蛋白质顺磁标记中探针的设计、合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
X-射线晶体衍射和核磁共振是研究生物大分子三维结构的两种主要技术手段,与X-射线晶体衍射相比,核磁共振在某些方面具有明显的优势,比如:样品不需要结晶,可以在接近生理条件下进行探测,可以用来研究生物大分子在溶液中的空间结构和功能的关系及生物样品中的动态行为等等。传统核磁共振主要用NOE (Nuclear Overhauser Effect)及二面角作为结构限制条件,然而,在研究蛋白质-蛋白质,蛋白质-配体相互作用时,一般情况下获得分子间NOE较为繁琐;另外,在研究多结构域的生物大分子的结构时,由于传统核磁共振只能提供短程的结构限制,很难获得结构域之间的结构信息,传统核磁共振在解决以上问题时遇到较大的挑战。
     与传统的核磁共振相比,顺磁核磁共振能够提供长程的结构限制,在分析大蛋白的溶液构象变化,蛋白质-蛋白质或配体相互作用等方面具有明显的优势。通常情况下蛋白质不含顺磁中心,要获得顺磁性结构信息需要对蛋白质进行顺磁标记,为解决目前国际上在蛋白质顺磁标记方面面临的问题譬如二硫键的不稳定性、标签的体积与刚性,本人设计合成了一系列新型的顺磁探针并进行了蛋白质的修饰,另外还探讨了巯基和碳碳双键的Michael加成反应的动力学。
     本文主要研究内容如下:设计合成了一系列的含双功能团的顺磁标签,通过合理的路线,以较高的收率合成一系列含有活化的碳碳双键(Michael受体)的顺磁标签;通过紫外可见分光光度计研究了顺磁标签L1和L2和L-半胱氨酸的反应动力学。结果发现,L1在中性水溶液中,不需要任何自由基引发剂的情况下,和L-半胱氨酸反应良好,并且L1具有明显的巯基选择性,和赖氨酸、甲硫氨酸等含官能团的氨基酸均不反应。L2与L1相似,但是L2与L-半胱氨酸的反应慢,这为根据巯基活性不同选择性标记含有多自由巯基的蛋白质提供了可能;针对二硫键容易发生置换及在高pH和还原环境下不稳定的问题,本实验首次利用麦克尔加成的方式把顺磁标签连接到蛋白质上,巯基麦克尔加成形成稳定的巯醚键,与二硫键相比,巯醚键在高pH及还原性环境下均能稳定存在。实验发现,L1和Ubiquitin-T22C或ArgN连接以后,滴加顺磁金属离子,均获得高质量的顺磁图谱;针对L1配位数少的问题,设计合成了L2顺磁标签,和L1相比,L2和镧系金属离子的络合能力更强,L2和Ubiquitin-G47C连接以后,滴加顺磁金属,大部分氨基酸残基有明显的赝接触化学位移。
X-ray crystallography and nuclear magnetic resonance(NMR) are the mostly used techniques in obtaining the three-dimensional structure of biological macromolecules with atom resolution, Compared with X-ray crystallography, NMR has advantages in:(1) the proteins is not ncecessarily crystallized;(2) the measurement condition is close to physiological environment;(3) NMR is able to investigate the dynamic properties of biomolecues in solution. NOEs and dihedral angles are the main structural constraints in structural biology by virtue of NMR. intermolecular NOEs are difficult to assign in many protein-protein and tranditional NMR becomes awkard in study of domain displayment in multiple-domain proteins.
     Site-specific labeling of proteins with paramagnetic ions especially lanthanides greatly enhances the power of NMR in structural biology. The dipolar interactions between unpaired electrons and nuclei spins of protein provide a rich source of structural information of proteins. At present, chemically synthesized tags are almost invariably attached to the protein by formation of one or two disulfide bonds. In this study, we report a new method of site-specific tagging proteins with paramagnetic molecules vis Michael addition reaction. We first designed and synthesized a series of new paramagnetic tags which contain difunctional groups, and investigated the kinetics of the reaction between paramagnetic tags(Ll, L2) and L-Cysteine. We show that L1and L2are ideals paramagnetic tag in labeling of proteins. And significant pseudocontact shift(PCS) were observed in the L1/L2derivatized protein adducts. In summary, we show that thiol-ene like Michael addition reaction is a valuable approach in site-specific labeling of proteins with chemically inert paramagnetic tags.
引文
[1]Donaldson L W, Skrynnikov N R, Choy W Y, et al. Structural characterization of proteins with an attached ATCUN motif by paramagnetic relaxation enhancement NMR spectroscopy. J Am Chem Soc,2001,124(40):9843-9847.
    [2](a):Mal T K, Ikura M, Kay L E, et al. The ATCUN domain as a probe of intermolecular interactions:application to calmodulin-peptide complexes. J Am Chem Soc,2012,124(47): 14002-14003; (b):Battiste J L, Wagner G. Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear overhauser effect data. Biochemistry,2000,39(18):5355-5365.
    [3](a):Iwahara J, Clore G M. Detecting transient intermediates in macromolecular binding by paramagnetic NMR. Nature,2006,440(7088):1227-1230; (b):Tang C, Ghirlando R, Clore G M. Visualization of transient ultra-weak protein self-association in solution using paramagnetic relaxation enhancement. J Am Chem Soc,2008,130(12):4048-4056; (c):Tang C, Louis J M, Aniana A, et al.Visualizing transient events in N-terminal auto-processing of HFV-1 protease. Nature,2008,455(7213):693-696.
    [4]Kurland R, McGarvey B. Isotropic NMR shifts intransition metal complexes:the calculation of the fermicontact and pseudocontact terms. JMagn Resort,1970,2(3):286-301.
    [5]Su X C, Otting G. Paramagnetic labeling of proteins and oligonucleotides for NMR. J Biomol NMR,2010,46(1):101-102.
    [6]Bertini I, Luchinat C, Aime S. NMR of paramagnetic substances. Coordin Chem. Rev,1996, 150,29-75.
    [7]Dasgupta S, Hu X, Keizers P H, et al. Narrowing the conformational space sampled by two-domain proteins with paramagnetic probes in both domains. J Biomol NMR,2011,51(3): 253-263.
    [8]Alba E, Tjandra N. NMR dipolar couplings for the structure determination of biopolymers in solution. Prog Nucl Mag Res Spectrosc,2002,40(2):175-197.
    [9]Pintacuda Q John M, Su X C, et al. NMR structure determination of protein-ligand complexes by lanthanide labeling. Acc Chem Res,2007,40(3):206-212.
    [10]Shelling J G, Bjornson M E, Hodges R S, et al. Contact and dipolar contributions to lanthanide induced NMR shifts of amino acid and peptide models for calcium binding sites in proteins. JMagn Reson,1984,57,99-114.
    [11]Campbell ID, Dobson C M, Williams R J, et al. The determination of the structure of proteins in solution:lysozyme. Ann N YAcad Sci,1973,222:163-174.
    [12]Lee L, Sykes B D. Proton nuclear magnetic resonance determination of the sequential ytterbium replacement of calcium in carp parvalbumin. Biochemistry,1981,20(5):1156-1162.
    [13]Pidcock E, Moore G R. Structural characteristics of protein binding sites for calcium and lanthanide ions. J Biol Inorg Chem,2001,6(5-6):479-489.
    [14]Allegrozzi M, Bertini I, Janik M, et al. Lanthanide-induced pseudocontact shifts for solution structure refinements of macromolecules in shells up to 40A from the metal ion. J Am Chem Soc,2000,122(17):4154-4161.
    [15]Frey M W, Frey S T, Horrocks W D Jr, et al. Elucidation of the metal-binding properties of the Klenow fragment of Escherichia coli polymerase I and bacteriophage T4 DNA polymerase by lanthanide luminescence spectroscopy. Chemical Biology,1996,3(5):393-403.
    [16]Donaldson L W, Skrynnikov N R, Choy W Y,et al. Structural characterization of proteins with an attached ATCUN motif by paramagnetic relaxation enhancement NMR spectroscopy. J Am Chem Soc,2001,123(40):9843-9847.
    [17]Ma C, Opella S J. Lanthanide ions bind specifically to an added EF-hand and orient a membrane protein in micelles for solution NMR spectroscopy. J Magn Reson,2000,146(2): 381-384.
    [18]Nitz M, Franz K J, Maglathlin R L, et al. A powerful combinatorial screen to identify high affinity terbium(Ⅲ)-binding peptides. Chembiochem,2003,4(4):272-276.
    [19]W6hnert J, Franz K J, Nitz M, et al. Protein alignment by a coexpressed lanthanide binding tag for the measurement of residual dipolar couplings. J Am Chem Soc,2003,125(44):13338-13339.
    [20]Martin L J, Hahnke M J, Nitz M, et al. Double-lanthanide-binding tags:design,photophysical properties, and NMR applications. J Am Chem Soc,2007,129(22):7106-7113.
    [21]Barthelmes K, Reynolds A M, Peisach E, et al. Engineering encodable lanthanide-binding tags into loop regions of proteins. J Am Chem Soc,2011,133(4):808-819.
    [22]Su X C, Huber T, Dixon N E, et al. Site-specific labeling of proteins with a rigid lanthanide-binding tag. Chembiochem,2006,7(10):1599-1604.
    [23]Su X C, McAndrew K, Huber T, et al. Lanthanide-Binding peptides for NMR measurements of residual dipolar couplings and paramagnetic effects from multiple angles. J Am Chem Soc, 2008,130(5):1681-1687.
    [24]Gaponenko V, Altieri A S, Li J, et al. Breaking symmetry in the structure determination of (large) symmetric protein dimmers. JBiomol NMR,2002,24(2):143-148.
    [25]Pintacuda G, Moshref A, Leonchiks A, et al. Site-specific labeling with a metal chetalor for protein-structure refinement. JBiomol NMR,2004,29(3):351-361.
    [26]Dvoretsky A, Gaponenko V, Rosevear P R. Derivation of structural restraints using a thiol-reactive chelator. FEBSLett,2002,528(1-3):189-192.
    [27]Leonov A, Voigt B, Rodriguez-Castaneda F, et al. Convenient synthesis of multifunctional EDTA based chiral metal chelates substituted with an S-mesylcysteine. Chem-Eur J,2005, 11(11):3342-3348.
    [28]Haberz P, Rodriguez-Castaneda F, Junker J, et al. Two new chiral EDTA-based metal chelates for weak alignment of proteins in solution. Org Lett,2006,8(7):1275-1278.
    [29]Prudencio M, Rohovec J, Peters J A, et al. A Caged Lanthanide Complex as a Paramagnetic Shift Agent for Protein NMR. Chem-Eur J,2004,10(3):3252-3260.
    [30]Parker D, Dickins R.S, Puschmann H, et al. Being excited by lanthanide coordination complexes:aqua species, chirality, excited-state chemistry, and exchange dynamics. Chem Rev, 2002,102(6):1977-2010.
    [31]Woods M, Botta M, Avedano S, et al. Towards the rational design of MRI contrast agents:a practical approach to the synthesis of gadolinium complexes that exhibit optimal water exchange. Dalton Trans,2005,21(24):3829-3837.
    [32]Dickins R S, Parker D, BruceJ I, et al. Correlation of optical and NMR spectral information with coordination variation for axially symmetric macrocyclic Eu(Ⅲ) and Yb(Ⅲ) complexes: axial donor polarisability determines ligand field and cation donor preference. Dalton Trans, 2003,7,1264-1271.
    [33]Vlasie M D, Comuzzi C, Nieuwendijk A, et al. Long-Range-Distance NMR effects in a protein labeled with a lanthanide-DOTA chelate. Chem-EurJ,2007,13(6):1715-1723.
    [34]Keizers P, Desreux J F, Overhand M, et al. Increased paramagnetic effect of a lanthanide protein probe by two-point attachment. J Am Chem Soc,2007,129(30):9292-9293.
    [35]Keizers P, Saragliadis A, Hiruma Y, et al. Design, synthesis, and evaluation of a lanthanide chelating protein probe:CLaNP-5 yields predictable paramagnetic effects independent of environment. J Am Chem Soc,2008,130(44):14802-14812.
    [36]Haussinger D, Huang J R, Grzesiek S. DOTA-M8:An extremely rigid, high-affinity lanthanide chelating tag for PCS NMR spectroscopy. J Am Chem Soc,2009,131(41):14761-14767.
    [37]Graham B, Loh C T, Swarbrick J D, et al. DOTA-amide Lanthanide tag for reliable generation of pseudocontact shifts in protein NMR spectra. Bioconjugate chem,2011,22(10):2118-2125.
    [38]Liu W M, Keizers P, Mathias A S, et al. A pH-sensitive, colorful, lanthanide-chelating paramagnetic NMR probe. J Am Chem Soc,2012,134(41):17306-17313.
    [39]Su X C, Man B, Beeren S, et al. A dipicolinic acid tag for rigid lanthanide tagging of proteins and paramagnetic NMR spectroscopy. J Am Chem Soc,2008,130(32):10486-10487.
    [40]Man B, Su X C, Liang H B, et al.3-Mercapto-2,6-pyridinedicarboxylic acid:A small lanthanide binding tag for protein studies by NMR spectroscopy. Chem-Eur J,2010,16(12): 3827-3832.
    [41]Jia X Y, Maleckis A, Huber T, et al.4,4'-Dithiobisdipicolinic Acid:A Small and Convenient Lanthanide Binding Tag for Protein NMR Spectroscopy. Chem-Eur J,2011,17(24):6830-6836.
    [42]Swarbrick J D, Ung P, Su X C, et al. Engineering of a bis-chelator motif into a protein α-helix for rigid lanthanide binding and paramagnetic NMR spectroscopy. Chem Commun,2011, 47(26):7368-7370.
    [43]Swarbrick J D, Chhabra P, Graham B. An iminodiacetic acid based lanthanide binding tag for paramagnetic exchange NMR spectroscopy. Angew Chem Int Ed,2011,50(19):4403-4406.
    [44]Viguier R, Serratrice G, Dupraz A, et al. New polypodal polycarboxylic ligands complexation of rare earth ions in aqueous solution. Eur J Inorg Chem,2011,2011(7):1789-1795.
    [45]Peters F, Maestre-Martinez M, Lenonv A, et al. Cys-Ph-TAHA:a lanthanide binding tag for RDC and PCS enhanced protein NMR. JBiomol NMR,2011,51(3):329-337.
    [46]Jagannath B, Lamture Z, Zhou H, et al. Luminescence properties of terbium complexes with 4-substituted dipicolinc acid. Inorg Chem,1995,34(4):864-869.
    [47]Jr H D, Martin R B. Dipolar shifts and structure in aqueous solutions of 3:1 lanthanide complexes of 2,6-dipicolinate. JAm Chem Soc,1972,94(12):4129-4131.
    [48]Harrowfield J M, Kim Y, Skelton B W, et al. Mixed transition metal/lanthanide complexes: structural characterization of solids containing cage amine chromium cations and tris(dipicolinato)lanthanide anions. Aust JChem,1995,48,807-823.
    [49]Su X C, Liang H B, Loscha K V, et al. [Ln(DPA)3]3" is a convenient paramagnetic shift reagent for protein NMR studies. JAm Chem Soc,2009,131(30):10352-10353.
    [50]Jia X Y,Yagi H, Su X C, et al. Engineering [Ln(DPA)3]3- binding sites in proteins:a widely applicable method for tagging proteins with lanthanide ions. J Biomol NMR,2011,50(4): 411-420.
    [51]Nguyen T H, Ozawa K, Stanton-cook M, et al. Generation of pseudocontact shifts in protein NMR spectra with a genetically encoded cobalt(Ⅱ)-binding amino acid. Angew Chem Int Ed, 2011,50(3):692-694.
    [52]Lee H S, Schultz P G. Biosynthesis of a site-specific DNA cleaving protein. JAm Chem Soc, 2008,130(40):13194-13195.
    [53]Huisen R. 1,3-dipolare cycloadditionen.Angew Chem Int Ed,1963,75(13):604-637.
    [54]Himo F, Lovell T, Hilgraf R, et al. Copper(Ⅰ)-catalyzed synthesis of azoles. DTT study predicts unprecedented reactivity and intermediates. JAm Chem Soc,2005,127(1):210-216.
    [55]Loh C T, Ozawa K, Tuck K L, et al. Lanthanide tags for site-specific ligation to an unnatural amino acid and generation of pseudocontact shifts in proteins. Bioconjugate Chem,2013, 24(2):260-268.
    [56]Rana T M, Meares C F. N-teminal modification of immunoglobulin polypeptide chains tagged with isothiocyanato chelates. Bioconjugate Chem,1990,1(5):357-362.
    [57]Hermanson G T. Bioconjugate Techniques 2nd Edition. Academic,2008.
    [58]Matsumoto T, Urano T, Shoda H, et al. A thiol-reactive fluorescence probe based on donor-excited photoinduced electron transfer:key role of ortho substitution. Org Lett,2007, 9(17):3375-3377.
    [59]Corrie J E. Thiol-reactive fluorescent probes for protein labeling. J Chem Soc, Perkin Trans, 1994,1,2975-2982.
    [60]Girouard S, Houle M H, Grandbois J, et al. Synthesis and characterization of dimaleimide fluorogens designed for specific labeling of proteins. J Am Chem Soc,2005,127(2):559-566.
    [61]Guy J, Caron K, Dufresne S, et al. Convergent preparation and photophysical characterization of dimaleimide dansyl fluorogens:elucidation of the maleimide fluorescence quenching mechanism. J Am Chem Soc,2007,129(39):11969-11977.
    [62]Yi L, Li H, Sun L, et al. A highly sensitive fluorescence probe for fast thiol-quantification assay of glutathione reductase. Angew Chem IntEd,2009,48(22):4034-4037.
    [63]Lin W Y, Yuan L, Cao Z M, et al. A sensitive and selective fluorescent thiol probe in water based on the conjugate 1,4-addition of thiol to α,β-unsaturated ketones. Chem-Eur J,2009, 15(20):5096-5103.
    [64]Chem X Q, Ko S K, Kim M J, et al. A thiol-specific fluorescent probe and its application for bioimaging. Chem Commun,2010,46(16):2751-2753.
    [65]Hong V, Kislukhin A A, Finn M G Thiol-selective fluorogenic probes for labeling and release. JAm Chem Soc,2009,131(29):9986-9994.
    [66]Lee J J, Lee S C, Zhai D T, et al. Bodipy-diacrylate imaging probes for targeted proteins inside live cells. Chem Commun,2011,47(15):4508-4510.
    [67]Friedman M, Krull L H, Cavins J F. The chromatographic determination of cystine and cysteine residues in proteins as S-β-(4-pyridylethyl)cysteine. J Biol Chem,1970,245(15): 3868-3871.
    [68]Griffith O W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Chem,1980,106(1):207212.
    [69]Srikun D, Albers A E, Nam C I. Organelle-targetable fluorescent probes for imaging hydrogen peroxide in living cells via SNAP-tag protein labeling. J Am Chem Soc,2010,132(12): 4455-4465.
    [70]keppler A, Pick H, Arrivoli C, et al. Labeling of fusion proteins with synthetic fluorophores in live cells. Proc Natl Acad Sci USA,2004,101(27):9955-9959.
    [71]Keppler A, Gendreizig S, Gronemeyer T, et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat Biotechnol,2003,21(1):86-89.
    [72]Joshi N S, Whitaler L R, Francis M B. A three-component Mannich-type reaction of selective tyrosine bioconjugation. JAm Chem Soc,2004,126(49):15942-15943.
    [73]Romanini D W, Francis M B. Attachment of peptide building blocks to proteins through tyrosine bioconjugation. Bioconjuagate chem,2008,19(1):153-157.
    [74]Mcfarland J M, Joshi N S, Francis M B. Characterization of a three-component coupling reaction on proteins by isotopic labeling and nuclear magnetic resonance spectroscopy. J Am Chem Soc,2008,130(24):7639-764475.
    [75]Lattuada L, Barge A, Cravotto G, et al. The synthesis and application of polyamino polycarboxylic bifunctional chelating agents. Chem Soc Rev,2011,40(5):3019-3049.
    [76]Jew S S, Park B S, Lim D Y, et al. Synthesis of 6-formyl-pyridine-2-carboxylate derivatives and their telomerase inhibitory activities. Bioorg & Med Chem Lett,2003,13(4):609-612.
    [77]Webster R D, Bond A M, Schmidt T, et al. Electrochemical reduction of some 2,6-disubstituted pyridine-based esters and thioic S-esters in acetonitrile. J Chem Soc, Perkin Trans,1995,2,1365-1374.
    [78]Zhu H H, He W W, Zhan C L. Synthesis crystal structure and different local conformations of pyridine-imide oligomers. Tetrahedron,2011,67(44):8458-8464.
    [79]Shao Y, Sheng X, Li Y, et al. DNA Binding and Cleaving Activity of the New Cleft Molecule N,N'-Bis(guanidinoethyl)-2,6-pyridinedicarboxamide in the Absence or in the Presence of Copper(Ⅱ). Bioconjugate Chem,2008,19(9):1840-1848.
    [80]Tang R R, Zhao Q, Yan Z E, et al. Synth Commun,2006,36(14):2027-2034.
    [81]Shelkov R, Melman A. Free radical approach to 4-substituted dipicolinates. Eur J Org Chem, 2005,2005(7):1397-1401.
    [82]Chaudhary S K, Hernandez O. A simplified procedure for the preparation of triphenylmethylethers. Tetrahedron Lett,1979,20(2):95-98.
    [83]Hernandez O, Chaudhaary S K, Cox R H, et al. Synthesis and characterization of 4-dimethylamino-N-triphenyllmethylpyridinium chloride, a postulated intermediate in the tritylation of alcohols. Tetrahedron Lett,1981,22(16):1491-1494.
    [84]Frank R, Doring R. Simultaneous multiple peptide synthesis under continuous flow conditions on cellulose paper discs as segmental solid supports. Tetrahedron,1988,44(19): 6031-6040.
    [85]Colin-Messager S, Girard J P, Rossi J C. Convenient method for the preparation of trityl ethers from secondary alcohols. Tetrahedron Lett,1992,33(19):2689-2692.
    [86]Wu X Y, Schmidt R R. Solid-Phase Synthesis of complex oligosaccharides using a novel capping reagent. J Org Chem,2004,69(6):1853-1857.
    [87]Hernandez A I, Balzarini J, Karlsson A, et al. Acyclic nucleoside analogues as novel inhibitors of human mitochondrial thymidine kinase. JMed Chem,2002,45(19):4254-4263.
    [88]D'Souza D M, Rominger F, Muller T J. Coupling-isomerization-Claisen sequences-mechanistic dichotomies in hetero domino reactions. Chem Commun,2006,39, 4096-4098.
    [89]Yus M, Behloul C, Organica D, et al. Detritylation procedure under non-Acidic conditions: naphthalene catalysed-reductivecleavage of trityl ethers. Synthesis,2003,14(21):79-2184.
    [90]Brown H C, Narasimhan S, Choi Y M. Selective Reductions.30. Effect of cation and solvent on the reactivity of saline borohydrides for reduction of carboxylic esters. Improved Procedures for the conversion of esters to alcohols by metal borohydrides. J Org Chem,1982, 47(24):4702-4708.
    [91]Vacher B, Bonnaud B, Funes P, et al. Novel derivatives of 2-pyridinemethylamine as selective, potent and orally active agonists at 5-HT1A receptors. J Med Chem,1999,42(9):1648-1660.
    [92]Liu D J, Credo G M, Su X, et al. Surface immobilizable chelator for label-free electrical detection of pyrophosphate. Chem Commun,2011,47(29):8310-8312.
    [93]Catherine A M, Frank K, Mark B. Experimental design and the optimization of a polymer supported palladium complex for use in the Heck reaction. Tetrahedron Lett,2004,45(44): 8239-8243.
    [94]Pellegatti L, Zhang J, Drahos B, et al. Pyridine-based lanthanide complexes:towards bimodal agents operating as near infrared luminescent and MRI reporters. Chem Commun,2008, 28(48):6591-6593.
    [95]Mukkala V M, Sund C, Kwiatkowski M, et al. New heteroaromatic complexing agents and luminescence of their Europium(Ⅲ) and Terbium(Ⅲ) chelates. Helvetica Chimica Act,1992, 75(5):1621-1632.
    [96]Wu X Y, Schmidt R R. Solid-phase synthesis of complex oligosaccharides using a novel capping reagent. J Org Chem,2004,69(6):1853-1857.
    [97]Milburn C, Milburn R R, Snieckus V. Directed ortho metalation reaction of aryl O-carbamates on solid support. Org Lett,2005,7(4):629-631.
    [98]Das B, Mahender G, Kumar V S, et al. Chemoselective deprotection of trityl ethers using silica-supported sodium hydrogen sulfate. Tetrahedron Lett,2004,45(36):6709-6711.
    [99]Boltje T J, Kim J H, Park J, et al. Chiral-auxiliary-mediated 1,2-cis-glycosylations for the solid supported synthesis of a biologically important branched a-glucan. Nature Chemistry, 2010,2(7):552-557.
    [100]Dias L C, Lucca E, Ferreira M, et al. The role of β-bulky substituents in aldol reactions of boron enolates of methylketones with Aldehydes:experimental and theoretical studies by DFT Analysis. JOrg Chem,2012,77(4):1765-1788.
    [101]Yamashita M, Yamada K, Tomioka K. Construction of arene-fused-piperidine motifs by asymmetric Addition of 2-trityloxymethylaryllithiums to nitroalkenes:the asymmetric synthesis of a dopamine D1 Full Agonist, A-86929. J Am Soc Chem,2004,126(7):1954-1955.
    [102]Bolchi C, Gotti C, Binda M, et al. Unichiral 2-(2'-pyrrolidinyl)-1,4-benzodioxanes:the 2R,2'S diastereomer of the N-methyl-7-hydroxy analogue is a potent a4p2- and a6p2-nicotinic acetylcholine receptor partial agonist. J Med Chem,2011,54(21):7588-7601.
    [103]Murata A, Wada T. A novel linker for solid-phase synthesis cleavable under neutral conditions. Tetrahedron Lett,2006,47(13):2147-2150.
    [104]Ueno Y, Kato T, Stao K, et al. Synthesis and properties of nucleic acid analogues consisting of a benzene-phosphate backbone. J Org Chem,2005,70(20):7925-7935.
    [105]Yamashita M, Yamada K I, Tomioka K. Improved asymmetric synthesis of dopamine D1 full agonist, dihydrexidine, employing chiral ligand-controlled asymmetric conjugate addition of aryllithium to a nitroalkene. Tetrahedron,2004,60(19):4237-4242.
    [106]Zhu G D, Arendsen D L, Gunawardana I W, et al. Selective inhibition of ICAM-1 and E-selectin expression in human endothelial cells.2. aryl modifications of 4-(Aryloxy)thieno[2,3-c]pyridines with fine-tuning at C-2 Carbamides. J Med Chem,2001, 44(21):3469-3487.
    [107]Takalo H, Pasanen P, Kankare J. Synthesis of 4-(phenylethynyl)-2,6-bis[N,N-bis-(carboxym-ethyl)aminomethyl]pyridine. Acta Chemica Scandinavica,1988,42(6):373-377.
    [108]Scheytza H, Rademacher O, ReiBig H U. Synthesis and structures of novel pyridine-bridged phanes of 4,4'-bipyridine. Eur J Org Chem,1999,1999(9):2373-2381.
    [109]Cangelosi V M, Sather A C, Zakharov L, et al. Diastereoselectivity in the self-Assembly of As2L2C12 macrocycles is directed by the As-π interaction. Inorg Chem,2007,46(22): 9278-9284.
    [110]Daku L M, Pecaut J, Lenormand-Foucaut, et al. Investigation of the reduced high-potential iron-sulfur protein from chromatium vinosum and relevant model compounds:A unified picture of the electronic structure of [Fe4S4]2+systems through magnetic and optical studies. Inorg Chem,2003,42(21):6824-6850.
    [111]Node M, Kumar K, Nishide K, et al. Odorless substitutes for foul-smelling thiols:syntheses and applications. Tetrahedron Lett,2001,42(52):9207-9210.
    [112]Schuster M C, Mann D A, Buchholz T J, et al. Parallel synthesis of glycomimetic libraries: targeting a C-Type lectin. OrgLett,2003,5(9):1407-1410.
    [113]Nishide K, Miyamoto T, Kumar K, et al. Synthetic equivalents of benzenethiol and benzyl mercaptan having faint smell:odor reducing effect of trialkylsilyl group. Tetrahedron Lett, 2002,43(47):8569-8573.
    [114]Adeva A, Camarero J, Giralt E, et al. Boc-S-methylbenzyl-(S)-2-amino-6-mercaptohexanoic acid:Preparation and application to the synthesis of a large cyclic disulfide peptide. Tetrahedron Lett,1995,36(22):3885-3888.
    [115]Pechlivanidis Z, Hppf H, Ernst L. Paracyclophanes:extending the bridges Synthesis. Eur J Org Chem,2009,2009(2):223-227.
    [116]Boyd D R, Sharma N D, King A, et al. Stereoselective reductase-catalysed deoxygenation of sulfoxides in aerobic and anaerobic bacteria. Org Biomol Chem,2004,2(4):554-561.
    [117]Rajalingam K, Hallmann L, Strunskus T, et al. Self-assembled monolayers of benzylmercaptan and para-cyanobenzylmercaptan on gold:surface infrared spectroscopic characterization. Phys Chem Chem Phys,2010,12(17):4390-4399.
    [118]Markees D G Derivatives of 4-mercaptodipcolinic acid. J Org Chem,1963,28(10):2530-2533.
    [119]Avetisyan A A, Aleksanyan I L, Ambartsumyan L P. Synthesis of substituted 2-methyl-4-quinolyl isothiocyanates and 4-mercaptoquinolines. Russian J Org Chem,2005, 41(5):769-771.
    [120]Gan X M, Paine R T, Duesler E N, et al. Synthesis and coordination chemistry of arene soluble 4-alkyl-2,6-bis[(diphenylphosphino)methyl]pyridine N,P,P'-trioxide ligands. Dalton Transactions,2003,1,153-159.
    [121]Raitsimring A M, Gunanathan C, Potapov A, et al. Gd3+ complexes as potential spin labels for high field pulsed EPR distance measurements. J Am Chem Soc,2007,129(46):14138-14139.
    [122]Pauvert M, Laine P, Jonas M, et al. Toward an artificial oxidative DNA photolyase. J Org Chem,2004,69(2):543-548.
    [123]Morisaki Y, Ishida T, Chujo Y. Synthesis and characterization of dithia[3.3](2,6)pyridineoph-ane containing polymers:application to the palladium catalyzed heck reaction. Org Lett, 2006,8(6):1029-1032.
    [124]Schmidt B, Ehlert D. Preparation of N-Boc-(2,6-bis-(ethoxycarbonyl)pyridin-4-yl)-L-alanines as tridentate ligands. Tetrahedron Lett,1998,39(23):3999-4002.
    [125]Jouaiti A, Hosseini M W, Cian A D. Design, synthesis and structural investigation of a 1-D directional coordination network based on the self-assembly of an unsymmetrical mono-tridentate ligand and cobalt cation. Chem Commun,2000,19,1863-1864.
    [126]Hermes J P, Sander F, Peterle T. Direct control of the spatial arrangement of gold nanoparticles in organic-inorganic hybrid superstructures. Small,2011,7(7):920-929.
    [127]Denmark S E, Butler C R. Vinylation of aryl bromides using an inexpensive vinylpolysiloxane. Org Lett,2006,8(1):63-66.
    [128]Denmark S E, Wang Z G. Cross-couling of vinylpolysiloxanes with aryl iodides. J Organometallic Chem,2001,624(1-2):372-375.
    [129]McElroy W T, DeShong P. Synthesis of the CD-ring of the anticancer agent streptonigrin: studies of aryl-aryl coupling methodologies. Tetrahedron,2006,62(29):6945-6954.
    [130]McElroy W T, DeShong P, Siloxane-based cross-coupling of bromopyridine derivatives: studies for the synthesis of streptonigrin and lavendamycin. Org Lett,2003,5(25):4779-4782.
    [131]Mino T, Shirae Y, Saito T. Palladium-catalyzed sonogashira and Hiyama reactions using phosphine-free hydrazone ligands. J Org Chem,2006,71(25):9499-9502.
    [132]Murata M, Yoshida S, Nirei S, et al. An efficient catalyst system for palladium(0)-catalyzed cross-coupling of aryltrialkoxysilanes with aryl halides. Synlett,2006, (1),118-120
    [133]Shi S Y, Zhang Y H. Pd(OAc)2-catalyzed fluoride-free cross-coupling reaction of arylsiloxanes with aryl bromides in aqueous medium. J Org Chem,2007,72(15):5927-5930.
    [134]Srimani D, Sawoo S, Sarkar A. Convenient synthesis of palladium nanoparticles and catalysis of Hiyama coupling reaction in water. Org Lett,2007,9(18):3639-3642.
    [135]Chen S N, Wu W Y, Tsai F Y. Hiyama reaction of aryl bromides with arylsiloxanes catalyzed by a reusable palladium(Ⅱ)/cationic bipyridyl system in water. Tetrahedron,2008,64(35): 8164-8168.
    [136]Blaszczyk I, Gniewek A, Trzeciak A M. Orthometallated palladium trimers in C-C coupling reactions. J Organometallic Chem,2012,710(1):44-52.
    [137]Penafiel I, Pastor I M, Yus M. (NHC)Palladium complexes from hydroxy-functionalized imidazolium salts as catalyst for the microwave-accelerated fluorine-free Hiyama reaction. Eur J Org Chem,2011,2011(35):7174-7181.
    [138]Achmatowicz M, Hegedus L S, David S. Synthesis and structural studies of 5,12-dioxocyclams capped by 4-substituted pyridines across the amine nitrogens. J Org Chem,2003,68(20):7661-7666.
    [139]Bonnet C S, Buron F, Caille F, et al. Pyridine-based lanthanide complexes combining MRI and NIR luminescence activities. Chem-Eur J,2012,18(5):1419-1431.
    [140]Ziessel R, Steffen A, Starck M. Design and synthesis of phosphorylated pyridine-based ligands for lanthanide complexation. Part 1. Tetrahedron Lett,2012,53(29):3713-3716.
    [141]Schmidt B, Ehlert D. Preparation of N-Boc-(2,6-bis-(ethoxycarbonyl)pyridine-4-yl)-L-alanines as tridentate ligands. Tetrahedron Lett,1998,39(23):3999-4002.
    [142]Mowery M E, DeShong P. Improvements in cross coupling reactions of hypervalent siloxane derivatives. Org Lett,1999,1(13):2137-2140.
    [143]Kraiem J B, Amri H. Concise synthesis of a-(hydroxymethyl)alkyl and aryl vinyl ketones. Synth Commun,2013,43(1):110-117.
    [144]Henke B, Aquino C, Birkemo L, et al. Optimization of 3-(1H-Indazol-3-ylmethyl)-1,5-benzo-diazepines as Potent, Orally Active CCK-A Agonists. J Med Chem,1997,40(17): 2706-2725.
    [145]Shi X M, Tang R R, Gu G L, et al. Synthesis and fluorescence properties of lanthanide complexes of novel bis(pyrazolyl-carboxyl)pyridine-based ligand. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,2009,72(1):198-203.
    [146]Zimmermann N, Meggers E, Schultz P G.A second-generation copper(II)-mediated metallo DNA base pair. Bioorg Chem,2004,32(1):13-25.
    [147]Meggers E, Holland P L, Tolman W B, et al. A novel copper-mediated DNA base pair. J Am Soc Chem,2000,122(43):10714-10715.
    [148]Blank B, DiTullio N W, Owings F F, et al. Mercapto heterocyclic carboxylic acids, analogs of 3-mercaptopicolinic acid. JMed Chem,1977,20(4):572-576.
    [149]Ding Y, Zhao W, Song W F, et al. Mild and recyclable catalytic oxidation of pyridines to N-oxides with H2O2 in water mediated by a vanadium-substituted polyoxometalate. Green Chem,2011,13(6):1486-1489.
    [150]Achmatowicz M, Hegedus L S, David S. Synthesis and structural studies of 5,12-dioxocyclams capped by 4-ssubstituted pyridines across the amine nitrogens. J Org Chem,2003,68(20):7661-7666.
    [151]Rong D W, Phillips V A, Rubio R S, et al. A safe, convenient and efficient method for the preparation of heterocyclic N-oxides using urea-hydrogen peroxide. Tetrahedron Lett,2008, 49(48):6933-6935.
    [152]Habermehl N C, Angus P M, Kilah N L, et al. Asymmetric transformation of a double-stranded,dicopper(I)-helicate containing achiral bis(bidentate) schiff bases. Inorg Chem,2006,45(4):1445-1462.
    [153]Sloboda-Rozner D, Witte P, Alsters P, et al. Aqueous biphasic oxidation:A water-soluble polyoxometalate catalyst forselective oxidation of various functional groups with hydrogen peroxide. Advanced Synthesis Catalysis,2004,346(2-3):339-345.
    [154]Hossein Z G, Mohammad S S, Reza S, et al. Novel late transition metal catalysts based on iron:synthesis, structures and ethylene polymerization. Catalysis Lett,2010,140(3-4): 160-166.
    [155]Yoakim C, Bonneau P R, Deziel R, et al. Novel nevirapine-like inhibitors with improved activity against NNRTI-resistant HIV:8-heteroarylthiomethyldipyridodiazepinone derivatives. Bioorg Med Chem Lett,2004,14(9):739-742.
    [156]Buu-Hoi N P, Bihan H, Binon F, et al. Alkylation of phenols and naphthols with some symmetrical tertiary alcohols. J Org Chem,1953,18(1):4-8.
    [157]Duan X F, Ma Z Q, Zhang F, et al. Magnesiation of pyridine N-oxides via iodine or bromine magnesium exchange:A useful tool for functionalizing pyridine N-oxides. J Org Chem,2009, 74(2):939-942.
    [158]Duncan T V, Ishizuka T, Therien M J. Molecular engineering of intensely near-infrared absorbing excited states in highly conjugated oligo(porphinato)zinc-(polypyridyl)metal(Ⅱ) supermolecules. J Am Chem Soc,2007,129(31):9691-9703.
    [159]Seidel D, Li L. Catalytic enantioselective friedlander condensations:facile access to quinolines with Remote stereogenic centers. Org Lett,2010,12(21):5064-5067.
    [160]Hobert S E, Carney J T, Cummings S D. Synthesis and luminescence properties of platinum(Ⅱ) complexes of 4'-chloro-2,2':6',2"-terpyridine and 4,4',4"-trichloro-2,2':6',2"-terpyridine. Inorganica Chimica Acta,2001,318(1-2):89-96.
    [161]Jones R C, Canty A J, Deverell J A, et al. Supported palladium catalysis using a heteroleptic 2-methylthiomethylpyridine-N,S-donor motif for Mizoroki-Heck and Suzuki-Miyaura coupling, including continuous organic monolith in capillary microscale flow-through. Tetrahedron,2009,65 (36):7474-7481.
    [162]Bair J S, Harrison R G. Synthesis and optical properties of bifunctional thiophene molecules coordinated to ruthenium. J Org Chem,2007,72(18):6653-6661.
    [163]Han W S, Han J K, Kim H Y, et al. Electronic optimization of Heteroleptic Ru(Ⅱ) bipyridine complexes by remote substituents:synthesis, characterization, and application to dye-sensitized solar cells. Inorg Chem,2011,50(8):3271-3280.
    [164]Ram6n G L, Hos6-Lorenzo A G, Cristina S, et al. Synthesis of 2,4-dibromopyridine and 4,4'-dibromo-2,2'-bipyridine, efficient usage in selective bromine-substitution under palladium catalysis. Heterocycles,2008,75(1):57-64.
    [165]Klemm L H, Louris J N, Boisvert W, et al. Chemistry of thienopyridines.ⅩⅩⅩⅢ. Synthetic routes to 5-and 7-substituted thieno[3,2-b]pyridines from the N-oxide. Journal of Heterocyclic Chemistry,2008,22(5):1249-1252.
    [166]Staats H, Eggers F, Haβ O, et al. Towards allosteric receptors-synthesis of resorcinarene-functionalized 2,2'-bipyridines and their metal complexes. Eur J Org Chem,2009,2009(28): 4777-4792.
    [167]Kmentova I, Sutherland H S, Palmer B D, et al. Synthesis and structure-Activity relationships of Aza-and diazabiphenyl analogues of the antitubercular drug (6S)-2-Nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazine (PA-824). J Med Chem,2010,53(23):8421-8439.
    [168]Deng L, Diao J, Chen P, et al. Inhibition of 1-deoxy-D-xylulose-5-phosphate reductoisomerase by lipophilic phosphonates:SAR, QSAR, and crystallographic studies. J Med Chem,2011,54(13):4721-4734.
    [169]Coggins M K, Toledo S, Shaffer E, et al. Characterization and dioxygen reactivity of a new series of coordinatively unsaturated thiolate-ligated manganese(Ⅱ) complexes. Inorg Chem, 2012,51(12):6633-6644.
    [170]Komatsu K, Kikuchi K, Kojima H, et al. Characterization and dioxygen reactivity of a new series of coordinatively unsaturated thiolate-ligated manganese complexes. J Am Chem Soc, 2005,127(29):10197-10204
    [171]Sprakel V S, Elemans J, Feiters M C, et al. Synthesis and characterization of PY2- and TPA-appended diphenylglycoluril receptors and their Bis-Cul complexes. Eur J Org Chem, 2006,2006(10):2281-2295.
    [172]Sablong R, Newton C, Dierkes P, et al. Chiral tridentate C2 diphosphine ligands for enantioselective catalysis. Tetrahedron Lett,1996,37(28):4933-4936.
    [173]Habermeyer B, Takai A, Gros C P, et al. Dynamics of closure of zinc bis-porphyrin molecular tweezers with copper(Ⅱ) ions and electron transfer. Chem-Eur J,2011,17(38): 10670-10681.
    [174]Zhang J, Cui H L, Hojo M, et al. Synthesis and spectral studies of 2-[(N-ethyl carbazole)-3-sulfonyl ethylenediamine]-1-N,N-2-(2-methypyridy) as a fluorescence probe for Zn2+. Bioorg Med Chem Lett,2012,22(1):343-346.
    [175]DasGupta S, Murumkar P R, Giridhar R, et al. Studies on novel 2-imidazolidinones and tetrahydropyrimidin-2(1H)-ones as potential TACE inhibitors:Design, synthesis, molecular modeling, and preliminary biological evaluation. Bioorg Med Chem Lett,2009,17(10): 3604-3617.
    [176]Barry S M, Mueller-Bunz H, Rutledge P J. Investigating the oxidation of alkenes by non-heme iron enzyme mimics. Org Biomol Chem,2012,10(36):7372-7381.
    [177]Charbonniere L J, Weibel N, Ziessel R F.5'-substituted-6-carboxylic-2,2'-bipyridine acid:a pivotal architecton for building preorganized ligands. J Org Chem,2002,67(11):3933-3936.
    [178]Charbonniere L J, Weibel N, Ziessel R F. Synthesis of flexible polydendate ligands bearing 5'-substituted-6-carboxylic-2,2'-bipyridine subunits. Synthesis,2002,8,1101-1109.
    [179]Sawicki M, Lecercle D, Grillon G, et al. Bisphosphonate sequestering agents. Synthesis and preliminary evaluation for in vitro and in vivo uranium(Ⅵ) chelation. Eur J Med Chem, 2008,43(12):2768-2777.
    [180]Micklitsch C M, Yu Q, Schneider J P. Unnatural multidentate metal ligating a-amino acids. Tetrahedron Lett,2006,47(35):6277-6280.
    [181]Achilefu S, Wilhelm R, Jimenez H N. A new method for the synthesis of Tri-tert-butyl diethylenetriaminepentaacetic acid and its derivatives. J Org Chem,2000,65(5):1562-1565.
    [182]Sakata T, Jackson D K, Mao S, et al. Optically switchable chelates:optical control and sensing of metal ions. J Org Chem,2008,73(1):227-233.
    [183]Storr T, Cameron B R, Gossage R A, et al.RuⅢ complexes of edta and dtpa polyaminocarboxylate analogues and their use as nitric oxide scavengers. Eur J Inorg Chem, 2005,2005(13):2685-2697.
    [184]Mather B D, Viswanathan K, Miller K M, et al. Michael addition reactions in macromolecular design for emerging technologies. Prog Poly Sci,2006,31(5):487-531.
    [185]Hoyle C E, Lowe A B, Bowman C N. Thiol-click chemistry:a multifaceted toolbox for small molecule and polymer synthesis. Chem Soc Rev,2010,39(4):1355-1387.
    [186]Toyooka T, Imai K. New fluorgenic reagent having halogenobenzofurazan structure for thiols:4-(aminosulfonyl)-7-fluoro-2,1,3-benzoxadiazole. Anal Chem,1984,56(13):2461-2464.
    [187]Blasco F, Medina-Hernandez M J, Sagrado S. Use of pH gradients in continuous-flow systems and multivariate regression techniques applied to the determination of methionine and cysteine in pharmaceuticals. Anal Chim Acta,1997,348(1-3):151-159.
    [188]Lunar M L, Rubio S, P6rez-Bendito D, et al. Hexadecylpyridinium chloride micelles for the simultaneous kinetic determination of cysteine and cystine by their induction of the iodine-azide reaction. Anal Chim Acta,1997,337(3):341-349.
    [189]Kamidate T, Watanabe H. Peroxidase-catalysed luminol chemiluminescence method for the determination of glutathione. Talanta,1996,43(10):1733-1738.
    [190]Shahrokhian S. Lead phthalocyanine as a selective carrier for preoaration of a cysteine-selective electrode. Anal.Chem,2001,73(24):5972-5978.
    [191]Zen J M, Kumar A S, Chen J C.Electrocatalytic oxidation and sensitive detection of cysteine on a lead ruthenate pyrochlore modified electrode. Anal Chem,2001,73(6):1169-1175.
    [192]Lindorff-Larsen K, Winther J R. Thiol alkylation below neutral pH. Anal Chem,2000, 286(2):308-310.
    [193]Hartman R F, Rose S D. Kinetics and Mechanism of the Addition of Nucleophiles to a,P-Unsaturated Thiol Esters. J Org Chem,2006,71(17):6342-6350.
    [194]Friedman M, Cavins J F, Wall C J. Relative Nucleophilic Reactivities of Amino Groups and Mercaptide Ions in Addition Reactions with α,β-Unsaturated Compounds.J Am Soc Chem, 1965,87(16):3672-3682.
    [195]Okrasa K, Levy C, Hauer B, et al. Structure and mechanism of an unusual malonate decarboxylase and related racemases. Chem-Eur J,2008,14(22):6609-6613.
    [196]Fisch F, Fleites C M, Delenne M, et al. A covalent succinylcysteine-like intermediate in the enzyme-catalyzed transformation of maleate to fumarate by maleate isomerase. J Am Soc Chem,2010,132(33):11455-11457.
    [197]兰氏化学手册.尚久方译.北京:科学出版社,1991.
    [198]Bonnet C S, Buron F, Caille F, et al. Pyridine-based lanthanide complexes combining MRI and NIR luminescence activities. Chem-Eur J,2012,18(5):1419-1431.
    [199]Schmitz C, Stanton-Cook M J, Su X C, et al. Numbat:an interactive software tool for fitting Deltachi-tensors to molecular coordinates using pseudocontact shifts. J Biomol NMR,2008, 41(3):179-189.
    [200]Vijay-Kumar S, Bugg C E, Cook W J. Structure of ubiquitin refined at 1.8 A resolution.J Mol Biol,1987,194(3):531-544.
    [201]Lewis D J, Glover P B, Solomons M C, et al.Purely heterometallic lanthanide(Ⅲ) macrocycles through controlled assembly of disulfide bonds for dual color emission. J Am Chem Soc,2011,133(4):1033-1043.
    [202]Xu Z, Xu L, Zhou J, et al. A highly selective fluorescent probe for fast detection of hydrogen sulfide in aqueous solution and living cells. Chem Commun,2012,48(88):10871-10873.
    [203]Forbes C R, Zondlo N J. Synthesis of thiophenylalanine-containing peptides via Cu(I)-mediated cross-coupling. OrgLett,2012,14(2):464-467.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700