35, (4),298-307.
    26.Bond, R.; Morton, G.F.; Krol, L.H., A Tailor-Made Polymer for Tyre Applications.Polymer 1984, 25, (1), 132-140.
    27.Saito, Y., New Polymer Development for Low Rolling Resistance Tires.Kautschuk Gummi Kunststoffe 1986, 39, (1), 30-32.
    28.潘大海;梅周蟒,低滚动阻力轮胎胎面胶的研究.轮胎工业 2000, 20, (9),534-537.
    29.朱景芬,世界合成橡胶产品现状及发展趋势.橡胶工业 2002, 49, (9),563-567.
    30.Dannenberg, E.M., Carbon Black Dispersion and Reinforcement.Industrial and Engineering Chemistry 1952, 44, (4), 813-818.
    31.Bohm, G.G.A.; Nguyen, M.N., Flocculation of Carbon-black in Filled Rubber Compounds .1 .Flocculation Occurring in Unvulcanized Compounds During Annealing at Elevated-Temperatures.Journal of Applied Polymer Science 1995,55, (7), 1041-1050.
    32.Kost, J.; Narkis, M.; Foux, A., Resistivity Behavior of Carbon-Black-Filled Silicone-Rubber in Cyclic Loading Experiments.Journal of Applied Polymer Science 1984, 29, (12), 3937-3946.
    33.Tan, E.H.; Wolff, S.; Haddeman, M.; Grewatta, H.P.; Wang, M.J.In Filler Elastomer Interactions .9.Performance of Silicas in Polar Elastomers, 142nd Meeting(Fall 92)of the Rubber-Division of the American-Chemical-Soc,Nashville, Tn, Nov 03-06, 1992; Amer Chemical Soc Inc: Nashville, Tn, 1992;pp 594-604.
    34.Hashim, A.S.; Azahari, B.; Ikeda, Y; Kohjiya, S., The Effect of Bis(3-triethoxysilylpropyl)tetrasulfide on Silica Reinforcement of Styrene-butadiene Rubber.Rubber Chemistry and Technology 1998, 71,(2),289-299.
    35.Choi, S.S.; Kim, I.S.; Lee, S.G.; Joo, C.W., Filler-polymer Interactions of Styrene and Butadiene Units in Silica-filled Styrene-butadiene Rubber compounds.Journal of Polymer Science Part B-Polymer Physics 2004, 42, (4),577-584.
    36.Choi, S.S.; Kim, I.S., Filler-polymer Interactions in Filled Polybutadiene Compounds.European Polymer Journal 2002, 38, (6), 1265-1269.
    37.Reuvekamp, L.; Ten Brinke, J.W.; Van Swaaij, P.J.; Noordermeer, J.W.M., Effects of Time and Temperature on the Reaction of TESPT Silane Coupling Agent During Mixing with Silica Filler and Tire Rubber.Rubber Chemistry and Technology 2002, 75, (2), 187-198.
    38.Sae-oui, P.; Sirisinha, C.; Thepsuwan, U.; Hatthapanit, K., Comparison of Reinforcing Efficiency Between Si-69 and Si-264 in a Conventional Vulcanization System.Polymer Testing 2004, 23, (8), 871-879.
    39.Murakami, K.; Iio, S.; Ikeda, Y.; Ito, H.; Tosaka, M.; Kohjiya, S., Effect of Silane-coupling Agent on Natural Rubber Filled with Silica Generated in situ.Journal of Materials Science 2003, 38, (7), 1447-1455.
    40.Manna, A.K.; Bhattacharyya, A.K.; De, P.P.; Tripathy, D.K.; De, S.K.; Peiffer, D.G., Effect of Silane Coupling Agent on the Chemorheological Behaviour of Epoxidised Natural Rubber Filled with Precipitated Silica.Polymer 1998, 39,(26), 7113-7117.
    41.Luginsland, H.D.; Frohlich, J.; Wehmeier, A., Influence of Different Silanes on the Reinforcement of Silica-filled Rubber Compounds.Rubber Chemistry and Technology 2002, 75, (4), 563-579.
    42.Joshi, P.G.; Pickwell, R.J.; Well, K.J.; Sloan, W.E., Next-generation Silane Coupling Agent for Silica/silane Reinforcement Tire Tread Compounds.Tire Technology International 2002, 80-84.
    43.Yan, H.X.; Sun, K.; Zhang, Y.X., Effects of Mixing Conditions On the Reaction of 3-octanoylthio-1-propyltriethoxysilane During Mixing with Silica Filler and Natural Rubber.Journal of Applied Polymer Science 2004, 94, (6),2295-2301.
    44.Yan, H.X.; Sun, K.; Zhang, Y.; Zhang, Y.X., Effect of Nitrile Rubber on Properties of Silica-filled Natural Rubber Compounds.Polymer Testing 2005, 24,(1), 32-38.
    45.张开,高分子界面科学.中国石化出版社:北京,1996.
    46.吴森纪,有机硅及其应用科学技术文献出版社:北京,1990.
    47.Byers, J.T., Silane Coupling Agents for Enhanced Silica Performance.Rubber World 1999, 218, (3), 8-45.
    48.于同隐,高聚物的粘弹性.上海科学技术出版社:上海,1986.
    49.周持兴,聚合物流变实验与应用上海交通大学出版社:上海,2003.
    50.Ultracki, L.A., Polymer Alloys and Blends.New York, 1989.
    51.Yanovsky, Y.G., Polymer Rheology: Theory and PracticeChapman&Hall:London, 1993.
    52.Mewis, J.; Spaull, A.J.B., Rheology of Concentrated Dispersions.Advances in Colloid and Interface Science 1976, 6, (3), 173-200.
    53.Ferry, J.D., Viscoelastic Properties of Polymers (3rd edn).Wiley: New York, 1980.
    54.Doi, M.; Edwards, S.F., The Theory of Polymer Dynamic.Oxford University Press: New York, 1996.
    55.Rouse, P.E., A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers.Ⅱ.A First-order Mechanical Thermodynamic Property. Journal of Chemical Physics 1998, 108, (11), 4628-4633.
    56. Rouse, P. E., A Theory of the Linear Viscoelastic Properties of Dilute Solutions of Coiling Polymers. Journal of Chemical Physics 1953, 21, (7), 1272-1280.
    57. Zheng, Q.; Yang, B. B.; Wu, G.; Li, L. W., A Study of Dynamic Rheology for Multicomponent Polymers. Chemical Journal of Chinese Universities-Chinese 1999, 20, (9), 1483-1490.
    58. Du, M.; Gong, J. H.; Zheng, Q., Dynamic Rheological Behavior and Morphology Near Phase-separated Region for a LCST-type of Binary Polymer Blends. Polymer 2004, 45, (19), 6725-6730.
    59. Sun, J.; Song, Y. H.; Zheng, Q.; Tan, H.; Yu, J.; Li, H., Nonlinear rheological behavior of silica filled solution-polymerized styrene butadiene rubber. Journal of Polymer Science Part B-Polymer Physics 2007, 45, (18), 2594-2602.
    60. Wu, G.; Zheng, Q., Estimation of the Agglomeration Structure for Conductive Particles and Fiber-filled High-density Polyethylene through Dynamic Rheological Measurements. Journal of Polymer Science Part B-Polymer Physics 2004, 42, (7), 1199-1205.
    61. Xu, X. M.; Gao, C. H.; Zheng, Q., Rheological Characterization of Room Temperature Vulcanized Silicone Sealant: Effect of Filler Particle Size. Polymer Engineering and Science 2008, 48, (4), 656-661.
    62. Xu, X. M.; Tao, X. L.; Gao, C. H.; Zheng, Q., Studies on the Steady and Dynamic Rheological Properties of Poly(dimethyl-siloxane) Filled with Calcium Carbonate Based on Superposition of its Relative Functions. Journal of Applied Polymer Science 2008,107, (3), 1590-1597.
    63. Zheng, Q.; Du, M.; Yang, B. B.; Wu, G, Relationship Between Dynamic Rheological Behavior and Phase Separation of Poly(methyl methacrylate)/poly(styrene-co-acrylonitrile) Blends. Polymer 2001, 42, (13), 5743-5747.
    64. Zuo, M.; Zheng, Q., Phase Morphologies and Viscoelastic Relaxation Behaviors for an LCST-type Polymer Blend Composed of Poly(methyl methacrylate) poly[(alpha-methyl styrene)-co-acrylonitrile]. Macromolecular Chemistry and Physics 2006, 207, (21), 1927-1937.
    65. Wang, W. J.; Shangguan, Y. G.; Zhao, L.; Yu, J.; He, L.; Tan, H.; Zheng, Q., The Linear Viscoelastic Behaviors of Nylonl212 Blends Toughened with Elastomer. Journal of Applied Polymer Science 2008, 108, (3), 1744-1754.
    66. Bokobza, L. In Reinforcement of Elastomeric Networks by Fillers, Eurofillers '99 Conference, Lyon, France, Sep 06-09, 1999; Wiley-V C H Verlag Gmbh: Lyon, France, 1999; pp 243-260.
    67. Cassagnau, P., Melt Rheology of Organoclay and Fumed Silica Nanocomposites. Polymer 2008, 49, (9), 2183-+.
    68. Nieisen, L. E., Polymer Rheology. Marcel Dekker: New York, 1977.
    69. Han, C. D., Multiphase Flow in Polymer Processing. Academic Press: New York, 1981.
    70. Zhou, M.; Song, Y. H.; Sun, J.; He, L.; Tan, H.; Zheng, Q., Effect of Selane Coupling Agents on Dynamic Rheological Properties for Unvulcanized SSBR/silica Compounds.Acta Polymerica Sinica 2007, (2), 153-157.
    71.Bokobza, L.; Chauvin, J.P., Reinforcement of Natural rubber: Use of in situ Generated Silicas and Nanofibres of Sepiolite.Polymer 2005, 46, (12),4144-4151.
    72.Bousmina, M.; Muller, R., Linear Viscoelasticity in the Melt of Impact Pmma-Influence of Concentration and Aggregation of Dispersed Rubber Particles.Journal of Rheology 1993, 37, (4), 663-679.
    73.Castellani, L.; Lomellini, P., Phase Volume and Size Effects on theTerminal Relaxation of ABS Melts.Rheologica Acta 1994, 33, (5), 446-453.
    74.VandeWalle, A.; Tricot, C.; Gerspacher, M., Modeling Carbon Black Reinforcement in Rubber Compounds.Kautschuk Gummi Kunststoffe 1996, 49,(3), 172-179.
    75.Litvinov, V.M.; Steeman, P.A.M., EPDM-carbon Black Interactions and the Reinforcement Mechanisms, as Studied by Low-resolution H-1 NMR.Macromolecules 1999, 32, (25), 8476-8490.
    76.Cosgrove,T.;Turner,M.J.;Thomas,D.R.,TheAdsorptionof Polydimethylsiloxane onto Silica from the Melt.Polymer 1997, 38, (15),3885-3892.
    77.Memon, N.A.; Muller, R., Interface, Morphology, and the Rheological Properties of Polymethylmethacrylate Impact Modifier Blends.Journal of Polymer Science Part B-Polymer Physics 1998, 36, (14), 2623-2634.
    78.沈钟;王果庭,胶体与表面化学.2~(nd) ed.;化学工业出版社:北京,1997.
    79.Adamson, A.W.; Gast, A.P., Physical chemistry of surfaces.6~(th) ed.; John Wiley & Sons, Inc.: New York, 1997.
    80.高濂;孙静;刘阳桥,纳米粉体的分散及声表面改姓.化学工业出版社:北京,2003.
    81.Kawaguchi,M.,SequentialPolymer Adsorption-Competitionand Displacement Process.Advances in Colloid and Interface Science 1990, 32, (1),1-41.
    82.Leblanc, J.L.; Hardy, P., Evolution of Bound Rubber During the Storage of Uncured Compounds.Kautschuk Gummi Kunststoffe 1991,44, (12), 1119-1124.
    83.Villars, D.S., Studies on Carbon Black .3.Theory of Bound Rubber.Journal of Polymer Science 1956, 21, (98), 257-271.
    84.Ban, L.L.; Hess, W.M.; Papazian, L.A., New studies of carbon rubber gel.Rubber Chem Technol 1974, 47, (858-894).
    85.Medalia, A.I., Morphology of Aggregates .6.Effective Volume of Aggregates of Carbon Black from Electron Microscopy .Application to Vehicle Absorption and to Die Swell of Filled Rubber.Journal of Colloid and Interface Science 1970, 32, (1),115-&.
    86.Cotten, G.R., Influence of carbon black on processability of rubber stocks.I.Bound Rubber Formation.Rubber Chemistry and Technology 1975, 48, (4),548-557.
    87.Kraus, G .; Gruver, J., Molecular weight effects in adsorption of rubbers on carbon black.Rubber Chem Technol 1968.41,(5), 1256-1260.
    88.Meissner, B., Bound Rubber Theory and Experiment.Journal of Applied Polymer Science 1993, 50, (2), 285-292.
    89.Meissner, B., Theory of Bound Rubber.Journal of Applied Polymer Science 1974, 18, (8), 2483-2491.
    90.Takahashi, M.; Li, L.; Masuda, T., Nonlinear Viscoelasticity of Abs Polymers in the Molten State.Journal of Rheology 1989, 33, (5), 709-723.
    91.Zuo, M.; Peng, M.; Zheng, Q., Investigation on the Early and Late Stage Phase-separation Dynamics of Poly(methyl methacrylate)/poly(alpha-methyl styrene-co-acrylonitrile) Blends through Rheological and Scattering Functions.Polymer 2005, 46, (24), 11085-11092.
    92.吴刚;郑强;江磊;宋义虎,HDPE氧化交联与动态流变行为.高等学校化学 学报2004, 25, (2), 357-360.
    93.Aranguren, M.I.; Mora, E.; Macosko, C.W., Compounding Fumed Silicas into Polydimethylsiloxane: Bound Rubber and Final Aggregate Size.Journal of Colloid and Interface Science 1997, 195, (2), 329-337.
    94.Aranguren, M.I.; Mora, E.; Macosko, C.W.; Saam, J., Rheological and Mechanical-Properties of Filled Rubber-Silica-Silicone.Rubber Chemistry and Technology 1994, 67, (5), 820-833.
    95.Aranguren, M.I.; Mora, E.; Degroot, J.V.; Macosko, C.W., Effect of Reinforcing Fillers on the Rheology of Polymer Melts.Journal of Rheology 1992, 36, (6), 1165-1182.
    96.Goel, V.; Chatterjee, T.; Bombalski, L.; Yurekli, K.; Matyjaszewski, K.;Krishnamoorti, R., Viscoelastic Properties of Silica-grafted Poly(styrene-acrylonitrile) Nanocomposites.Journal of Polymer Science Part B-Polymer Physics 2006, 44, (14), 2014-2023.
    97.Bartholome, C.; Beyou, E.; Bourgeat-Lami, E.; Cassagnau, P.; Chaumont, P.; David,L.;Zydowicz, N.,ViscoelasticProperties and Morphological Characterization of Silica/polystyrene NanocompositesSynthesized by Nitroxide-mediated Polymerization.Polymer 2005, 46, (23), 9965-9973.
    98.Bartholome, C.; Beyou, E.; Bourgeat-Lami, E.; Chaumont, P.; Lefebvre, F.; Zydowicz, N., Nitroxide-mediated Polymerization of Styrene Initiated from the Surface of Silica Nanoparticles.In situ Generation and Grafting of Alkoxyamine Initiators.Macromolecules 2005, 38, (4), 1099-1106.
    99.Bartholome, C.; Beyou, E.; Bourgeat-Lami, E.; Chaumont, P.; Zydowicz, N.,Nitroxide-mediated Polymerizations from Silica Nanoparticle Surfaces: “Graft from” Polymerization of Styrene using a Triethoxysilyl-terminated Alkoxyamine Initiator.Macromolecules 2003, 36, (21), 7946-7952.
    100.Zhang, Q.; Archer, L.A., Effect of Surface Confinement on Chain Relaxation of Entangled cis-polyisoprene.Langmuir 2003, 19, (19), 8094-8101.
    101.Zhang, Q.; Archer, L.A., Poly(ethylene oxide)/silica Nanocomposites: Structure and Rheology.Langmuir 2002, 18, (26), 10435-10442.
    102.Sarvestani, A.S., Modeling the Solid-like Behavior of Entangled Polymer Nanocomposites at Low Frequency Regimes.European Polymer Journal 2008,44, (2), 263-269.
    103. Sarvestani, A. S.; Picu, C. R., A Frictional Molecular Model for the Viscoelasticity of Entangled Polymer Nanocomposites. Rheologica Acta 2005, 45,(2), 132-141.
    104. Sarvestani, A. S.; Picu, C. R., Network Model for the Viscoelastic Behavior of Polymer Nanocomposites. Polymer 2004,45, (22), 7779-7790.
    105. Payne, A. R., Reinforcement of Elastomers. Interscience: New York, 1965.
    106. Payne, A. R.; Whittake.Re, Effect of Vulcanization on Low-Strain Dynamic Properties of Filled Rubbers. Journal of Applied Polymer Science 1972, 16, (5), 1191-&.
    107. Harwood, J. A. C; Mullins, L.; Payne, A. R., Stress Softening in Natural Rubber Vulcanizates .2. Stress Softening Effects in Pure Gum and Filler Loaded Rubbers. Journal of Applied Polymer Science 1965, 9, (9), 3011-&.
    108. Payne, A. R., Effect of Dispersion on Dynamic Properties of Filler-Loaded Rubbers. Journal of Applied Polymer Science 1965, 9, (6), 2273-&.
    109. Cassagnau, P.; Melis, F., Non-linear Viscoelastic Behaviour and Modulus Recovery in Silica Filled Polymers. Polymer 2003, 44, (21), 6607-6615.
    110. Gauthier, C; Reynaud, E.; Vassoille, R.; Ladouce-Stelandre, L., Analysis of the Non-linear Viscoelastic Behaviour of Silica Filled Styrene Butadiene Rubber. Polymer 2004,45, (8), 2761-2771.
    111. Hu, H. G; Lin, J.; Zheng, Q.; Xu, X. M., Effect of Filler Network on Dynamic Viscoelastic Properties of Uncured Polymethylvinylsiloxanes Filled with Silica and Carbon Black. Journal of Applied Polymer Science 2006, 99, (6), 3477-3482.
    112. Wang, M. J. In The Role of Filler Networking in Dynamic Properties of Filled Rubber, Spring ACS Rubber Division Meeting, Indianapolis, Indiana, May 05-08, 1998; Indianapolis, Indiana, 1998; pp 430-448.
    113. Friedlander, S. K.; Ogawa, K.; Ullmann, M., Elastic Behavior of Nanoparticle Chain Aggregates: A Hypothesis for Polymer-filler Behavior. Journal of Polymer Science Part B-Polymer Physics 2000, 38, (20), 2658-2665.
    114. Yatsuyanagi, F.; Suzuki, N.; Ito, M.; Kaidou, H., Effects of Secondary Structure of Fillers on the Mechanical Properties of Silica Filled Rubber Systems. Polymer 2001,42, (23), 9523-9529.
    115. Maier, P. G; Goritz, D., Molecular Interpretation of the Payne Effect. Kautschuk Gummi Kunststoffe 1996,49, (1), 18-21.
    116. Cassagnau, P., Payne Effect and Shear Elasticity of Silica-filled Polymers in Concentrated Solutions and in Molten State. Polymer 2003, 44, (8), 2455-2462.
    117. Sternstein, S. S.; Ramorino, G; Jiang, B.; Zhu, A. J. In Reinforcement and Nonlinear Viscoelasticity of Polymer Melts Containing Mixtures of Nanofillers, 166th Fall Meeting of the Rubber Division of the American-Chemical-Society, Columbus, OH, Nov 12, 2004; Columbus, OH, 2004; pp 258-270.
    118. Sternstein, S. S.; Zhu, A. J., Reinforcement Mechanism of Nanofilled Polymer Melts as Elucidated by Nonlinear Viscoelastic Behavior. Macromolecules 2002, 35, (19), 7262-7273.
    119. Heinrich, G; Kluppel, M., Recent Advances in the Theory of Filler Networking in Elastomers.In Filled Elastomers Drug Delivery Systems, Springer-Verlag Berlin: Berlin, 2002; Vol.160, pp 1-44.
    120.Kraus, G., Mechanical Losses in Carbon-Black-Filled Rubbers.Applied Polymer Symposia 1984, (39), 75-92.
    121.Heinrich, G.; Vilgis, T.A.In Effect of Filler Networking on the Dynamic-Mechanical Propertiesof Cross-Linked Polymer Solids,12th Polymer-Networks-GroupConference/35thMicrosymposiumon Prague Meetings on Macromolecules-Polymer Networks 94, Prague, Czech Republic, Jul 25-29, 1994; Prague, Czech Republic, 1994; pp 253-260.
    122.Vieweg, S.; Unger, R.; Schroter, K.; Donth, E.; Heinrich, G., Frequency and Temperature-Dependence of the Small-Strain Behavior of Carbon-Black Filled Vulcanizates.Polymer Networks & Blends 1995, 5, (4), 199-204.
    123.Meissner, J.In Experimental Problems and Recent Results in Polymer Melt Rheometry, 14th Discussion Conf of Prague Meetings on Macromolecules:Rheology of Polymer Melts, Prague, Czechoslovakia, Jul 15-18, 1991;Prague,Czechoslovakia, 1991;pp 25-42.
    124.Meissner, J.; Hostettler, J., A New Elongational Rheometer for Polymer Melts and Other Highly Viscoelastic Liquids.Rheologica Acta 1994, 33, (1), 1-21.
    125.Wagner, M.H.; Bastian, H.; Bernnat, A.; Kurzbeck, S.; Chai, C.K.In Determination of Elongational Viscosity of Polymer Melts by RME and Rheotens Experiments, Golden Jubilee Meeting of the German-Society-of-Rheology (DRG), Berlin, Germany, May 14-16, 2001;Berlin, Germany, 2001;pp 316-325.
    126.Wagner, M.H.; Collignon, B.; Verbeke, J., Rheotens Mastercurves and Elongational Viscosity of Polymer Melts.Rheologica Acta 1996, 35, (2),117-126.
    127.Wagner, M.H.; Bernnat, A.; Schulze, V., The Rheology of the Rheotens Test.Journal of Rheology 1998, 42, (4), 917-928.
    128.Maia, J.M.; Covas, J.A.; Nobrega, J.M.; Dias, T.F.; Alves, F.E., Measuring Uniaxial Extensional Viscosity using a Modified Rotational Rheometer.Journal of Non-Newtonian Fluid Mechanics 1999, 80, (2-3), 183-197.
    129.Barroso, V.C.; Maia, J.M., Influence of Long-chain Branching on the Rheological Behavior of Polyethylene in Shear and Extensional Flow.Polymer Engineering and Science 2005, 45, (7), 984-997.
    130.Sentmanat, M.L., Miniature Universal Testing Platform: from Extensional Melt Rheology to Solid-state Deformation Behavior.Rheologica Acta 2004, 43, (6),657-669.
    131.Sentmanat, M.; Wang, B.N.; McKinley, G.H., Measuring the Transient Extensional Rheology of Polyethylene Melts using the SER Universal Testing Platform.Journal of Rheology 2005, 49, (3), 585-606.
    132.Malmberg, A.; Gabriel, C.; Steffl, T.; Munstedt, H.; Lofgren, B., Long-chain Branching in Metallocene-catalyzed Polyethylenes Investigated by Low Oscillatory Shear and Uniaxial Extensional Rheometry.Macromolecules 2002,35, (3), 1038-1048.
    133. Stange, J.; Munstedt, H., Rheological Properties and Foaming Behavior of Polypropylenes with Different Molecular Structures. Journal of Rheology 2006, 50, (6), 907-923.
    134. Stange, J.; Uhl, C; Munstedt, H., Rheological Behavior of Blends from a Linear and a Long-chain Branched Polypropylene. Journal of Rheology 2005, 49, (5), 1059-1079.
    135. Muke, S.; Ivanov, I.; Kao, N.; Bhattacharya, S. N., The Melt Extensibility of Polypropylene. Polymer International 2001, 50, (5), 515-523.
    136. Bacchelli, F., A Rheotens-based Setup for the Constant Strain Rate Uniaxial Extension of Uncured Elastomers. Rheologica Acta 2007, 46, (9), 1223-1233.
    137. Gupta, R. K.; Pasanovic-Zujo, V.; Bhattacharya, S. N., Shear and Extensional Rheology of EVA/layered Silicate-nanocomposites. Journal of Non-Newtonian Fluid Mechanics 2005, 128,(2-3), 116-125.
    138. Medalia, A. I., Effective Degree of Immobilization of Rubber Occluded within Carbon-Black Aggregates. Rubber Age 1972,104, (3), 67-&.
    139. Gleissle, W.; Hochstein, B., Validity of the Cox-Merz rule for Concentrated Suspensions. Journal ofRheology 2003,47, (4), 897-910.
    140. Guth, E., Theory of Filler Reinforcement. Journal of Applied Physics 1945, 16, (1),20-25.
    141. Leblanc, J. L., Rubber-Filler Interactions and Rheological Properties in Filled Compounds. Progress in Polymer Science 2002,27, (4), 627-687.
    142. Kluppel, M.; Schramm, J., A Generalized Tube Model of Rubber Elasticity and Stress Softening of Filler Reinforced Elastomer Systems. Macromolecular Theory and Simulations 2000, 9, (9), 742-754.
    143. Westermann, S.; Kreitschmann, M.; Pyckhout-Hintzen, W.; Richter, D.; Straube, E.; Farago, B.; Goerigk, G, Matrix Chain Deformation in Reinforced Networks: a SANS Approach. Macromolecules 1999, 32, (18), 5793-5802.
    144. Westermann, S.; Kreitschmann, M.; PyckhoutHintzen, W.; Richter, D.; Straube, E. In Strain Amplification Effects in Polymer Networks, 1st European Conference on Neutron Scattering (ECNS 96), Interlaken, Switzerland, Oct 08-11, 1996; Interlaken, Switzerland, 1996; pp 306-307.
    145. Litvinov, V. M.; Spiess, H. W., Molecular Mobility in the Adsorption Layer and Chain Orientation in Strained Poly(Dimethylsiloxane) Networks by H-2 Nmr. Makromolekulare Chemie-Macromolecular Chemistry and Physics 1992, 193, (5), 1181-1194.
    146. Rault, J.; Marchal, J.; Judeinstein, P.; Albouy, P. A., Stress-induced Crystallization and Reinforcement in Filled Natural Rubbers: H-2 NMR Study. Macromolecules 2006, 39, (24), 8356-8368.
    147. Mullins, L.; Tobin, N. R., Stress Softening in Rubber Vulcanizates .Ⅰ. Use of a Strain Amplification Factor to Describe Elastic Behavior of Filler-Reinforced Vulcanized Rubber. Journal of Applied Polymer Science 1965, 9, (9), 2993-&.
    148. Trabelsi, S.; Albouy, P. A.; Rault, J., Effective Local Deformation in Stretched Filled Rubber. Macromolecules 2003, 36, (24), 9093-9099.
    149. Larson, P. G, The Structure and Rheology of Complex Fluids. Oxford University Press: Oxford, 1998.
    150.Wang, M.J.; Patterson, W.J.; Ouyang, G.B., Dynamic Stress-softening of Filled Vulcanizates.Kautschuk Gummi Kunststoffe 1998, 51, (2), 106-+.
    151.Amari, T., Non-linear Viscoelastic Properties of Concentrated Suspensions.Progress in Organic Coatings 1997, 31,(1-2), 11-19.
    152.Zhu, A.J.; Sternstein, S.S.In Nonlinear Viscoelasticity of Nanofilled Polymers:Interfaces, Chain Statistics and Properties Recovery Kinetics, Spring Meeting of the European-Materials-Research-Society (E-MRS), Strasbourg, France, Jun 18-21, 2002; Elsevier Sci Ltd: Strasbourg, France, 2002; pp 1113-1126.
    153.Kalfus, J.; Jancar, J., Relaxation Processes in PVAc-HA Nanocomposites.Journal of Polymer Science Part B-Polymer Physics 2007, 45, (11), 1380-1388.
    154.Kalfus, J.; Jancar, J., Reinforcing Mechanisms in Amorphous Polymer Nanocomposites.Composites Science and Technology 2008, 68, (15-16),3444-3447.
    155.Zhu, Z.Y; Thompson, T.; Wang, S.Q.; von Meerwall, E.D.; Halasa, A., Investigating Linear and Nonlinear Viscoelastic Behavior Using Model Silica-particle-filled Polybutadiene.Macromolecules 2005, 38, (21), 8816-8824.
    156.Zapas, L.J., Viscoelastic Behavior under Large Deformations.Journal of Research of the National Bureau of Standards Section a-Physics and Chemistry 1966, A 70, (6), 525-&.
    157.Osaki, K.; Kurata, M., Experimental Appraisal of the Doi-edwards Theory for PolymerRheologyBasedontheDataforPolystyreneSolutions.Macromolecules 1980, 13, (3), 671-676.
    158.Ferri, D.; Greco, F., Nonlinear Stress Relaxation of Molten Polymers: Experimental Verification of a New Theoretical Approach.Macromolecules 2006, 39, (17), 5931-5938.
    159.Yatsuyanagi, F.; Kaidou, H.; Ito, M.In Relationship Between Viscoelastic Properties and Characteristics of Filler-gel in Filled Rubber System, ACS Rubber Division Meeting, Nashville, Tennessee, Sep 29-Oct 02, 1998; Nashville, Tennessee, 1998; pp 657-672.
    160.Doi, M.; Edwards, S.F., The Theory of Polymer Dynamics.Oxford University Press: Oxford, 1986.
    161.Osaki, K., On the Damping Function of Shear Relaxation Modulus for Entangled Polymers.Rheologica Acta 1993, 32, (5), 429-437.
    162.Gabriela, C.; Munstedt, H., Strain Hardening of Various Polyolefins in Uniaxial Elongational Flow.Journal of Rheology 2003, 47, (3), 619-630.
    163.Gahleitner, M., Melt Rheology of Polyolefins.Progress in Polymer Science 2001, 26, (6), 895-944.
    164.Choi, H.J.; Kim, S.G.; Hyun, Y.H.; Jhon, M.S., Preparation and Rheological Characteristics ofSolvent-cast poly(ethylene oxide)/montmorillonite Nanocomposites.Macromolecular Rapid Communications 2001,22, (5),320-325.
    165.Tapadia, P.; Wang, S.Q., Nonlinear Flow Behavior of Entangled Polymer Solutions: Yieldlike Entanglement-disentanglement Transition.Macromolecules 2004, 37, (24), 9083-9095.
    166. Bach, A.; Almdal, K.; Rasmussen, H. K.; Hassager, O., Elongational Viscosity of Narrow Molar Mass Distribution Polystyrene. Macromolecules 2003, 36, (14), 5174-5179.
    167. Dreval, V. E.; Borisenkova, E. K., Peculiarities of Rheological Behavior of Filled Polymer Melts in Uniaxial Stretching. Rheologica Acta 1993, 32, (4), 337-351.
    168. Munstedt, H.; Kurzbeck, S.; Egersdorfer, L., Influence of Molecular Structure on Rheological Properties of Polyethylenes Part Ⅱ. Elongational Behavior. Rheologica Acta 1998, 37, (1), 21-29.
    169. Cho, P. L.; Hamed, G. R. In Green Strength of Carbon-Black-Filled Styrene Butadiene Rubber, Meeting of the Rubber Division of the American Chemical Soc, Toronto, Canada, May 21-24, 1991; Amer Chemical Soc Inc: Toronto, Canada, 1991; pp 475-487.
    170. Rasmussen, H. K.; Nielsen, J. K.; Bach, A.; Hassager, O., Viscosity Overshoot in the Start-up of Uniaxial Elongation of Low Density Polyethylene Melts. Journal of Rheology 2005,49, (2), 369-381.
    171. Wiest, J. M., A Differential Constitutive Equation for Polymer Melts. Rheologica Acta 1989, 28,(1),4-12.
    172. Yang, J. L.; Zhang, Z.; Schlarb, A. K.; Friedrich, K., On the Characterization of Tensile Creep Resistance of Polyamide 66 Nanocomposites. Part Ⅰ. Experimental Results and General Discussions. Polymer 2006, 47, (8), 2791-2801.
    173. Mooney, M., A Theory of Large Elastic Deformation. Journal of Applied Physics 1940, 11,(9), 582-592.
    174. Rivlin, R. S., Large Elastic Deformations of Isotropic Materials .4. Further Developments of the General Theory. Philosophical Transactions of the Royal Society of London Series a-Mathematical and Physical Sciences 1948, 241, (835), 379-397.
    175. Meissner, B.; Matejka, L., A Structure-based Constitutive Equation for Filler-reinforced Rubber-like Networks and for the Description of the Mullins Effect. Polymer 2006, 47, (23), 7997-8012.
    176. Meissner, B.; Matejka, L., Description of the Tensile Stress-strain Behaviour of Filler-reinforced Rubber-like Networks Using a Langevin-theory-based Approach. Part Ⅱ. Polymer 2001,42, (3), 1143-1156.
    177. Meissner, B.; Matejka, L., Description of the Tensile Stress-strain Behavior of Filler-reinforced Rubber-like Networks Using a Langevin-theory-based Approach. Part Ⅰ. Polymer 2000,41, (21), 7749-7760.
    178. Meissner, B., Tensile Stress-strain Behaviour of Rubberlike Networks up to Break. Theory and Experimental Comparison. Polymer 2000, 41, (21), 7827-7841.
    179. Mullins, L., Engineering with Rubber. Rubber Chemistry and Technology 1986, 59, (3), G69-G83.
    180. Harwood, J. A. C.; Payne, A. R.; Whittake.Re, Stress-Softening and Reinforcement of Rubber. Journal of Macromolecular Science-Physics 1971, B 5, (2), 473-&.
    181. Blanchard, A. F.; Parkinson, D., Breakage of Carbon-Rubber Networks by Applied Stress. Industrial and Engineering Chemistry 1952,44, (4), 799-812.
    182. Bueche, R, Tensile Strength of Pilled Gr-S Vulcanizates. Journal of Polymer Science 1958, 33, (126), 259-271.
    183. Bueche, R, Electrical Resistivity of Conducting Particles in an Insulating Matrix. Journal of Applied Physics 1972,43, (11), 4837-&.
    184. Bueche, R; Halpin, J. C., Molecular Theory for Tensile Strength of Gum Elastomers. Journal of Applied Physics 1964, 35, (1), 36-&.
    185. Ambacher, H.; Strauss, M.; Kilian, H. G.; Wolff, S. In Reinforcement in Filler-Loaded Rubbers, 1991 International Rubber Conference ( Ikt/Irc 91 ), Essen, Germany, Jun 24-27, 1991; Essen, Germany, 1991; pp 1111 -1118.
    186. Clement, R; Bokobza, L.; Monnerie, L., On the Mullins effect in silica-filled polydimethylsiloxane networks. Rubber Chemistry and Technology 2001, 74, (5), 847-870.
    187. Clement, R; Lapra, A.; Bokobza, L.; Monnerie, L.; Menez, P., Atomic Force Microscopy Investigation of Filled Elastomers and Comparison with Transmission Electron Microscopy - Application to Silica-filled Silicone Elastomers. Polymer 2001,42, (14), 6259-6270.
    188. Han, C. D.; Yang, H. H., Rheological Behavior of Compatible Polymer Blends .1. Blends of Poly(Styrene-Co-Acrylonitrile) and Poly(Epsilon-Caprolactone). Journal of Applied Polymer Science 1987,33,(4), 1199-1220.
    189. Han, C. D.; Chuang, H. K., Criteria for Rheological Compatibility of Polymer Blends. Journal of Applied Polymer Science 1985, 30, (11), 4431-4454.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700