双二茂铁衍生物的合成、电化学和红外光谱电化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二茂铁类化合物是一类新型的有机金属化合物,由于其在电化学、光学、电磁等方面所具有的独特性能,因此在光电材料、分子器件、分子导线及生物传感器等方面具有重要的基础理论研究价值和广泛的应用前景。首先,对双二茂铁类化合物近年来在设计、合成及应用等方面的研究进行了归纳与总结;其次合成了两个系列桥联双二茂铁衍生物,利用FTIR、1HNMR, MS对其结构进行表征;最后采用循环伏安法(CV)、差分脉冲法(DPV)研究其电化学性质,结合现场红外光谱电化学(in situ FTIR)考察了这类桥联双二茂铁衍生物的电化学性质及现场红外光谱电化学信息,应用导数循环伏吸法(DCVAs)及电化学数字模拟、DFC(密度泛函数理论)计算方法,探讨桥联双二茂铁衍生物的结构与电子转移机理之间的关系,为设计和合成新型功能性分子材料提供理论和实验依据。
     1、利用酯化反应和缩合反应等方法合成了两个系列双二茂铁类衍生物,系列为单碳桥联双二茂铁衍生物,另一系列为双二茂铁桥联苯衍生物。利用红外光谱(FTIR)、质谱(MS)以及核磁共振谱(NMR)对这些产物进行了结构表征,并对这些化合物的紫外-可见光谱((UV-Vis)和拉曼光谱进行研究。
     2、单碳桥联双二茂铁衍生物(1-5)的晶体研究。获得了5种单碳桥联双二茂铁衍生物(1-5)单晶,经过单晶结构解析,研究发现单碳桥联双二茂铁衍生物(1-5),其Fc-C-Fc键角随苯环取代基推拉电子能力不同变化,两个Fc基团之间的距离越短和二面角越小则电子交流越强。另外,利用TD-DFT计算,研究了这五个化合物的轨道电子分布、电子能量及分子跃迁。研究结果表明,化合物1-5的HOMO和HOMO-1主要集中在两个Fc基团上。LUMO则主要集中在苯环。
     3、运用循环伏安、差分脉冲等电化学手段研究了不同桥联双二茂铁衍生物的电化学行为和电子转移机理。通过研究发现,单碳桥联双二茂铁衍生物(1-8)表现出明显的两对可逆的氧化还原峰。双二茂铁甲酮(7)的氧化电位明显比其他化合物正移,主要是由于羰基的吸电子作用和共轭作用,导致氧化电位正移。这类化合物的电位移动取决于桥联基团的吸电子能力的大小。另外,比较化合物1-5,结果发现这些化合物的电位移动取决于单碳桥联苯环上的取代基吸电子能力大小,吸电子能力越强则电位正移越大。其中化合物3由于苯环对位引入吸电子三氟甲基而导致其氧化电位明显正移。相对另一体系双二茂铁甲酸苯酯类衍生物(9-12)的电化学性质研究,结果发现这些化合物在CV上只出现一对可逆的氧化还原峰。氧化电位移动取决于桥联基团的吸电子能力的大小。化合物9的氧化电位明显正移,这主要是因为甲酯基的吸电子效应,酯基的存在使二茂铁(Fc)上的电子云密度降低,更难氧化。2-甲基-双二茂铁甲酸苯酯(10)的氧化电位较其他化合物负移,表明苯环上甲基的存在既导致化合物不对称,又因为位阻的影响而导致负移的产生。
     4、运用现场红外快速扫描光谱电化学技术研究了这些双二茂铁衍生物在二氯甲烷等溶剂中的电化学氧化还原过程。首先对单碳桥联双二茂铁衍生物(1-8)进行现场红外光谱电化学研究,尽管未观察到中间体的变化,但是结果表明它们的电子转移机制为明显的两步连续(快速)单电子过程。其次对双二茂铁桥联苯衍生物(9-12)进行现场红外光谱电化学研究。结果发现,除了化合物9与12明显观察到中间体在还原或是氧化过程中的生成和消去,其余化合物均未观察到中间体。对化合物9与12在红外谱图中的氧化产物、中间体峰进行了归属,采用导数循环伏吸法对其电子转移机理进行了详细研究。研究结果表明,化合物9和12的电子转移机制为两步一电子过程。基于以上的研究与分析,可以推断双二茂铁桥联苯衍生物(9-12)的电子转移机制为两步连续(快速)单电子过程。
     5、电化学数字模拟(Numerical simulation of electrochemical processes)能提供非常重要的信息,如能够快速提供一些反应内在的重要参数如浓度、电位和电流密度等,因此特别适用于复杂的化学和电化学反应的机理研究。利用电化学模拟技术,对八种单桥桥联双二茂铁类化合物(1-8)电化学行为进行数字模拟。通过数据模拟,发现这类化合物电子转移机理为两步连续(快速)单电子的过程。其中对数字模拟影响最大的为反应动力常数和溶剂阻抗。
Ferrocenyl derivatives is a new type of organic metal compounds. Due to its unique nature in electronchemistry, optical and electromagnetic, it is of great value in studying the basic theory of optical materials, molecular devices, molecular wires and bio-sensor. Besides, it also has extensive application prospect in the aspects mentioned above. Firstly, the recent research in designing, synthesis and application of bisferrocenyl derivatives was summarized. Secondly, two series of bisferrocenyl derivatives were synthesized and characterized by FTIR,1H NMR, MS. Finally, electrochemical properties were studied by CV and DPV, electrochemical properties and in situ infrared spectroelectrochemistry information were investigated by combining the in situ FTIR and the relationship between the constructure of bridged bisferrocenyl derivatives and the electron transfer mechanism were explored by means of DCVAs, numerical simulation of electrochemical processes and DFC, which supplied theoretical and experimental basis for designing and synthesizing new types of functional molecular materials.
     1. Two series of bridged bisferrocenyl derivatives were synthesized by means of esterification reaction and condensation reaction. One series was single carbon bridged bisferrocenyl derivatives and the other was bridged benzene bisferrocenyl derivatives. These compounds were characterized by means of FTIR, MS and NMR. The UV-Vis and Raman spectrum of these compounds were also studied.
     2. The crystal research of single carbon bridged bisferrocenyl derivatives (1-5). Five types of single carbon bridged bisferrocenyl derivatives were obtained from the experiment. Through the single-crytal structure analysis, we found that the bond angle of Fc-C-Fc of single carbon bridged bisferrocenyl derivatives (1-5) varied with the contribution of the donor-acceptor groups of substitutes on benzene. The shorter the distance between the two Fc group was, the smaller the dihedral angles of Cp-ring plane of two-Fc were, the stronger the electron communication was. In addition, we studied the electronic distribution, orbital energy and molecular transition of these five compounds using TD-DFT. The result showed that HOMO and HOMO-1mainly concentrated in Fc groups, while LUMO mainly concentrated in benzene.
     3. Electrochemical properties and electron transfer mechanism were invested by cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The result shows the single carbon bridged bisferrocenyl derivatives(1-8) clearly exhibit two pairs of reversible redox peaks. The oxidation potential value of compound7was more positive than others, which was mainly due to the electron withdrawing effect of the carbonyl group is stronger than its conjugation. Compounds1-5were contrasted and the result showed the potential shift of these compounds relied on the electron withdrawing effect of substitutes on benzene of single carbon bisferrocenyl derivatives. The stronger the electron withdrawing effect was, the more positive the shift was. There was considerably more positive of compound3, due to the p-trifluoromethyl of benzene. For the other series of bisferrocenyl carboxylate benzene, the potential shift of them depended on the electron withdrawing effect of the bridged groups. The ester group caused the electron cloud density to reduce and made the oxidation more difficult. The potential shift of1,4-bis(2-ferrocene carboxylate)-2'-methylbenzene was more negative than other compounds, which showed that the methyl group of benzene not only caused the asymmetric of these compounds, but also caused the negative shift due to the impact of steric hindrance.
     4. The electrochemical redox process of the bisferrocenyl derivatives in CH2CI2was studied by means of in situ rapid scan FTIR spectroelectrochemistry. Firstly we studied the single carbon bisferrocenyl derivatives (1-8) by using in situ rapid scan FTIR spectroelectrochemistry. Although we didn't find the variation of intermediates, the result showed that their electron transfer mechanism were two consecutive one-electron steps. Secondly, we studied the bisferrocenyl bridged benzene derivatives (9-12) by using in situ rapid scan FTIR spectroelectrochemistry and the result showed that in this process, no intermediate was found in other compounds except that in compound9and12the appearance and disappearance of the intermediates during oxidation and reduction process could be easily observed. In combination with in situ rapid scan FTIR spectroelectrochemistry, the oxidation and reduction was conducted by means of DCVA and concerning electrochemical process was obtained. The result shows that compound9and12were two consecutive one-electron steps. On the basis of the research above, it could be concluded that the electron transfer mechanism of these compounds9-12were two consecutive one-electron steps.
     5. Numerical simulation of electrochemical processes can provide very important information about some important references of electrochemical reaction. We simulated the electrochemical behavior of the eight kinds of single-carbon bridge bisferrocenyl derivatives. Through the simulation, we found that the electron transfer mechanism of these compounds exhibited a two-step process, during which the main impact included the kinetics constant and resistors.
引文
[1]T. J. Kealy, P. L. Panson. A new type of organo-iron compound [J]. Nature,1951, 168:1039-1040.
    [2]郭鸿旭,邹雪珍,黄尊行.应用前景广阔的二茂铁及其衍生物[J].福州大学学报(自然科学版),2002,30(5):597-603.
    [3]B. W. Rockett, G. Marr. Ferrocene annual surrey corering the year 1982 [J]. Organometal chemistry,1982,237(1):161-229.
    [4]李英杰,田森林,宁平.二茂铁及其衍生物的应用研究进展[J].化工中间体,2008,(3):22-23.
    [5]N. J. Long. Metallocenes:An introduction to sandwich complexes [M]. Oxford: Blackwell Science,1998.
    [6]A. A. O. Sarhan, I. T. Izum. Design and synthesis of new functional compounds related to ferrocene bearing heterocyclic moieties-a new approach towards electon donor organic a terials [J]. J. Organomet. Chem.,2003,675:1-12.
    [7]W. Skibar, H. Kopacka, K. Wurstr, et al. a, co-Diferrocenyl cumulene molecular wires.synthesis, spectroscopy, structure and electrochemistry [J]. Organometallics, 2004,23,1024-1041
    8] D. R. V. Staveren, N. Metzler-Nolte. Bioorganometallic chemistry of ferrocene [J]. Chem. Rev.2004,104,5931-5985
    [9]T. Mochida, K. Okazawa, R. Horikoshi. Metal complexes from 1,1'-di(pyrazinyl) ferrocene:coordination polymers and bridged diferrocenes [J]. Dalton. Trans., 2006,693-704
    [10]S. Barlow, H. E. Bunting, C. Ringham, et al. Studies of the electronic structure of metallocene-based second-order nonlinear optical dyes [J]. J. Am. Chem. Soc., 1999,121:3715-3723
    [11]V. N. Nemykin, C. D. Barrett, R. G. Hadt, et al. Mixed-valence states formation in conformationally flexible metal-free 5,10,15,20-tetraferrocenylporphyrin and 5,10-bisferrocenyl-15,20-bisphenylporphyrin [J]. Dalton. Trans.,2007,3378-3389
    [12]R. C. J. Atkinson, V. C. Gibson, N. J. Long. The syntheses and catalytic applications of unsymmetrical ferrocene ligands [J]. Chem. Soc. Rev.,2004,33: 313-328.
    [13]A. K. Diallo, J. Ruiz, D. Astruc. New, simple synthetic route to functional mono-and biferrocenes [J]. Inorg. Chem.2010,49:1913-1920
    [14]T. Mochida. Ionic(Ⅰ)-Ionic(Ⅱ) phase transition in a biferrocenium charge-transfer complex [J]. Mol. Cryst. Liq. Cryst.,2006,455:113-116
    [15]V. Chandrasekhar, R, Thirumoorthi.1,1'-ferrocene dicarboxylate-bridged redox-active organotin and -tellurium -containing 16-membered macrocycles: synthesis, structure, and electrochemistry [J]. Organometallics,2007,26:5415-5422
    [16]M. Lohan, F. Justaud, T. Roisnel, et al. 1,1'"-bis(ethynyl)biferrocenyl-bridged Fe(dppe)Cp*units:synthesis, solid-state structures, and electronic Couplings [J]. Organometallics,2010,29:4804-4817
    [17]L. M. Hana, Y, Q. Hua, Q. L. Suoa, et al. Synthesis and characterization of 1,1'"-bis(ethynyl)biferrocenyl derivativess [J]. J. Coord. Chem.,2010,63 (4):600-609
    [18]P. Shu, K. Bechgaard, D. O. Cowan. Studies of mixed-valence diferrocenyl selenide and diferrocenyl diselenide [J]. J. Org. Chem.,1976,41,(10):1849-1852
    [19]D. A. Durfey, R. U. Kirss, C. Frommen, et al. Synthesis and mossbauer spectroscopic studies of chemically oxidized ferrocenyl(phenyl)phosphines [J]. Inorg. Chem.,2000,39:3506-3514
    [20]A. Berenbaum, H. Braunschweig, R. Dirk, et al. Synthesis, electronic structure, and novel reactivity of strained, boron-bridged [1]ferrocenophanes [J]. J. Am. Chem. Soc.2000,122:5765-5774
    [21]M. Scheibitz, J. B. Heilmann, R. F. Winter, et al. Electronic interactions in oligo ferrocenes with cationic, neutral and anionic four-coordinate boron bridges [J]. Dalton. Trans.,2005:159-170
    [22]J. B. Heilmann, M. Scheibitz, Y. Qin, et al. A synthetic route to borylene -bridged poly(ferrocenylene) [J]. Angew. Chem. Int. Ed.,2006,45:920-925.
    [23]H. Braunschweig, C. W. Chiu, D. Gamon, et al. Synthesis, structure, and reactivity of borole-functionalized ferrocenes [J]. Chem. Eur. J.,2012,18: 11732-11746
    [24]B. Fabian, A. Csampai, T. Z. Nagy, et al. Synthesis, ring transformations, IR-, NMR and DFT study of heterocycles with two ferrocenyl units [J]. J. Organomet. Chem.,2009,694:3732-3741
    [25]A. E. W. Sarhan, Y. Nouchi, T. Izumi. Synthesis and electrochemical studies of ferrocenedithiafulvalenes (Fc-DTF) and 1,10-bis(dithiafulvalenyl) ferrocene (DTF-Fc-DTF). An approach towards new conducting organic materials [J]. Tetrahedron,2003,59:6353-6362
    [26]Y. B. Zhu, M. O. Wolf. Charge Transfer and delocalization in conjugated (ferrocenylethynyl) oligothiophene complexes [J]. J. Am. Chem. Soc.2000,122, 10121-10125
    [27]G. Guirado, C. Coudret, J. P. Launay. Electrochemical remote control for dithienylethene-ferrocene Switches [J]. J. Phys. Chem. C.,2007,111:2770 -2776
    [28]孙忠,胡玉才,新民,等.双二茂铁甲基丙基甲烷的晶体和分子结构[J].内蒙古师大学报(自然科学),1987,(4):1-5
    [29]王金枝,施大双.2,2-双二茂铁基丁烷的分子结构和晶体结构[J].内蒙古大学学报(自然科学版),1988,19(4):645-648
    [30]刘万毅,袁耀峰,张凌云,等.烷基桥联双二茂铁衍生物的取代基效应与电化学性质的研究[J].高等学校化学学报,1998,19(8):1251-1255
    [31]温国华,旭昀,温国永,等.1,1-双二茂铁基烷的合成与表征[J].应用化学,2005,22(7):768-771
    [32]胡瑞珏,李保国,曹立志,等.双二茂铁甲基碳正离子与乙酰乙酸乙酯的反应及其产物的晶体结构[J].有机化学,2006,26(3):368-371
    [33]R. J. Xie, L. M. Han, N. Zhu, et al. The effect of acetyl on the electronic communication of carbon-bridged diferrocene [J]. J. Coord. Chem.,64(18):3180-3188
    [34]F. T. Ba, N. Cabon, F. R-L. Guen, et al. Diferrocenylbispyrylium salts and electron-rich diferrocenylbispyran from oxidative coupling of ferrocenyl pyran. induced electron transfer c-c bond making/breaking involving a metallo cenyl radical intermediate [J]. Organometallics,2008,27(24):6396-6399
    [35]P. Mucke, R. F. Winter, I. Novak, et al. Synthesis, spectroelectro-chemistry and electronic structure calcu lations of 4-(2-ferrocenylvinyl)-[2.2]-paracyclop hane and 4,12-di-(2-ferrocenylvinyl)-[2.2]-paracyclophane [J]. J. Organomet. Chem., 2012,717:14-22
    [36]F. Z. Ding, H. B. Wang, Q. Wu, et al. Computational study of bridge-assisted intervalence electron transfer [J]. J. Phys. Chem. A.,2010,114:6039-6046
    [37]钱延龙,陈新滋.金属有机化学与催化[M].北京:化学工业出版社,1997
    [38]R. R. Rojo, K. Kimura, H. Matsuda, et al. Dispersion of the third-order nonlinearity of a metallo-organic compound [J]. Opt. Commun.,2003,228(1-3): 181-186.
    [39]L. Tamayo-Rivera, R. Rangel-Rojo, Y. Mao, et al. Ultra fast third-order non-linear response of amino-triazole donor-acceptor derivatives by optical Kerr effect [J]. Opt. Commun.,2008,281(20):5239-5243.
    [40]M. Even, B. Heinrich, D. Guillon, et al. A mixed fullerene-ferrocene thermotropic liquid crystal:synthesis, liquid-crystalline properties, supramolecular organization and photoinduced electron transfer [J]. Chemistry, 2001,7(12):2595-2604
    [41]S. Kumar. Self-organization of disc-like molecules:chemical aspects [J]. Chem. Soc.Rev.,2006,35:83-109.
    [42]J. Malthete, J. Billard. Mesomorphic derivatives of ferrocene [J]. Mol. Cryst. Liq. Cryst.,1976,34:117-121.
    [43]张术兵,韩相恩,阳岑.二茂铁及其在液晶领域的合成研究评述[J].材料科学与工程学报,2007,25(4):649-652
    [44]苗丽文.二茂铁苯甲酸长链烷基酯及酚酯的合成与表征[D].呼和浩特:内蒙古大学,2009
    [45]向仕凯.Sp3C-O键活化和二茂铁苯并菲盘状液晶的研究[D].成都:四川师范大学,2008
    [46]宋质琼.含胆甾烯基的二茂铁棒状液晶和苯并菲盘状液晶的合成及介晶性[D].成都:四川师范大学,2008
    [47]韩相恩,张术兵,吴玉彬,等.金属有机材料的合成及性能研究[J].化工新型材料,2008,36(9):31-33
    [48]李春兰,魏传晚,王蓓,等.不对称双二茂铁脲衍生物的合成、表征及电子传递性质[J].无机化学学报,2008,24(3):375-380
    [49]Y. Li, M. Josowicz, L. M. Tolbert. Diferrocenyl molecular wires. the role of heteroatom linkers [J]. J. Am. Chem. Soc.,2010,132:10374-10382
    [50]A. Hradsky, B. Bildstein, N. Schuler, et al. New Soluble Bis[nona-, octa-, and pentamethylferrocenes as "Molecular Wires" with a Metal-to-Metal Distance of up to 40 A [J]. Organometallics,1997,16:392-402
    [51]唐孝明,李战雄,唐松青,等.草酰基二茂铁衍生物合成与结构表征[J].含能材料,2008,16(4):128-130
    [52]M. B. Avinash, K. S. Subrahmanyam, Y. Sundarayya, et al. Covalent modification and exfoliation of graphene oxide using ferrocene [J]. Nanoscale, 2010,2:1762-1766
    [53]Y. Ochi, M. Suzuki, T. Imaoka, et al. Controlled storage of ferrocene derivatives as redox-active molecules in dendrimers [J]. J. Am. Chem. Soc.,2010,132:5061-5069
    [54]刘向阳,张忠锁,张兴堂,等.1,4-双二茂铁噻吩/纳米二氧化锡异质结光伏性质研究[J].物理化学学报,2004,20(9):1167-1171
    [55]A. Hosseini, J. P. Collman, A. Devadoss, et al. Ferrocene Embedded in an Electrode-Supported Hybrid LipidBilayer Membrane:A Model System for Electrocatalysis in a Biomimetic Environment [J]. Langmuir,2010,26(22):17674-17678
    [56]H. Y. Zhao, Y. Z. Zhu, C. Chen, et al. Synthesis, characterization, and photophysical properties ofcovalent-linked ferrocene-porphyrin-single-walled carbon nanotube triad hybrid [J]. Carbon,2012,50:4894-4902
    [57]黄耀曾,钱延龙.金属有机化学进展[M].北京:化学工业出版社,1987:20
    [58]吴红飞.二茂铁苄基叔胺环金属化及在碳-碳偶联反应中的应用[D].天津:天津大学,2007
    [59]S. Kocher, G. P. M. van. Klink, G. van. Koten. Ferrocene-bridged Pd-NCN pincer complexes [J]. J. Organomet. Chem.,2003,684(1):230-234
    [60]R. G. Arrayas, J. Adrio, J. C. Carretero. Recent applications of chiral ferrocene ligands in asymmetric catalysis [J]. Angew. Chem.-Int. Edit.,2006,45(46): 7674-7715
    [61]R. C. J. Atkinson, V. C. Gibson, N. J. Long. The syntheses and catalytic applications of unsymmetrical ferrocene ligands [J]. Chem. Soc. Rev.,2004,33, 313-328
    [62]P. J. Guiry, Cormac P. Saunders. The Development of Bidentate P,N Ligands for Asymmetric Catalysis [J]. Adv. Synth. Catal.2004,346,497-537
    [63]余述燕.含二茂铁基异嗯唑(啉)衍生物的合成及催化性能的研究[D].芜 湖:安徽师范大学,2010
    [64]N. G. Connelly, W. E. Geiger. Chemical redox agents for organometallic chemistry [J]. Chemical Reviews,1996,96(2):877-910
    [65]J. C. Ndamanisha, L. P. Guo. Electrochemical determination of uric acid at ordered mesoporous carbon functionalized with ferrocenecarboxylic acid-modified electrode [J]. Biosensors & Bioelectronics,2008,23(11):1680-1685
    [66]S. Fukuzumi. Bioinspired electron-transfer systems and applications [J]. Bull. Chem. Soc. Jpn.,2006,79(2):177-195
    [67]T. Nakamura, J. J. Ren, K. M. Zhu. Application of the Nanogold-4,4'-bis (methanethiol)biphenyl modified gold electrode to the determination of tyrosinase-catechol reaction kinetics in acetonitrile [J]. Analytical. Sciences, 2006,22(9):1261-1264
    [68]D. Huber, H. Hubner, P. Gmeiner. 1,1'-Disubstituted ferrocenes as molecular hinges in mono-and bivalent dopamine receptor ligand [J]. J. Med. Chem., 52(21):6860-6870
    [69]J. M. Gibbs, S. J. Park, D. R. Anderson, et al. Polymer-DNA hybrids as electrochemical probes for the detection of DNA [J]. J. Am. Chem. Soc.,2005, 127:1170-1178
    [70]A. J. Baca, F. M. Zhou, J. Wang, et al. Attachment of ferrocene-capped gold nanoparticle-streptavidin conjugates onto electrode surfaces covered with biotinylated biomolecules for enhanced voltammetric analysis [J]. Electroanalysis,2004,16:73-80
    [71]] G. Sathyaraj, D. Muthamilselvan, M. Kiruthikaet al. Ferroce ne conjugated imidazolephe nols as multichanne 1 ditopic chemosensor for biological active cations and anions [J]. J.Organomet.Chem.,2012,716:150-158
    [72]G. Sathyaraj, S. Sangeetha, D. Muthamilselvan, et al. Structurally modified 1,10-phenanthroline based fluorophores for specific sensing of Ni2+ and Cu2+ ions [J]. Dalton. Trans.,2012,41(19):5769-5773
    [73]张丽静.几种光、电活性硫杂杯[4]芳烃受体分子的合成及性质研究[D]. 济南:山东师范大学,2012
    [74]L. Fernandez, H. Carrero. Electrochemical evaluation of ferrocene carboxylic acids confinedon surfactant-clay modified glassy carbon electrodes:oxidation of ascorbic acid and uric acid [J]. Electrochimica. Acta,2005,50:1233-1240
    [75]A. R. Pike, L. C. Ryder, B. R. Horrocks, et al. Ferrocenyl-modified DNA: synthesis, characterization and integration with semiconductor electrodes [J]. Chem. Eur. J.2005,11,344-353
    [76]H. Yang, Z. G. Zhou, K. W. Huang, et al. Multisignaling optical-electrochemical sensor for Hg2+ based on a rhodamine derivative with a ferrocene unit [J]. Org. Lett.,2007,9(23):4729-4732
    [77]付冠艳.新型电化学生物传感器的研究[D].长沙:湖南大学,2012
    [78]P. Messina, G. Hallais, E. Labbe, et al. Electrochemistry of a ferrocene-grafted cell-penetrating peptide [J]. Electrochimica. Acta.,2012, (80):180-186
    [79]E. W. Neuse, M. M. G, F. B. Norman. Metallocene-containing platinum complexes as potential antitumor agents.1. Dichloro(1,6-differrocenyl-2,5-diazahexane)platinum(Ⅱ) and cis-dichlorobis(1-ferrocenylethylamine)platinum (Ⅱ) [J]. Organmetallics,1988,7:2563.
    [80]E. I. Edwards, R. Epton, G.. Marr., A new class of semi-synthetic antibiotics: ferrocenyl-penicillins and -cephalosporins [J]. J. Organomet. Chem.,1976,107: 351.
    [81]M. George, W. R. Bernard. Ferrocene:Annual survey covering the year 1984 [J]. J. Organomet. Chem.,1986,298:133.
    [82]D. Dive, C. Biot. Ferrocene conjugates of chloroquine and other antimalarials: the development of ferroquine, a new antimalarial [J]. Chemmedchem,2008, 3(3):383-391
    [83]A. Arezki, E. Brule, G. Jaouen. Synthesis of the FirstFerrocenyl Derivatives of Curcuminoids [J]. Organometallics,2009,28:1537-1543
    [84]G. Nabi, Z. Q. Liu. Ferrocenyl chalcones:antioxidants or prooxidants in radical-induced oxidation of DNA? [J]. Med. Chem. Res.,2012,21:3015-3020
    [85]B. H. Long, Y. B.Yang, L. X. Wang, et al. Convenientand Effieient Palladium-Catalyzed Coupling Reaetion Between Ferroceneboronie Aeidand Organie Triflates [J]. Synth. Commun.,40(8):1202-1208.
    [86]C. Drexler, M. Milne, E. Morgan, et al. Synthesis and characterization of new ferrocene peptide conjugates [J]. Dalton. Trans.,2009,22:4370-4378
    [87]M. F. R. Fouda, M. M. Abd-Elzaher, On the medicinal chemistry of ferrocene [3].Appl. Organometal. Chem.2007,21:613-625
    [88]L. Snegura, Y. S. Nekrasova, N. S. Sergeevab, et al. Ferrocenylalkyl azoles: bioactivity,synthesis, structure [J].Appl. Organometal. Chem.2008,22:139-147
    [89]A. A. Simenel, Elena A. Morozova, L. Snegur, et al. Simple route to ferrocenylalkyl nucleobases.Antitumor activity in vivo [J]. Appl. Organometal. Chem.,2009,23,219-224
    [90]D. Plazuk, S. Top, A. Vessieres, et al. Organometallic cyclic polyphenols derived from 1,2-(a-keto tri or tetramethylene) ferrocene show strong antiproliferative activity on hormone-independent breast cancer cells [J]. Dalton. Trans.,2010, 39:7444.7450
    [91]Y. T. Liu, S. Chen, D. W. Yin. Synthesis and antibacterial activity of several nonvel shiff bases bearing acetylferrocenyl and 2-amino-5-subsituted-1,3,4-thiadiazole [J]. Advanced Matertials Research,2012,396-398:1067-1070.
    [92]B. Fabian, A. Csampai, T. Z. Nagy, et al.Synthesis, ring transformations, IR-, NMR and DFT study of heterocycles with two ferrocenyl units [J]. J. Organomet. Chem.,2009,694:3732-3741
    [93]D. Hamels, P. M. Dansette, E. A. Hillard, et al. Ferrocenyl Quinone Methides as Strong Antiproliferative Agents:Formation by Metabolic and Chemical Oxidation of Ferrocenyl Phenols [J]. Angew. Chem. Int. Ed.,2009,48:9124-9126
    [1]T. Bredow, C. Tegenkamp, H. Pfnur, et al. Ferrocene-1,1'-dithiol as molecular wire between Ag electrodes:the role of surface defects [J]. J. Phys. Chem.,2008,128 (6):064704
    [2]I. Baumgardt, H. Butenschon. 1,1'-diaryl-substituted ferrocenes:up to three hinges in oligophenyleneethynylene-type molecular wires [J]. Eur. J. Org. Chem.,2010, (6):1076-1087
    [3]X. F. Guo, J. P. Small, J. E. Klare, et al. Covalently bridging gaps in single-walled carbon nanotubes with conductingmolecules [J]. Science,2006,311(5759):356-359
    [4]T. Muraoka, K. Kinbara, T. Aida. Mechanical twisting of a guest by a photoresponsive host [J]. Nature,2006,440(7083):512-515
    [5]柴向东.推拉电子取代基对二茂铁衍生物性质及电子结构的影响[J].高等学校化学学报,1996,17(12):1899-1902.
    [6]A. A. O. Sarhan, I. T. Izum. Design and synthesis of new functional compoundsRelated to ferrocene bearing heterocyclic moieties-a new approach towards electon donor organic a terials [J]. J. Organomet. Chem.,2003,675:1-12.
    [7]温国永.2,2-双二茂铁基丙烷酰化产物及其衍生物的合成与性质研究[D].呼和浩特:内蒙古大学硕士学位论文,2004
    [8]孙忠,胡玉才,新民,等.双二茂铁甲基丙基甲烷的晶体和分子结构[J].内蒙古师大学报(自然科学),1987,(4):1-5
    [9]王金枝,施大双.2,2-双二茂铁基丁烷的分子结构和晶体结构[J].内蒙古大学学报(自然科学版),1988,19(4):645-648
    [10]杨华丽.单碳原子桥联双二茂铁基化合物的合成与电化学研究[D].合肥:安徽大学,2009
    [11]温国华,旭昀,温国永,等.1,1-双二茂铁基烷的合成与表征[J].应用化学,2005,22(7):768-771
    [12]胡瑞珏,李保国,曹立志,等.双二茂铁甲基碳正离子与乙酰乙酸乙酯的反应及其产物的晶体结构[J].有机化学2006,26(3):368-371
    [13]R. J. Xie, L. M. Han, N. Zhu, et al. The effect of acetyl on the electronic communication of carbon-bridged diferrocene [J]. J. Coord. Chem.,64(18):3180-3188
    [14]边占喜,赵庆华.双(烷基二茂铁基)丙烷的合成及其燃速催化性质[J].应用化学,2004,21(9):923-927.
    [15]袁月兰.桥联双二茂铁化合物的合成及电化学研究[D].合肥:安徽大学,2008
    [16]E. I. Klimova, M. M. Garcia, T. Klimova.3,3-Diferrocenyl-cyclopropene [J]. J. Organomet. Chem.,2002,(659):56-63
    [1]陈维一,陆军,张勇.离子液体中二茂铁甲酸芳香酯的合成研究[J].有机化学,2006,26(1):87-89
    [2]F. J. Xiao, M. M. Shi, L. Peng, et al. Ferrocene End-Cap Hyperbranched Poly (amine-ester):Structureand Catalytic Performance for Thermal Decomposition of Ammonium Perchlorate [J].J.Inorg. Organomet.Polym.,2011,21(1):175-181
    [3]D. Plazuk, J. Zakrzewski, M. Salmain. Biotin as acylating agent in the Friedel-Crafts reaction. Avidin affinity of biotinyl derivatives of ferrocene, ruthenocene and pyrene and fluorescence properties of 1-biotinylpyrene [J]. Org. Biomol. Chem.,2011,9:408-417
    [4]W. Y. Chen, J. Lu. Efficient Esterification of Ferrocen ecarboxylic Acid in Ionic Liquids [J]. Chin. Chem. Lett.,2004,15(10):1146-1148
    [5]D. Plazuk, A. Vessieres, E. A.Hillard, et al. A [3] ferrocenophane polyphenol showing a remarkable antiproliferative activity on breast and prostate cancer cell lines [J]. J.Med Chem.,2009,52(15):4964-496
    [1]G. Ferguson, C. Glidewell, G. Opromolla, et al. The redox behaviour of some bis-ferrocenyl compounds:crystal and molecular structrues of diferrocenylmethane and diferrocenylmethanol [J]. J. Organomet. Chem.,1996,517:183-189
    [2]J. Trotter, A. C. Macdonald. The structure of difeeocenyl ketone [J]. Acta. Crys., 1966,21:359-366
    [3]孙忠,胡玉才,新民,等.双二茂铁甲基丙基甲烷的晶体和分子结构[J].内蒙古师大学报(自然科学),1987,(4):1-5
    [4]王金枝,施大双.2,2-双二茂铁基丁烷的分子结构和晶体结构[J].内蒙方大学学报(自然科学版),1988,19(4):645-648
    [5]刘万毅,袁耀峰,张凌云,等.烷基桥联双二茂铁衍生物的取代基效应与电化学性质的研究[J].高等学校化学学报,1998,19(8):1251-1255
    [6]温国华,旭昀,温国永,等.1,1-双二茂铁基烷的合成与表征[J].应用化学,2005,22(7):768-771
    [7]胡瑞珏,李保国,曹立志,等.双二茂铁甲基碳正离子与乙酰乙酸乙酯的反应及其产物的晶体结构[J].有机化学,2006,26(3):368-371
    [8]R. J. Xie, L. M. Han, N. Zhu, et al. The effect of acetyl on the electronic communication of carbon-bridged diferrocene [J].J. Coord. Chem.,64(18):3180-3188
    [9]Q. Zhang, W. L. Song, A. M. Showkot Hossain, et al. Synthesis,crystal structure,electrochemistry and in situ FTIR spectroelectrochemistry of a bisferrocene Pyrazole derivative [J]. Dalton. Trans.,2011,40:3510-3516
    [1]P. A. Flowers, G.. Mamantov. Thin-layer transmittance cell for infrared spectro-electrochemistry [J].Anal. Chem.,1989,61(24):190-192
    [2]P. Nguyen, P. G. Elipe, I. Manners. Organometallic polymers with transition metal in the main chain [J]. Chem. Rev.,1999,99(6):1515-1548
    [3]B. K. Jin, L. Li, J. L. Huang, et al. IR spectroelectrochemical cyclic volt absorpto-metry and derivative cyclic voltabsorptometry [J]. Anal. Chem.2009,81:4476-4481.
    [4]B. K. Jin, J. L. Huang, A. K. Zhao, et al. Direct evidence of hydrogen-bonding and/or protonation effect on p-benzo quinone electrochemical reduction by in situ IR spectroelectrochemical study [J]. J. Electroanal. Chem.,2010,650:116-126.
    [5]T. Y. Dong, S. F. Lin, C. P. Chen, et al. Long-distance electronic interaction in a molecular wire consisting of a ferrocenyl-ethynyl unit bridging two [(η5-C5H5) (dppe) M] metal centers [J]. J. Organomet. Chem.,2009,694:1529-1541.
    [6]T. Hirao, K. Aramaki, H. Nishihara. IR sensing of the electronic structure in the mixed-valence states of iron carbonyl-attached biferrocene and terferrocene [J]. Bull. Chem. Soc. Jpn.,1998,71(8):1817-1823
    [7]I. Baumgardt, H. Butenschon.1,1'-diaryl-substituted ferrocenes:up to three hinges in oligophenyleneethynylene-type molecular wires [J].Eur. J. Org. Chem.,2010, 6:1076-1087
    [8]A. C. Benniston, A. Harriman, Charge on the move:how electron-transfer dynamics depend on molecular conformation [J]. Chem. Soc. Rev.,2006,35(2): 169-179
    [9]K. Ashley, S. Pons. Infrared spectroelectrochemistry [J]. Chem. Rev.,1988,88(4): 673-695
    [10]J. B. He, C. L. Yu, T. L. Duan, et al. In situ spectroelectrochemical analysis of quercetin in acidic medium [J]. Anal. Sci.,2009,25(3):373-377
    [11]I. T. Bae, M. Sandifer, Y. W. Lee, et al. In-situ fourier-transform infrared spectroscope of molecular adsorbates at electrode-electrolyte interfaces-a comparison between internal and external reflection modes [J]. Anal. Chem.,1995, 67(24):4508-4513
    [12]A. Colina, J. Lopez-Palacios, A. Heras, et al. Digital simulation model for bi dimen-sional spectroelectrochemistry [J]. J. Electroanal. Chem.,2003,553:87-95
    [13]N. A. Macias-Ruvalcaba, D. H. Evans. Association reactions of the anion radicals of some hydroxyquinones:evidence for formation of π-and σ-dimers as well as a neutral-anion radical complex [J]. J. Phys. Chem. C.,2010,114:1285-1292
    [14]B. Beden, F. Largeaud, K. B. Kokoh, et al. Fourier transform infrared reflectance spectroscopic investigation of the electrocatalytic oxidation of D-glucose: Identification of reactive intermediates and reaction products [J]. Electrochimica. Acta,1996,41(5):701-709
    [15]Braunschweig, H. Grunewald, B. K. Schwab, et al.1,1'-diborylferrocenes from 2-boraferrocenophanes by boron-boron exchange [J]. Eur. J. Inorg. Chem.,2009, (32):4860-4863
    [16]C. L. Li, C. W. Wei, B. Wang, et al. Synthesis, characterization and electron transfer properties of unsymmetrical diferrocenyl urine derivative [J]. Chinese Journal of Inorganic Chemistry,2008,24(3):375-380
    [17]N. Matsumoto, H. Yoshinaga, N. Ohmura, et al. Numerical simulation for electrochemical cultivation of iron oxidizing bacteria [J]. Biotechnol. Bioeng, 78(1):17-23
    [18]O. Sklyar, A. Kueng, C. Kranz, et al. Numerical simulation of scanning electrochemical microscopy experiments with frame-shaped integrated atomic force microscopy-SECM probes using the boundary element method [J]. Anal. Chem,2005,77(3):764-771
    [19]C. Gabrielli, M. Keddam, N. Portail, et al. Electrochemical impedance spectroscopy investigations of a microelectrode behavior in a thin-layer cell: Experimental and theoretical studies [J]. J. Phys. Chem. B.,2006,110(41): 20478-20485
    [20]S. F. Zhao, J. X. Lu, A. M. Bond, et al. Remarkable sensitivity of the electrochemical reduction of benzophenone to proton availability in ionic liquids [J]. Chemistry,2012,18(17):5290-5301
    [21]刘万毅,袁耀峰,张凌云,等.烷基桥联双二茂铁衍生物的取代基效应与电化学性质的研究[J].高等学校化学学报,1998,19(8):1251-1255
    [22]温国华,旭昀,温国永,等.1,1-双二茂铁基烷的合成与表征[J].应用化学2005,22(7):768-771
    [23]胡瑞珏,李保国,曹立志,等.双二茂铁甲基碳正离子与乙酰乙酸乙酯的反应及其产物的晶体结构[J].有机化学,2006,26(3):368-371
    [24]R. J. Xie, L. M. Han, N. Zhu, et al. The effect of acetyl on the electronic communication of carbon-bridged diferrocene [J].J. Coord. Chem.,64(18):3180-3188

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700