烃类预测的岩石物理基础和地震孔隙度反演
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文探讨了油气预测的地震勘探方法和岩石物理理论和实验的有关问题。重点研究了岩石基质参数和岩石骨架参数的计算方法和基于Biot‐Gassmann方程的地震反演问题。这些问题的研究,对应用岩石物理实验室的测试分析结果减少实际地震解释和地震反演的模糊性,提高烃类预测的可靠性具有重要作用。在烃类预测的岩石物理基础和地震孔隙度反演方法等研究工作中,获得了如下的主要进展和创新成果:
     (1)在碳酸盐岩地面露头岩样和钻井岩心岩样的采集、制作和基本参数的测试分析基础上,研究了碳酸盐岩岩石力学参数和声学参数的基本特征和随地层压力和温度的变化规律;发展了适合碳酸盐岩岩石物理的测试、分析技术,改善了岩石物理力学参数测试的软件系统,并有助于提高碳酸盐岩储层预测的精度。
     (2)针对含流体孔隙介质中求取岩石基质模量的重要性和复杂性,通过对Biot‐Gassmann方程的合理简化并引入孔隙形态参数,获得了计算岩石基质模量的线性拟合法(LRM),并导出了LRM的相关公式。与常规计算岩石基质模量的方法相比,LRM法简单易行并且有较高的精度。
     (3)岩石骨架模型的建立和骨架参数的求取对含流体双相介质波的传播研究十分重要,但目前常用的岩石骨架模型的形态各异,参数计算方法也不相同,给实际应用带来困惑。因此,建立和推导岩石骨架模型参数的统一表示式是非常必要的。通过分析和比较现有的岩石骨架模型与公式,如Esheby‐Walsh、Pride、Geertsma、Nur、 Keys‐Xu以及Krief等模型和公式,我们得到了带有两个调节参数的岩石骨架模型的统一表示式。通过对调节参数赋予具体的数值,可获得某些有特定物理意义的岩石骨架新模型,这使得我们有可能结合实际地质、地球物理条件,选择最适当的岩石骨架模型,以实现合理的地震孔隙度反演。
     (4)根据带有孔隙形态参数的Biot‐Gassmann修改方程和计算岩石基质模量的LRM法以及岩石骨架模型的统一表示式,提出了新的地震孔隙度反演方法,给出了相应的计算公式和实现该反演的主要步骤。所发展的方法特别适用于在富烃储层的分布受控于孔隙度大小的地区作烃类识别。也为岩石物理和地震反演的有机结合提供了例证。
     (5)作为烃类预测和流体识别的应用实例,我们在ZJ地区,将岩石物理参数测试分析和地震孔隙度反演相结合进行了预测研究。该地区富烃储层的分布与中等大小的孔隙度分布关系密切。给利用孔隙度反演区分油层、水层和干层提供了良好条件。实际反演结果显示,将地震孔隙度反演和其他技术结合较好地预测了有利油气区带的分布。
This dissertation deals with some oil and gas prediction problems related to seismic exploration technologies and petro‐physical theoretic and empirical results with emphasis on calculations of rock matrix and skeleton parameters and seismic inversions based on Biot‐Gassmann equation. The solution of these problems is quite important for applying rock physical empirical results to reduce fuzziness of seismic interpretation and inversion and to increase hydrocarbon prediction reliability. Several main research progresses and innovative methods in rock physics fundamental works and seismic porosity inversion for hydrocarbon prediction are acquired:
     (1) By petro‐physical modulus measurement and analysis of rock samples which were collected from outcrop rocks and drilling cores in carbonate layers,some basic mechanic and acoustic parameter characterizations and regularities varying with reservoir pressure and temperature of those carbonate samples are obtained. Combining those empirical and research results, we develop a set of technologies and methodologies for carbonate sample’s measurement and analysis that will promote to improve the carbonate reservoir predictions and to set up a new mechanic test software system for carbonate reservoir identifecation.
     (2) Due to the importance and complexity for calculating rock matrix modulus in fluid‐bearing porosity reservoir,a linear regression method (LRM) for computing this parameter is presented in this dissertation and the LRM relation is derived from reasonable simplifying the Biot‐Gassmann equation and adding a porosity shape parameter in the equation. Comparing with some conventional methods for computing the modulus, the LRM is simple and accurate.
     (3) Because the formulation of a rock skeleton model and derivation of a useful formula for calculating rock skeleton modulus are very important for wave propagation in two phase material and some existing rock skeleton models and their calculating relations are quite different from each other that will confuse us to apply them correctly, therefor a uniform expression of rock skeleton models and computing formula are requisite. A uniform expression with two adjusting parameters is acquired through analysis and comparison of conventional rock skeleton models and computing formula including Esheby‐Walsh, Pride,Geertsma,Nur, Keys‐Xu,Krief model and formula. By endowing the adjusting parameters with specific values, some unique rock skeleton models with specific physical meaning can be constructed That is an opportunity for us to select most suitable rock skeleton model from real geological and geophysical conditions and to do a reasonable seismic porosity inversion.
     (4) Based on the modified Biot‐Gassmann equation with a porosity shape parameter and the LRM method for calculating rock matrix modulus as well as the uniform rock skeleton model,a new seismic porosity inversion relation and it’s completion steps are presented. This seismic porosity inversion method is suitable especially for fluid‐bearing reservoir identification in area where distribution of hydrocarbon‐rich strata is controlled by reservoir porosities. The new seismic porosity inversion is also an example of the combination of rock physical research results and seismic inversions.
     (5) As an example of hydrocarbon prediction and fluid identification we apply seismic porosity inversion associated with rock physical measurement and analysis results to ZJ basin where the existence of an abundant hydrocarbon reservoir is dependent on a middle porosity range that means we can use the seismic porosity inversion’s results to identify oil reservoir and dry or water reservoirs. The seismic real data inversions show that it works quite well.
引文
[1]陈顒、黄庭芳著,2001,岩石物理学,北京大学出版社.
    [2]陈顒、黄庭芳、刘恩儒著,2009,岩石物理学,中国科学技术大学出版社.
    [3]曹均,贺振华,黄德济,2004.储层孔裂隙的物理模拟与超声波实验研究.地球物理学进展,19(2):386~391
    [4]曹均,贺振华,黄德济等.2003.孔洞储层地震波场特征响应的物理模型实验研究.成都理工大学学报,30(6)
    [5]陈学华,贺振华,黄德济.2008,广义S变换及其时频滤波[J].信号处理,24(1):28-31.
    [6]陈学华,贺振华,文晓涛等.2009,低频阴影的数值模拟与检测[J].石油地球物理勘探,44(3):298-303.
    [7]陈遵德,朱广生.地震储层预测方法研究进展,《地球物理学进展》,1997,12,4:76~84.
    [8]杜正聪,2003.缝洞储层地震波场正演与偏移,成都:成都理工大学硕士论文
    [9]高静怀,陈文超,李幼铭等.2003,广义S变换与薄互层地震响应分析[J].地球物理学报,46(4):526-532.
    [10]甘利灯等,2005,弹性阻抗在流体与岩性预测中的潜力分析[J],石油物探,44(5):504-508
    [11]何樵登,张中杰编著.1996,横向各向同性介质中地震波及其数值模拟.长春:吉林大学出版社
    [12]贺振华,杜正聪,文晓涛,2004.碳酸盐岩喀斯特溶洞和裂缝系统的地震模拟与预测.地球科学进展,19(3):399~402
    [13]贺振华,黄德济等著.1999,复杂油气藏地震波场特征方法理论及应用.成都:四川科学技术出版社,
    [14]贺振华、黄德济、文晓涛著2007,裂缝油气藏地球物理预测,四川科学技术出版社
    [15]贺振华,李亚林,曹均,等,2003.地层温压条件下超声波测试技术.勘探地球物理进展,26(2):84~87
    [16]何建军,黄德济,贺振华,1999.利用地震波场参数探讨岩性非均质的分布.物探化探计算技术,21(3)
    [17]贺锡雷,黄德济,胡光岷等,2003.信息保真边缘检测.成都理工大学学报,30(1):45~51
    [18]黄德济等编著,1990.地震勘探资料数字处理.北京:地质出版社
    [19]黄绪德,2003,油气预测与油气藏描述-地震勘探直接找油气.南京:江苏科学技术出版社
    [20]胡光岷,贺振华,黄德济等,2000.利用纵波资料反演裂缝发育密度和方向.成都理工学院学报,27(2):145~150
    [21]李庆忠,1994,走向精确勘探的道路,北京:石油工业出版社
    [22]李亚林,1999,孔(裂)介质波场特征的超声实验及其应用.成都理工大学博士学位论文
    [23]李亚林,谢贤鹏,贺振华等.1998,岩石孔隙流体对纵横波速度影响的实验研究及意义.矿物岩石,18(增刊)
    [24]刘雯林,1996.储层开发地震技术,北京:石油工业出版社
    [25]刘洋,李承楚,牟永光,2000,双相横向各向同性介质分界面上弹性波反射与透射问题研究,地球物理学报,43(5):6911~698
    [26]马永生,郭旭升,凡睿,2005.川东北普光气田飞仙关组鲕滩储集层预测.石油勘探与开发,32(4):31~34
    [27]马在田.1995,走向21世纪的实用地震学,地球物理学报,384:539~547.
    [28]马中高,2008,碎屑岩地震岩石物理学特征研究-以济阳坳陷下第三系地层为例,成都:成都理工大学博士学位论文
    [29]马中高,伍向阳.2007,石油地震特征实验研究.石油物探,46(1):561~566
    [30]牟书令等编著2009,中国海相油气勘探理论技术与实践北京:地质出版社
    [31]牟永光.储层地球物理学[M].北京:石油工业出版社,1996.
    [32]倪逸,2003,弹性波阻抗计算的一种新方法,石油地球物理勘探,38(2):147-150
    [33]彭真明.2006,基于叠前地震反演的储层识别与气水检测方法研究——以渡口河构造飞仙关组鲕滩储层为例[M].博士后出站报告
    [34]蒲勇,2004.地震属性技术在碳酸盐岩鲕滩储层预测中的应用.石油物探,43(增刊):63~66
    [35]唐建侯,2003.P-SV转换波与各向异性研究,成都:成都理工大学博士论文
    [36]唐湘蓉,贺振华,黄德济,2004.裂缝储集层模糊评价方法.物探化探计算技术,26(3):215~219
    [37]万明浩等.1994,岩石物理性质及其在石油勘探中的应用.北京:地质出版社
    [38]王炳章,2008,地震岩石物理学及其应用研究,成都:成都理工大学博士论文
    [39]王栋.2009.AVO分析与流体识别[D].成都:成都理工大学硕士学位论文
    [40]王一刚,文应初,1998.川东地区上二叠统长兴组生物礁分布规律.天然气工业,18(6):10~15
    [41]文晓涛,贺振华,黄德济,2005,遗传算法与神经网络法在碳酸盐岩储层评价中的应用.石油物探,44(3):225~228
    [42]许云译,Amos Nur著,1986,双相介质中波的传播,北京:石油工业出版社
    [43]熊晓军,2007.单程波动方程地震数值模拟新方法研究.成都:成都理工大学博士论文
    [44]熊晓军,贺振华,黄德济,2005.三维波动方程正演及模型研究.石油物探,44(6):554~556
    [45]杨顶辉等,2001,含流体多孔介质的BISQ模型,石油地球物理勘探,36(2);
    [46]杨贵祥,2006.基于调谐频率与分频处理的高分辨率反演技术.石油物探,45(3):239~241
    [47]杨文采.1995,地球物理反演的遗传算法,石油物探,4(1):116~122.
    [48]尹陈.2008.地震波衰减与流体预测研究[D].成都:成都理工大学硕士学位论文
    [49]云美厚,易维启.2001,孔隙流体地震特征的计算.石油物探,40(2):13~20
    [50]张会星等,2010,利用地震波在双相介质中的衰减特性检测油气,石油地球物理勘探,45(3):3431~349
    [51]赵鸿儒、唐文榜、郭铁柱编著,1986,超声地震模型试验技术及应用,石油工业出版社
    [52]张应波,1994,地震孔隙度反演方法和应用,石油地球物理勘探,29(3);261~273
    [53]张永刚,贺振华,陈洪德,刘树根等,2011,中国典型海相礁滩储层研究[M].北京:科学出版社
    [54]赵群,2008,面向起伏地表和缝洞储层的物理模拟技术研究,成都:成都理工大学博士论文
    [55]郑晓东,2005.裂缝发育带地震识别预测技术研究进展.石油地球物理勘探,40(6):724~730
    [56]周辉,何樵登,等.1997,人工神经网络非线性地震波形反演,石油物探,36
    [57]邹文,贺振华,陈爱萍等,2008,定量交会图技术在流体识别中的应用研究.石油物探47(1):45-48
    [58]邹文,2008,基于地震资料的流体识别技术研究.成都:成都理工大学博士学位论文
    [59]Avseth P, Mukerji T and Mavko, G,2005, Quantitative Seismic Interpretation—Applying RockPhysics Tools to Reduce InterpretationRick, Cambridge University Press
    [60]Batzle M,Wang Z.1992, Seismic properties of pore fluids. Geophysics,57(11):1396~1408.
    [61]Batzle M, Han D-h,2001,Optimal hydrocarbon indicators.71th SEG:1697--1700
    [62]Biot M.A.,1956,Theory of propagation of elastic waves in a fluid-saturated porous solid:Low-frequency range. Acoust Soc Am,28(2):168--178
    [63]Biot M.A.1962,Mechanics of deformations and acoustic propagation in porous media· ApplPhy,33(4):1482一1498
    [64]Biot M.A.1962,Generalized theory of acoustic propagation in porous dissipative mediaAcoust Soc Am,34(9A):1254一1264
    [65]Castagna J P,1993, Petrophysical imaging using AVO, The Leading Edge,12,172
    [66]Castagna J P,Sun S,Siegfried R W.,2003, Instantaneous spectral analysis: Detection oflow-frequency shadows associated with hydrocarbons[J]. The Leading Edge,22(2):120--127.
    [67]Castagna J P,Batzle M L,Kan T K.1993,Rock physics—The link between rock propertiesand AVO response:in Castagna J P, Backus M,eds.Offset Dependent Reflectivity—Theoryand Practice of AVO Analysis, Investigations in Geophysics. No.8,Society of ExplorationGeophysicists,Tulsa,Oklahoma,135~171
    [68]Domenico, S. N.,1974, Effect of water saturation on seismic reflectivity of sand reservoirencased in shale, Geophysics,39:759--769
    [69]Dvorkin J,Nolen-Hoeksema R and Nur A,1994,The squirt-flow mechanicsm: macroscopicdescryiption. Geophysics,59(3):428—438
    [70]Dvorkin, J. and Nur, A.,1996, Elasticity of high porosity sandstones: Theory for two North Seadatasets. Geophysics,61(5):1363~1370
    [71]Eshelby, J. D.,1957, The determination of the elastic field of an ellipsoidal indusion and relatedproblems: Proc. Roy. London, A241,376—396
    [72]Ebrom, D,2004,The low-frequency gas shadow on seismic section[J]. The Leading Edge,23(8),772
    [73]Gardner G H F,Gardner L W,Gregory A R.1974, Formation velocity and density—Thediagnostic basics for stratigraphic traps.Geophysics,39(6),770~780
    [74]Gassmann F.1951,Elastic waves through a packing of spheres.Geophysics,16:673~685
    [75]Geertsma,J., Smith, D C.,1961, Some aspects of elastic wave propagation in fluid–saturatedporous solids. Geophysics,26(2),169—181
    [76]Goloshubin, G.M.,and Bakulin, A.V.,1998, Seismic reflectivity of a thin porous fluid-saturatelayer versus frequency, SEG Meeting.
    [77]Goloshubin, G.M.,and Korneev, V.A,2000,Seismic low-frequency effects from fluid-saturatedreservoir, SEG Meeting: Calgary
    [78]Goloshubin G M, Connie V A, Korneev V A, et al.2006, Reservoir imaging using lowfrequencies of seismic reflections. The Leading Edge,25(5):527-531.
    [79]Gurevich, B. and Galvin, J.,2007, Fluid substitution, dispersion, and attenuation in fractured andporous reservoirs—insights from new rock physics modles,: The Leading EDGE,26(9),1162—1168.
    [80]Goodway W, Chen T, Downton J.1997,Improved AVO fluid detection and lithologydiscrimination using Lamé petrophysical parameters:“λρ”,“μρ”,“λ/μfluid stack” from Pand S inversion.Expanded Abstracts of68th Annual International SEG Mtg.,183-186
    [81]Han D-h,1986,Effects of porosity and clay content on acoustic properties of sandstones andunconsolidated sediments, Unpublished Ph. D. dissertation,Stanford University
    [82]Han D-h Batzle M,2003,Gain function and hydrocarbon indicators.73th SEG:1695~1689
    [83]He Xilei, He Zhenhua, Wang Ruiliang,Wang Xuben, Jiang Lian,2011,Calculations of rockmatrix modulus based on a linear regression relation. Applied Geophysics,8(3),155--162
    [84]He, Z H, Xiong, X J and Bian, L,2008, Numerical simulation low-frequency shadows and itsapplication, Applied Geophysics,5(4),301—306
    [85]Hilterman F J. Seismic amplitude interprection2001Distinguished instructor short coursedistinguished instructor series,No.4:chapter2SEG
    [86]Jiang, L, Wen, X T, He, Z H, Huang, D J,2011, Pore structure model simulation and predictionin reef-flat reservoir. Chinese J. Geophysics,54(6),1624-1633
    [87]Keys R G, Xu S Y,2002, An approximation for the Xu-White velocity model,Geophysics67(5):1406--1414
    [88]Korneev V A,Goloshubin G M, Daley T M, et al.2004, Seismic low frequency effects inmonitoring fluid-saturated reservoirs[J]. Geophysics,69(2):522–532.
    [89]Krief, M., Garat, J., Stellingwerff, J, and Ventre J.,1990, A petrophysical interpretation usingthe velocities of P and S waves (full-waveform sonic), The log Analyst31:355—369
    [90]Kuster G T, Toks z M N.1974,Velocity and attenuation of seismic waves in two phase media,part Ι: theoretical formulation[J].Geophysics,39(5):587-606
    [91]Lee M W,2002, Biot-Gassmann theory for velocities of gas-hydrate-bearing sediments,Geophysics,63(1):1711~1719
    [92]Lin, K, Xiong, X J, Yang, X, He Z H, Cao, J X,2011, Self-adapting extraction of matrix mineralbulk modulus and verification of fluid substitution. Applied Geophysics,8(2),110—116
    [93]Marion, D.,1990, Acoustical, Mechanical and Transport Properties of Sediments and GranularMaterials, Ph. D. Thesis, Stanford University
    [94]Mavko, G, Mukerji, T.,.Dvorkin, J.,2003, The rock physics handbook--tools for seismic inporous media: Cambridge University Press.
    [95]Nur, A.,1992, Critical porosity and the seismic velocities in rocks, EOS, Transactions AmericaGeopysical Union,73,43--66
    [96]Nur A, Mavko G, Dvorkin J.1998,Critical porosity:a key to relating physical properties toporosity in rock.The Leading Edge[J],17(2):357-362
    [97]Plona T J,1980,Observation of a second bulk compressional wave in a porous medium atultrasonic frequencies·Appl. Phys.Let.36(4):259--261
    [98]Pride, S. R, Gangi, A. F and Morgan, F. D,1992,Deriving the equations of motion for porousisotropic media, Journal of the Acoustical Society of America,3278--3290
    [99]Russell B H, Hedlin K,2003, Fluid-property discrimination with AVO: a Biot-Gassmanprospective: Geophysics,68(1),29—39.`
    [100]Sheriff R.E.et.al.1992, Reservoir Geophysics, SEG
    [101]Sheriff R.E,2006. Encyclopedic dictionary of applied Geophysics. Tulsa: SEG
    [102]Sinha S K, Routh P S,Anno P D,et al.2003,Time-Frequency Attribute of Seismic Data usingcontinuous wavelet Transform,73Annual. Internal. Mth SEG, Expanded Abstract,1481-1484
    [103]Smith G C, Sutherland R A.1996,The fluid factor as an AVO indicator. Geophysics,61(5):1425-1428
    [104]Sun Y F,2004, A two-parameter model of elastic wave velocities in rocks and numerical AVOmodeling. Journal of Computational Acoustics,12(4):619--630
    [105]Whitcombe D N,2002, Extended elastic impedance for fluid and lithology prediction,Geophysics,67(1):63-67
    [106]Walsh, J. B.,1965, The effective of cracks on the compressibility of rock: JGR,20(2),381--384.
    [107]Walsh J B,1966,Seismic waves attenuation in rock due to friction JGR,71(10):2591—2599
    [108]Wang Z.2001, Fundamental of seismic rock physics. Geophysics,66(2):398~412
    [109]Wang Z, Nur A.1992, Seismic and Acoustic Velocities in Reservoir Rocks In: SEG.Geophysics Reprint Series,10.
    [110]Wyllie M R J, Gregory A R, Gardner G H F.1958, An experimental investigation of factorsaffecting elastic wave velocities in porous media. Geophysics,1958,23(3):459~493
    [111]Zhang, J. J, Li H. B, Liu, H. S, Ma, D. B and Cui, X. F.,2010, Accuracy of dry frame models inthe study of rock physics:Progress In Geophysics,25(5),1697-1702.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700