全氟辛基磺酰亚胺及其盐的制备及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题研究了由全氟辛基磺酰氟与氨反应制得全氟辛基磺酰胺,全氟辛基磺酰胺与全氟辛基磺酰氟在三乙胺中回流,得到全氟辛基磺酰亚胺的三乙胺盐,再经过酸性离子交换树脂得到全氟辛基磺酰亚胺。将全氟辛基磺酰亚胺与金属氯化物或醋酸盐在水或有机溶剂中加热制得全氟辛基磺酰亚胺金属盐,并以ICP、IR、19F NMR和元素分析等手段进行表征。
     以全氟辛基磺酰亚胺金属盐(M(NPf2)n,M=Yb,Sc,Hf,Sn.n=3,4)为催化剂与全氟萘烷(C10F18)为全氟溶剂组成氟相,反应物和共溶剂组成有机相,研究了氟两相体系中合成二苯甲烷及取代二苯甲烷、14-取代-14H-二苯并[a,j]氧杂蒽类化合物、1-(芳基,酰胺基)甲基-2-萘酚类化合物、苯亚甲基环戊烷并[d]嘧啶酮衍生物、六氢喹啉衍生物、5-氧代-4H-四氢苯并[b]吡喃衍生物、meso-四苯基卟啉衍生物。考察了反应温度、催化剂及其用量、共溶剂种类等因素对合成上述有机物的影响。研究表明,M(NPf2)n为催化剂能有效的催化上述反应的进行,并且反应条件温和、后处理简单、反应速度快、产率高。含有催化剂的氟相通过简单的相分离,就可回收利用,氟相重复使用4次,其催化活性无明显降低。共溶剂的加入方便了产物的分离,使反应物混合均匀有利于反应的进行;但同时降低了反应物浓度,反而使反应受限。
     同时本课题研究了用氟硅胶固载氟代催化剂的方法。氟硅胶是一种含有氟烷基的硅胶。利用氟-氟相互作用,可以将带有氟尾的催化剂或配体固定在氟硅胶上。本课题制备了氟硅胶负载的全氟辛基磺酰亚胺及其盐,并以IR、吡啶-FTIR和TGA等手段进行表征。研究了氟硅胶负载全氟辛基磺酰亚胺催化合成缩醛,氟硅胶负载全氟辛基磺酰亚胺铪催化合成N-甲酰胺衍生物和9-芳基-十氢吖啶-1,8-二酮衍生物,反应产率较高,催化剂通过简单的过滤,就可循环利用,催化剂可循环使用数次,催化效果无明显降低。
In this dissertation, the preparation of (C8F17SO2)2NH was performed in three steps. For the first step, perfluorooctanesulfonyl fluoride reacted with ammonia at -20℃to give C8F17SO2NH2. The second step, the mixture of perfluorooctanesulfonamide and perfluorooctanesulfonyl fluoride was refluxed in Et3N to afford (C8F17SO2)2N HNEt3. The last step, (C8F17SO2)2N HNEt3 was introduced into acid ion exchange resins column to give (C8F17SO2)2NH. And metal bis(perfluorooctanesulfonyl)imides were prepared from metal chloride or acetate and bis(perfluorooctanesulfonyl)imide in water or organic solvent. The catalysts obtained were characterized by ICP, IR, 19F NMR and Elemental Analysis.
     The mixture of metal bis(perfluorooctanesulfonyl)imide and perfluorinated solvent composed the fluorous phase. The reactants and co-solvent composed the organic phase. In fluorous biphasic system the catalysis efficiency of metal bis(perfluorooctanesulfonyl)imides for synthesis of many useful organic compounds was investigated in details. These model reactions include synthesis of substituted diphenylmethane, 14-substituted-14H-dibenzo[a,j]xanthenes, hexahydroquinoline derivatives, benzylidene cyclopenta[d]pyrimidinone derivatives,5-oxo-4H-terahydrobenzo[b]pyrans, 1-(aryl, amido)methyl-2-naphthols, meso-tetraarylporphyrins. The reaction conditions such as reaction temperature, reaction time, amount of catalyst, co-solvent were optimized. The results show that the aboved mentioned synthesis can be effectively promoted by using metal bis(perfluorooctanesufonyl)imides as catalysts. Generally, the introduction of metal bis(perfluorooctanesulfonyl)imides can offer the synthesis with milder reaction conditions, simpler experimental procedure while higher yields. By simple phase separation the fluorous phase containing catalyst could be reutilized up to four times with consistent reactivity. The addition of co-solvent make the reaction more accessable and the reactants concentration uniform to benefit the reaction. But the concentration of reactants was diluted with the addition of co-solvent which confined the reaction.
     At the same time, the method of immobilization fluorous catalysts on fluorous silica gel was studied. Fluorous silica gel has a perfluoroalkyl bonding phase and high affinity toward fluorous compounds. So fluorous catalyst can be absored on fluorous silica gel. In this dissertation, fluorous catalysts were immobilized on fluorous silica gel, and the supported catalysts were characterized by IR, pyridine-FTIR and TGA. Fluorous silica gel supported bis(perfluorooctanesulfonyl)imide or metal bis(perfluorooctanesulfonyl)imide exhibited effective catalytic performances when employed for synthesis of acetals and ketals, formamide derivatives and 9-aryl-1,8-dioxo-decahydroacridines. And the supported catalysts recovered by simple filtration recycled several times (ca 3 times) with consistent reactivity.
引文
[I]Fried J, Sabo E F.9a-Fluoro derivatives of cortisone and hydrocortisone[J]. J Am Chem Soc.1954,76(5):1455-1456.
    [2]Duschinsky R, Pleven E. The synthesis of 5-fluoropyrimidines[J]. J Am Chem Soc.1957, 79(16):4559-4560.
    [3]Heidelberger C, Chaudhur N K. Fluorinated pyridines, a new class of tumour-inhibitory compounds[J]. Nature.1957,179(4561):663-666.
    [4]Hollemann A F, Wiberg E. Lehrbuch der anorganischen Chemie[M]. Walter de Gruyter, Berlin,1985.
    [5]Sen K D, Jorgensen C K. Electronegativity[M]. Spinger, New York,1987.
    [6]Fields R. Nuclear magnetic resonance, in:fluorine:the first hundred years (1886-1986)[M]. Banks R E, Sharp D W A, Tatlow J C, Eds.; Elsevier Sequoia, Lausanne, Switzerland,1986.
    [7]Berger S, Braun S, Kalinowski H O.19F-NMR-Spektroskopie, in:NMR-Spektroskopie von Nichtmetallen[M], Vol.4. Georg Thieme, Stuttgart, New York,1994.
    [8]朱士正,吴永明.当代有机氟化学-合成反应应用实验[M].华东理工大学出版社.2006.
    [9]Barthel-Rosa L P, Gladysz J A. Chemistry in fluorous media:a user's guide to practical considerations in the application of fluorous catalysts and reagents[J]. Coord Chem Rev. 1999,190-192:587-605.
    [10]Scott R L. The anomalous behavior of fluorocarbon solutions[J]. J Phys Chem.1958, 62(2):136-145.
    [11]Fish R H. Fluorous biphasic catalysis:a new paradigm for the separation of homogeneous catalysts from their reaction substrates and products[J]. Chem Eur J.1999,5(6): 1677-1680.
    [12]Cavazzini M, Montanari F, Pozzi G, Quici S. Perfluorocarbon-soluble catalysts and reagents and the application of FBS (fluorous biphase system) to organic synthesis[J]. J Fluorine Chem.1999,94(2):183-193.
    [13]Zhu D W. A novel reaction medium:perfluorocarbon fluids[J]. Synthesis.1993, (10): 953-954.
    [14]Pereira S M, Savage G P. Simpson G W. Perfluorohexane as a novel reaction medium for bromination reactions[J]. Synth Commun.1995.25(7):1023-1026.
    [15]Nakano H, Kitazume T. Friedel-Crafts reaction in fluorous fluids[J]. Green Chem.1999, 1(4):179-181.
    [16]Horvath T H, Rabai J. Facile catalyst separation without water:fluorous biphase hydyoformylationofolefins[J]. Science.1994,266(7):72-73.
    [17]Horvath 1 T. Fluorous biphase chemistry [J]. Acc Chem Res.1993,31(10):641-650.
    [18]Francio G, Leitner W. Highly regio-and enantio-selective rhodium-catalysed asymmetric hydroformylation without organic solvents[J]. Chem Commun.1999, (17):1663-1664.
    [19]Schneider S, Bannwarth W. Repetitive application of perfluoro-tagged Pd complexes for stille couplings in a fluorous biphasic system[J]. Angew Chem Int Ed Engl.,2000,39(22): 4142-4145.
    [20]Tian Y, Chan K S. An asymmetric catalytic carbon carbon bond formation in a fluorous biphasic system based on perfluoroalkyl-BINOL[J]. Tetrahedron Lett.2000,41(45): 8813-8816.
    [21]Foster D F, Adams D J, Gudmunsen D, Stuart A M, Hope E G, Cole-Hamilton D J. Hydroformylation in fluorous solvents[J]. Chem Commun.2002, (7):722-723.
    [22]Foster D F, Gudmunsen D, Adams D J, Stuart A M, Hope E G. Cole-Hamilton D J, Schwarz G P, Pogorzelec P. Hydroformylation in perfluorinated solvents; improved selectivity, catalyst retention and product separation[J]. Tetrahedron.2002,58(20): 3901-3910.
    [23]Curran D P, Hoshino M. Stille couplings with fluorous tin reactants:attractive features for preparative organic synthesis and liquid-phase combinatorial synthesis[J]. J Org Chem.1996,61(19):6480-6481.
    [24]Larhed M, Hoshino M, Hadida S, Curran D P, Hallberg A. Rapid fluorous stille coupling reactions conducted under microwave irradiation[J]. J Org Chem.1997,62(16): 5583-5587.
    [25]Curran D P, Hadida S, He M. Thermal allylations of aldehydes with a fluorous allylstannane. Separation of organic and fluorous products by solid phase extraction with fluorous reverse phase silica gel[J]. J Org Chem.1997,62(20):6714-6715.
    [26]Hoshino M, Degenkolb P, Curran D P. Palladium-catalyzed stille couplings with fluorous tin reactants[J]. J Org Chem.1997,62(24):8341-8349.
    [27]Spetseris N, Hadida S, Curran D P, Meyer T Y. Organic/fluorous phase extraction:a new tool for the isolation of organometallic complexes[J]. Organometallics.1998,17(8): 1458-1459.
    [28]Harris C R, Kuduk S D, Balog A, Savin K A, Danishefsky S J. Remarkable long range effects on the diastereoface selectivity in an aldol condensation [J]. Tetrahedron Lett. 1999,40(12):2367-2370.
    [29]Curran D P, Hadida S. Tris(2-(perfluorohexyl)ethyl)tin hydride:a new fluorous reagent for use in traditional organic synthesis and liquid phase combinatorial synthesis[J]. J Am Chem Soc.1996,118(10):2531-2532.
    [30]Homer J H, Martinez F N, Newcomb M, Curran D P. Rate constants for reaction of a fluorous tin hydride reagent with primary alkyl radicals[J]. Tetrahedron Lett.1997, 38(16):2783-2786.
    [31]Ryu I, Niguma T, Minakata S, Komatsu M, Hadida S, Curran D P. Hydroxymethylation of organic halides. Evaluation of a catalytic system involving a fluorous tin hydride reagent for radical carbonylation[J]. Tetrahedron Lett.1997,38(45):7883-7886.
    [32]Curran D P, Hadida S, Kim S Y, Luo Z Y. Fluorous tin hydrides:a new family of reagents for use and reuse in radical reactions[J]. J Am Chem Soc.1999,121(28): 6607-6615.
    [33]Ugi I. From isocyanides via four-component condensations to antibiotic syntheses[J]. Angew Chem Int Ed Engl.1982,21(11):810-819.
    [34]Kappe C O.100 years of the Biginelli dihydropyrimidine synthesis [J]. Tetrahedron.1993, 49(32):6937-6963.
    [35]Herrera V, Rege P J F, Horvath I T, Husebo T, Hughes R P. Fluorous phase separation techniques in catalysis[J]. Inorg Chem Commun.1998, (1):197-198.
    [36]Richter B, de Wolf E, van Koten G, Deelman B-J. Synthesis and properties of a novel family of fluorous triphenylphosphine derivatives[J]. J Org Chem.2000,65(13): 3885-3893.
    [37]Alvey L J, Rutherford D, Juliette J J J, Gladysz J A. Additions of PH3 to monosubstituted alkenes of the formula H2C=CH(CH2)x(CF2)yCF3:convenient, multigram syntheses of a family of partially fluorinated trialkylphosphines with modulated electronic properties and fluorous phase affinities[J]. J Org Chem.1998,63(18):6302-6308.
    [38]Horvath I T, Kiss G, Cook R A, Bond J E, Stevens P A, Rabai J, Mozeleski E J. Molecular engineering in homogeneous catalysis:one-phase catalysis coupled with biphase catalyst separation. The fluorous-soluble HRh(CO){P[CH2CH2(CF2)5CF3]3}3 hydroformylation system[J]. J Am Chem Soc.1998,120(13):3133-3143.
    [39]廖永卫,陈卫平.氟两相催化反应的发展[J]. 有机化学.2001,21(3):191-190.
    [40]Yamazaki O, Hao X H, Yoshida A, Nishikido J. Fluorous reverse-phase silica gel-supported Lewis acids as recyclable catalysts in water[J]. Tetrahedron Lett 2003, 44(49):8791-8795.
    [41]Berendsen G E, Galan L D. A geometrical model for chemically bonded TMS and PDS phases[J]. J Liquid Chromatogr.1978,1(4):403-426.
    [42]Billiet H A H, Schoenmakers P J, De Galan L. Retention and selectivity characteristics of a non-polar perfluorinated stationary phase for liquid chromatography[J]. J Chromatogr. 1981,218:443-454.
    [43]Berendsen G E, Pikaart K A, De Galan L, Olieman C. (Heptadecafluorodecyl) dimethylsilyl bonded phase for reversed-phase liquid chromatography[J]. Anal Chem. 1980,52(12):1990-1993.
    [44]Sadek P C, Carr P W. Study of solute retention in reversed-phase high-performance liquid chromatography on hydrocarbonaceous and three fluorinated bonded phases[J]. J Chromatogr.1984,288:25-41.
    [45]Kainz S, Luo Z Y, Curran D P, Leitner W. Synthesis of perfluoroalkyl-substituted aryl bromides and their purification over fluorous reverse phase silica[J]. Synthesis.1998, (10):1425-1427.
    [46]Danielson N D, Beaver L G, Wangsa J. Fluoropolymers and fluorocarbon bonded phases as column packings for liquid chromatography [J]. J Chromatogr.1991,544:187-199.
    [47]Scott R P W. Silica gel and binded phases[M]. Wiley, New York,1993.
    [48]Curran D P. Fluorous reverse phase silica gel. A new tool for preparative separations in synthetic organic and organofluorine chemistry[J]. Synlett.2001, (9):1488-1496.
    [49]Curran D P, Hadida S, He M. Thermal allylations of aldehydes with a fluorous allylstannane. Separation of organic and fluorous products by solid phase extraction with fluorous reverse phase silica gel[J]. J Org Chem.1997,62(20):6714-6715.
    [50]Tzschucke C C, Markert C, Glatz H, Bannwarth W. Fluorous biphasic catalysis without perfluorinated solvents:application to Pd-mediated Suzuki and Sonogashira couplings[J]. Angew Chem Int Ed.2002,41(23):4500-4503.
    [51]Bernini R, Cacchi S, Fabrizi G, Forte G, Niembro S, Petrucci F, Pleixats R, Prastaro A, Sebastian R M, Soler R, Tristany M, Vallribera A. Phosphine-free perfluoro-tagged palladium nanoparticles supported on fluorous silica gel:application to the Heck reaction[J]. Org Lett.2008,10(1):561-564.
    [52]Wang L, Cai C. Fluorous silica gel-supported perfluoro-tagged palladium nanoparticles catalyze Suzuki cross-coupling reaction in water [J]. J Mol Catal A-Chem.2009,306(1-2): 97-101.
    [53]Goumont R, Faucher N, Moutiers G, Tordeux M, Wakselman C. A novel synthesis of deactivated benzylic triflones[J]. Synthesis.1997, (6):691-695.
    [54]Tang X Y, Shi M. HOTf-catalyzed rearrangement of methylenecyclopropane aryl and alkyl alcohols[J]. Eur J Org Chem.2010, (21):4106-4110.
    [55]Krawczyk H, Albrecht L, Wojciechowski J, Wolf W M. Trifluoromethanesulfonic acid mediated Friedel-Crafts reaction of (E)-3-aryl-2-(diethoxyphosphoryl)acrylic acids with electron-rich hydroxyarenes. A convenient approach to a-methylene-d-valerolactones[J]. Tetrahedron.2007,63(51):12583-12594.
    [56]Williams A L, Johnston J N. The Brφnsted acid-catalyzed direct aza-Darzens synthesis of N-alkyl cis-aziridines[J]. J Am Chem Soc.2004,126(6):1612-1613.
    [57]Xu Z J, Zhu D, Zeng X, Wang F, Tan B, Hou Y, Lv Y, Zhong G. Diastereoselective HOTf-catalyzed three-component one-pot 1,3-dipolar cycloaddition of a-diazo ester, nitrosobenzene and electron-deficient alkene[J]. Chem Commun.2010,46(14): 2504-2506.
    [58]Cossy J, Lutz F, Alauze V, Meyer C. Carbon-carbon bond forming reactions by using bistrifluoromethanesulfonimide[J]. Synlett 2002, (1):45-48.
    [59]Boxer M B, Yamamoto H. Tris(trimethylsilyl)silyl-governed aldehyde cross-aldol cascade reaction[J]. J Am Chem Soc.2006,128(1):48-49.
    [60]Nakashima D, Yamamoto H. Reversal of chemoselectivity in Diels-Alder reaction with α,β-unsaturated aldehydes and ketones catalyzed by Brφnsted acid or Lewis acid[J]. Org Lett.2005,7(7):1251-1253.
    [61]Turowsky L, Seppelt K. Tris((trifluoromethyl)sulfonyl)methane, HC(SO2CF3). Inorg Chem.1988,27(12):2135-2137.
    [62]Koppe I A l, Taft R W, Anvia F, Zhu S Z, Hu L Q, Sung K S, DesMarteau D D, Yagupolskii L M, Yagupolskii Y L, Ignat'ev N V, Kondratenko N V, Volkonskii A Y, Vlasov V M, Notario R, Maria P C. The gas-phase acidities of very strong neutral Brφnsted acids[J]. J Am Chem Soc.1994,116(7):3047-3057.
    [63]Olah G A, Iyer P S, Surya Prakash G K. Perfluorinated resinsulfonic acid (Nafion-H(?)) catalysis in synthesis[J]. Synthesis.1986, (7):513-531.
    [64]Olah G A, Kaspi J, Bukala J. Heterogeneous catalysis by solid superacids.3. Alkylation of benzene and transalkylation of alkylbenzenes over graphite-intercalated Lewis acid halide and perfluorinated resin sulfonic acid (Nafion-H) catalysts[J]. J Org Chem.1977, 42(26):4187-4191.
    [65]Olah G A, Malhotra R, Narang S C, Olah J A. Heterogenous catalysis by solid superacids; 11. Perfluorinated resinsulfonic acid (Nafion-H) catalyzed Friedel-Crafts acylation of benzene and substituted benzenes[J]. Synthesis.1978, (9):672-673.
    [66]Olah G A, Narang S C. Synthetic methods and reactions; 49. Perfluorinated resinsulfonic acid(Nafion-H)catalyzed nitration of aromatic compounds with butyl nitrate [J]. Synthesis.1978,(9):690-691.
    [67]Olah G A, Narang S C, Meidar D, Salem G F. Catalysis by solid superacids; 8. Improved Nafion-H perfluorinated resinsulfonic acid-catalyzed preparation of dimethyl acetals and ethylenedithioacetals, and hydrolysis of dimethyl acetals[J]. Synthesis.1981, (4): 282-283.
    [68]Kumareswaran R, Reddy B G, Vankar Y D. Nafion-H-catalyzed Mukaiyama aldol condensations and hetero Diels-Alder reactions using aldehydes and imines. Part 15: general synthetic methods[J]. Tetrahedron Lett.2001,42(42):7493-7495.
    [69]Olah G A, Meidar D, Fung A P. Synthetic methods and reactions; 59. Catalysis of Diels-Alder reactions by Nafion-H perflunorinated resinsulfonic acid[J]. Synthesis.1979, (4):270-271.
    [70]Jain S L, Sain B. Perfluorinated resinsulphonic acid (Nafion-H) catalyzed highly efficient oxidations of organic compounds with hydrogen peroxide[J]. Appl Catal A:Gen.2006, 301(2):259-264.
    [71]Leito I, Kaljurand I, Koppel I A, Yagupolskii L M, Vlasov V M. Spectrophotometric acidity scale of strong neutral Brφnsted acids in acetonitrile[J]. J Org Chem.1998,63(22): 7868-7874.
    [72]Ishihara K, Hasegawa A, Yamamoto H. Polystyrene-bound tetrafluorophenylbis(triflyl)methane as an organic-solvent-swellable and strong Brφnsted acid catalyst[J]. Angew Chem Int Ed.2001,40(21):4077-4079.
    [73]Ishihara K, Hasegawa A, Yamamoto H. A fluorous super Brφnsted acid catalyst: application to fluorous catalysis without fluorous solvents[J]. Synlett.2002, (8): 1299-1301.
    [74]Ghosh R, Maiti S. Advances in indium triflate catalyzed organic syntheses[J]. J Mol Catal A.2007,264(1-2):1-8.
    [75]Gaspard-lloughmane H, Le Roux C. Bismuth(Ⅲ) triflate in organic synthesis[J]. Eur J Org Chem.2004, (12):2517-2532.
    [76]Kobayashi S. Scandium triflate in organic synthesis[J]. Eur J Org Chem.1999, (1): 15-27.
    [77]Kobayashi S. Lanthanide trifluoromethanesulfonates as stable Lewis acids in aqueous media. Yb(OTf)3 catalyzed hydroxymethylation reaction of silyl enol ethers with commercial formaldehyde solution[J]. Chem Lett.1991,20(12):2187-2190.
    [78]Forsberg J H, Spaziano V T, Balasubramanian T M, Liu G K, Kinsley S A, Duckworth C A, Poteruca J J, Brown P S, Miller J L. Use of lanthanide(Ⅲ) ions as catalysts for the reactions of amines with nitriles[J]. J Org Chem.1987,52(6):1017-1021.
    [79]Kobayashi S, Sugiura M, Kitagawa H, Lam W W-L. Rare-earth metal triflates in organic synthesis[J]. Chem Rev.2002,102(6):2227-2302.
    [80]Antoniotti S, Dalla V, Dunach E. Metal triflimidates:better than metal triflates as catalysts in organic synthesis-the effect of a highly delocalized counter-anion[J]. Angew Chem Int Ed.2010,49(43):7860-7888.
    [81]Waller F J, Barrett A G M, Braddock D C, Ramprasad D, McKinnell R M, White A J P, Williams D J, Ducray R. Tris(trifluoromethanesulfonyl)methide ("Triflide") anion: convenient preparation, X-ray crystal structures, and exceptional catalytic activity as a counterion with ytterbium(Ⅲ) and scandium(Ⅲ)[J]. J Org Chem.1999,64(8): 2910-2913.
    [82]Bochmann M. "Non-coordinating"anions:underestimated ligands[J]. Angew Chem Int Ed Engl.1992,31(9):1181-1182.
    [83]Strauss S H. The search for large and more weakly coordinating anions [J]. Chem Rev. 1993,93:927-942.
    [84]Seppelt K. "Non-coordinating" anions II[J]. Angew Chem Int Ed Engl.1993,32(7): 1025-1027.
    [85]Ruff J K. The imidodisulfuryl fluoride ion[J]. Inorg Chem.1965,4(10):1446-1449.
    [86]Meussdorffer J N, Niederprum H. Bisperfluoralkansulfonylimide (RfSO2)2NH[J]. Chem-Ztg.1972,96,582-583.
    [87]Foropoulos J J R, DesMarteau D D. Synthesis, properties, and reactions of bis((trifluoromethyl)sulfonyl)imide, (CF3SO2)2NH[J]. Inorg Chem.1984,23(23): 3720-3723.
    [88]DesMarteau D D, Witz M. N-fluro-bis(trifluoromethanesulfonyl)imide. An improved synthesis[J]. J Fluorine Chem.1991,52(1):7-12.
    [89]Foropoulos J, DesMarteau D D. Bis[bis(trifluoromethanesulfonyl)imido]xenon:a new compound possessing xenon-nitrogen bonds[J]. J Am Chem Soc.1982,104(15): 4260-4261.
    [90]Hu L Q, DesMarteau D D. Synthesis of perhaloalkanesulfonyl halides and their sulfonimide derivatives[J]. Inorg Chem.1993,32(53):5007-5010.
    [91]Geiculescu O E, Yang J, Blau H, Bailey-Walsh R, Creager S E, Pennington W T, DesMarteau D D. Solid polymer electrolytes from dilithium salts based on new bis[(perfluoroalkyl)sulfonyl]diimide dianions. Preparation and electrical characterization[J]. Solid State Ionics.2002,148(1-2):173-183.
    [92]Singh S, DesMarteau D D. Chemistry of perfluoromethylsulfonyl, perfluorobutylsulfonyl imide[J]. Inorg Chem.1990,29(16):2982-2985.
    [93]Xue L X, Padgett C W, DesMarteau D D, Pennington W T. Synthesis and structures of alkali metal salts of bis[(trifluoromethyl)sulfonyl]imide[J]. Solid State Sci.2002, 4(11-12):1535-1545.
    [94]Kobayashi H, Nie J, Sonoda T. Metal bis((perfluoroalkyl)sulfonyl)amides as novel Lewis acid catalysts in Diels-Alder reaction[J]. Chem Lett.1995,24(4):307-308.
    [95]Mikami K, Kotera O, Motoyama Y, Sakaguchi H. Lanthanide bis-trifluoromethanesulfonylamide as a new type of asymmetric catalysts for hetero Diels-Alder reaction with Danishefsky's diene in the presence of water[J]. Synlett. 1995, (9):975-977.
    [96]Hao X H, Yoshida A, Nishikido J. Metal bis(perfluorooctanesulfonyl)amides as highly efficient Lewis acid catalysts for fluorous biphase organic reactions[J]. J Fluorine Chem. 2006,127(2):193-199.
    [97]Foropoulos J J R, DesMarteau D D. Synthesis, properties, and reactions of bis((trifluoromethyl)sulfonyl)imide, (CF3SO2)2NH[J]. Inorg Chem.1984,23(23): 3720-3723.
    [98]Lehmler H J, Rao R, Nauduri D, Vargo J D, Parkin S. Synthesis and structure of environmentally relevant perfluorinated sulfonamides[J]. J Fluorine Chem.2007,128(6): 595-607.
    [99]Benfodda Z, Delon L, Guillen F, Blancou H. New synthesis of polyfluoroalkanesulfonylureas[J]. J Fluorine Chem.2007,128(11):1353-1358.
    [100]Baudrya D B, Dormonda A, Durisa F, Bernardb J M, Desmursc J R. Lanthanide bis(trifluoromethanesulfonyl)amides, synthesis, characterization and catalytic activity [J]. J Fluorine Chem.2003,121(2):233-238.
    [101]Nishikido J, Nakajima H, Saeki T, Ishii A, Mikami K. Lanthanide perfluoroalkylsulfonylamide catalysts for fluorous phase organic synthesis[J]. Synlett. 1998,(12):1347-1348.
    [102]Hao X H, Yoshida A, Nishikido J. Hf[N(SO2C8F17)2]4-catalyzed Friedel-Crafts acylation in a fluorous biphase system[J]. Tetrahedron Lett.2005,46(15):2697-2700.
    [103]Hao X H, Yoshida A, Nishikido J. Hf[N(SO2C8F17)2]4 as a highly active and recyclable Lewis acid catalyst for direct esterification of methacrylic acid with methanol in a fluorous biphase system[J]. Green Chem.2004,6(11):566-569.
    [104]Hao X H, Yamazaki O, Yoshida A, Nishikido J. Tin(Ⅳ) bis(perfluoroalkanesulfonyl)amide complex as a highly selective Lewis acid catalyst for Baeyer-Villiger oxidation using hydrogen peroxide in a fluorous recyclable phase[J]. Tetrahedron Lett.2003,44(27):4977-4980.
    [105]Hao X H, Hoshi N. Facile and recyclable method for the Prins reaction using hafnium(IV) bis(perfluorooctanesulfonyl)amides in fluorous biphase system [J]. Chem Lett.2006,35(10):1102-1103.
    [106]王丽琼,聂进,李小永,张正波,尹飞.高氯酸锂促进的固体酸催化酯化反应[J].有机化学.2004,24(7):778-782.
    [107]Schager F, Bonrath W. Synthesis of D,L-a-tocopherol using 'microencapsulated' catalysts[J]. Appl Catal A:Gen.2000,202(1):117-120.
    [108]龚艳伟,聂进,张正波,吴晗.高分子液晶态与超分子有序态研究进展[M].华中科技大学出版社.2002.
    [109]Nishikido J, Nasayuki N, Yoshida A, Nakajima H, Matsuoto Y, Mikami K. Metallo-enzyme medel in pure water:cyclodextrin-lanthanide tri(perfluoroalkanesulfonyl)methide and bis(perfluoroalkanesulfonyl)amide[J]. Synlett. 2002,(10):1613-1616.
    [110]Xiao J Z, Zhang Z B, Nie J. Preparation, characterization and catalytic activity of polystyrene with pendent perfluoroalkylsulfonylimide groups[J]. J Mol Catal A-Chem. 2005,236(1-2):119-124.
    [111]Yuan Y B, Nie J, Zhang Z B, Wang S J. MCM-41-supported metal bis[(perfluoroalkyl)sulfonyl]imides as heterogeneous catalysts for aromatic nitration[J]. Appl Catal A:Gen.2005,295 (2) 170-176.
    [112]Jiang H. Transition metal-catalyzed organic reactions in supercritical carbon dioxide[J]. Curr Org Chem.2005,9(3):289-297.
    [113]Nishikido J, Kamishima M, Matsuzawa H, Mikami K. Recyclable Lewis acid catalysts by tuning supercritical vs liquid carbon dioxide phases:lanthanide catalysts with tris(perfluorooctanesulfonyl)methide and bis(perfluorooctanesulfonyl)amide[J]. Tetrahedron.2002,58(41):8345-8349.
    [114]Rogers R D, Seddon K. Ionic liquids-solvents of the future[J]. Science.2003,302: 792-793.
    [115]Lee S G. Functionalized imidazolium salts for task-specific ionics liquids and their applications[J]. Chem Comsmun.2006,10:1049-1063
    [116]Earle M J, Esperanca J M S S, Gilea M A. Canongia Lopes J N, Rebelo L P N, Magee J W, Seddon K R, Widegre J A. The distill(?)ion, and volatility of (?) liquids[J]. Nature.2006,439:831-834.
    [117]Wang S J, Jiang S J, Nie.J. Lanthanide bis[(trifluoromethyl)sulfonyl]-imides.as reusable catalysts for mononitration of substituted benzenes in ionic liquids[J] Adv Synth Catal.2009,351(11-12):1939-3945.
    [1]Berendsen G E, Galan L D. A geometrical model for chemically bonded TMS and PDS phases[J]. J Liquid Chromatogr.1978,1(4):403-426.
    [2]Curran D P. Fluorous reverse phase silia gel. A new tool for preparative separations in synthetic organic and organofluorine chemistry[J]. Synlett.2001, (9):1488-1496.
    [3]Dobbs A P, Kimberley M R. Fluorous phase chemistry:a new industrial technology [J]. J Fluorine Chem.2002,118(1-2):3-17.
    [4]Tzschucke C C, Bannwarth W. Fluorous-silica-supported perfluoro-tagged palladium complexes catalyze Suzuki couplings in water[J]. Helv Chim Acta.2004,87(11): 2882-2889.
    [5]Curran D P, Luo Z. Fluorous synthesis with fewer fluorines (light fluorous synthesis):separation of tagged from untagged products by solid-phase extraction with fluorous reverse-phase silica gel[J]. J Am Chem Soc.1999,121(39):9069-9072.
    [6]Curran D P, Oderaotoshi Y. Thiol additions to acrylates by fluorous mixture synthesis: relative control of elution order in demixing by the fluorous tag and the thiol substituent[J]. Tetrahedron.2001,57(24):5243-5253
    [7]Zhang W. Fluorous synthesis of heterocyclic systems[J]. Chem Rev.2004,104(5): 2531-2556.
    [8]Foropoulos J J R, DesMarteau D D. Synthesis, properties, and reactions of bis((trifluoromethyl)sulfonyl)imide, (CF3SO2)2NH[J]. Inorg Chem.1984,23(23): 3720-3723.
    [9]Benfodda Z, Delon L, Guillen F, Blancou H. New synthesis of polyfluoroalkanesulfonylureas[J]. J Fluorine Chem.2007,128(11):1353-1358.
    [10]Lehmler H J. Rao R, Nauduri D, Vargo J D, Parkin S. Synthesis and structure of environmentally relevant perfluorinated sulfonamides[J]. J Fluorine Chem.2007,128(6): 595-607.
    [11]Hao X H, Yoshida A, Nishikido J. Metal bis(perfluorooctanesulfonyl)amides as highly efficient Lewis acid catalysts for fluorous biphase organic reactions[J]. J Fluorine Chem. 2006,127(2):193-199.
    [12]Baudrya D B, Dormonda A, Durisa F, Bernardb J M, Desmursc J R. Lanthanide bis(trifluoromethanesulfonyl)amides, synthesis, characterization and catalytic activity[J]. J Fluorine Chem.2003,121(2):233-238.
    [1]Horvath T H, Rabai J. Facile catalyst separation without water:fluorous biphase hydyoformylationofolefins[J]. Science.1994,266(7):72-73.
    [2]章思规.精细有机化学品合成手册[M].科学出版社.1993.
    [3]Okada S, Tanaka K, Nakadaira Y, Nakagawa N. Selective Friedel-Crafts alkylation on a vermiculite, a highly active natural clay mineral with lewis acid sites[J]. Bull Chem Soc Jpn.1992,65(10):2833-2835.
    [4]Olah G A. Friedel-Crafts chemistry[M]. Wiley, New York,1973.
    [5]Roberts R M, Khalaf A A. Friedel-Crafts alkylation chemistry:a century of discovery[M]. Marcel Dekker, New York,1984.
    [6]Hu X, Chuah G K, Jaenicke S. Room temperature synthesis of diphenylmethane over MCM-41 supported AlCl3 and other Lewis acids[J]. Appl Catal A:Gen.2001,217(1): 1-9.
    [7]Ghiaci M, Abbaspur A, Kia R, Belver C, Trujillano R, Rives V, Vicente M A. Vapor-phase alkylation of toluene by benzyl alcohol on H3PO4-modified MCM-41 mesoporous silicas[J]. Catal Commun.2007,8(1):49-56.
    [8]Sebti S, Tahir R, Nazih R, Boulaajaj S. Comparison of different Lewis acid supported on hydroxyapatite as new catalysts of Friedel-Crafts alkylation[J]. Appl Catal A:Gen.2001, 218(1):25-30.
    [9]Saber A, Smahi A, Solhy A, Nazih R, Elaabar B, Maizi M, Sebti S. Heterogeneous catalysis of Friedel-Crafts alkylation by the fluorapatite alone and doped with metal halides[J]. J Mol Catal A-Chem.2003,202(1-2):229-237.
    [10]Morianka Y, Takahashi K. Quinolopyranee44onee22 carboxylate derivatives and medicine for allergic asthma[P]. JP 52109000,1977[Chem Abstr.1978,88,190794].
    [11]Montandon J B, Zijlstra F J, Wilson J H P, Grandjean E M. In vitro versus in vivo activities of 5-lipoxygenase inhibitors with anti-inflammatory activity [J]. Int J Tissue React.1989,11(3):107-112.
    [12]Lambert R M, Martin J A, Merrett J H, Parkes K E B, Thomas G J. Pyrimidine nucleosides[P]. WO 9706178,1997.
    [13]Poupelin J P, Saint-Ruf G, Foussard-Blanpin O, Narcisse G, Uchida-Ernouf G, Lacroix R. Synthesis and anti-inflammatory properties of bis(2-hydroxy-l-naphthyl)methane derivatives[J]. Eur J Med Chem.1978,13(1):67-71.
    [14]Hideo T. Benzopyrano 2*33b xanthene derivative and its preparation[P]. JP 56005480, 1981[Chem Abstr.1981,95,80922b].
    [15]Ion R M. The photodynamic therapy of cancer -a photosensitization or a photocatalytic process[J]. Progr Catal.1997,2:55-76.
    [16]Ion R M, Planner A, Wiktorowicz K, Frackowiak D. Incorporation of various porphyrins into human blood cells measured using the flow-cytometry, the absorption and emission spectroscopy[J]. Acta Biochimica Polonica.1998,45(30):833-846.
    [17]Chibale K, Visser M, Schalkwyk D V, Smith P J, Saravanamuthu A, Fairlamb A H. Exploring the potential of xanthene derivatives as trypanothione reductase inhibitors and chloroquine potentiating agents[J]. Tetrahedron.2003.59(13):2289-2296.
    [18]Saint-Ruf G, Hieu H T, Poupelin J P. The effect of dibenzoxanthenes on the paralyzing action of zoxazolamine[J]. Naturwissenschaften.1975,62(12):584-585.
    [19]Liu J, Diwu Z, Leung W-Y. Synthesis and photophysical properties of new fluorinated benzo[c]xanthene dyes as intracellular pH indicators[J]. Bioorg Med Chem Lett.2001, 11(22):2903-2905.
    [20]Menchen S M, Benson S C, Lam J Y L, Zhan W, Sun D, Rosenblum B B, Khan S H, Ting M U S. Sulfonated diarylrhodamine dyes[P]. US 6583168,2003.
    [21]Papini P, Cimmarusti R. The action of formamide and formanilide on naphthols and barbitulic acid[J] .Gazz Chim Ital.1947,77:142-147.
    [22]Ota K, Kito T. An improved synthesis of dibenzoxanthene[J]. Bull Chem Soc Jpn.1976, 49(4):1167-1168.
    [23]Sen R N, Sarkar N J. The condensation of primary alcohols with resorcinol and other hydroxy aromatic compounds[J]. J Am Chem Soc.1925,47(4):1079-1091.
    [24]Sarma R J, Baruah J B. One step synthesis of dibenzoxanthenes[J]. Dyes and Pigments. 2005,64(1):91-92.
    [25]Zarei A, Hajipour A R, Khazdooz L. The one-pot synthesis of 14-aryl or alkyl-14H-dibenzo[a,j]xanthenes catalyzed by P2O5/Al2O3 under microwave irradiation[J]. Dyes and Pigments.2010,85(3):133-138.
    [26]Kumar R, Nandi G C, Verma R K, Singh M S. A facile approach for the synthesis of 14-aryl- or alkyl-14H-dibenzo[a,j]xanthenes under solvent-free condition[J]. Tetrahedron Lett,2010,51(2):442-445.
    [27]Atwal K S, O'Reilly B C, Ruby E P, Turk C F, Aberg G, Asaad M M, Bergey J L, Moreland S, Powell J R. Substituted 1,2,3,4-tetrahydroaminonaphthols:antihypertensive agents, calcium channel blockers, and adrenergic receptor blockers with catecholamine-depleting effects[J]. J Med Chem.1987,30(4):627-635.
    [28]Grundke M, Himmel H M, Wettwer E, Borbe H O, Ravens U. Characterization of Ca2+-antagonistic effects of three metabolites of the new antihypertensive agent naftopidil, (naphtyl)hydroxy-naftopidil, (phenyl)hydroxy-naftopidil, and O-desmethyl-naftopidil[J]. J Cardiovasc Pharmacol.1991,18(6):918-925.
    [29]Jim K F, Matthews W D. Role of extracellular calcium in contractions produced by activation of postsynaptic alpha-2 adrenoceptors in the canine saphenous vein[J]. J Pharmacol Exp Ther.1985,234:161-165.
    [30]Shen AY, Wu S N. Effects of 1-pyrrolidinylmethyl-2-naphthol on contractile force and ionic current in cardiac and vascular smooth myocytes[J]. Drug Dev Res.1998,44(2-3): 87-96.
    [31]Khodaei M M, Khosropour A R, Moghanian H. A simple and efficient procedure for the synthesis of amidoalkyl naphthols by p-TSA in solution or under solvent-free conditions[J]. Synlett.2006, (6):916-920.
    [32]Patil S B, Singh P R, Surpur M P, Samant S D. Ultrasound-promoted synthesis of 1-amidoalkyl-2-naphthols via a three-component condensation of 2-naphthol, ureas/amides, and aldehydes, catalyzed by sulfamic acid under ambient conditions[J]. Ultrason Sonochem.2007,14(5):515-518.
    [33]Selvam N P, Perumal P T. A new synthesis of acetamido phenols promoted by Ce(SO4)2[J]. Tetrahedron Lett.2006,47(42):7481-7483.
    [34]Nagawade R R, Shinde D B. Synthesis of amidoalkyl naphthols by an iodine-catalyzed multicomponent reaction of β-naphthol[J]. Mendeleev Commun.2007,17(5):299-300.
    [35]Das B, Laxminarayana K, Ravikanth B, Rao B R. Iodine catalyzed preparation of amidoalkyl naphthols in solution and under solvent-free conditions[J]. J Mol Catal A-Chem.2007,261(2):180-183.
    [36]Nandi G C, Samai S, Kumar R, Singh M S. Atom-efficient and environment-friendly multicomponent synthesis of amidoalkyl naphthols catalyzed by P2O5[J]. Tetrahedron Lett.2009,50(51):7220-7222.
    [37]Biginelli P. Aldehyde-urea derivatives of aceto- and oxaloacetic acids[J]. Gazz Chim Ital. 1893,23:360-413.
    [38]Atwal K S, Rovnyak G C, O'Reilly B C, Schwartz J. Substituted 1,4-dihydropy-rimidines.3. Synthesis of selectively functionalized 2-hetero-1,4-dihydropyrimidines[J]. J Org Chem.1989,54 (25):5898-5907.
    [39]Kappe C O, Fabian W M F, Semones M A. Conformational analysis of 4-aryl-dihydropyrimidine calcium channel modulators. A comparison of ab initio, semiempirical and X-ray crystallographic studies[J]. Tetrahedron.1997,53(8): 2803-2816.
    [40]Sharma A K, Jayakumar S, Hundal M S, Mahajan M P. Tandem sigmatropic shifts in [4 +2] cycloaddition reactions of 1,3-diazabuta-1,3-dienes with butadienylketene:synthesis of pyrimidinone derivatives[J]. J Chem Soc, Perkin Trans 1.2002, (6):774-784.
    [41]Sasaki S, Cho N, Nara Y, Harada M, Endo S, Suzuki N, Furuya S, Fujino M. Discovery of a thieno[2,3-d]pyrimidine-2,4-dione bearing a p-methoxyureidophenyl moiety at the 6-position:A highly potent and orally bioavailable non-peptide antagonist for the human luteinizing hormone-releasing hormone receptor[J]. J Med Chem.2003,46(1):113-124.
    [42]Li L H, Wallace T L, Richard K A, Tracey D. Mechanism of antitumor action of pyrimidinones in the treatment of B16 melanoma and P388 leukemia[J]. Cancer Res. 1985,45(2):532-538.
    [43]Bartolini S. Mai A, Artico M, Paesano N, Rotili D, Spadafora C, Sbardella G. 6-[1-(2,6-Difluorophenyl)ethyl]pyrimidinones antagonize cell proliferation and induce cell differentiation by inhibiting (a nontelomeric) endogenous reverse transcriptase[J]. J Med Chem.2005,48(22):6776-6778.
    [44]Patil A D, Kumar N V, Kokke W C, Bean M F, Freyer A J, De Brosse C, Mai S, Truneh A, Carte B. Novel alkaloids from the sponge batzella sp.:inhibitors of HIV gp120-human CD4 binding[J]. J Org Chem.1995,60(5):1182-1188.
    [45]El-Subbagh H I, Abu-Zaid S M, Mahran M A, Badria F A, Al-Obaid A M. Synthesis and biological evaluation of certain α,β-unsaturated ketones and their corresponding fused pyridines as antiviral and cytotoxic agents[J]. J Med Chem.2000,43(15):2915-2921.
    [46]Hammam A E-F G, Sharaf M A, El-Hafez N A A. Synthesis and anticancer activity of pyridine and thiazolopyrimidine derivatives using 1-ethylpiperidone as a synthon[J]. Indian J Chem Sect B.2001,40(3):213-221.
    [47]Elgemeie G E H, Attia A M E, Alkabai S S. Nucleic acid components and their analogues: new synthesis of bicyclic thiopyrimidine nucleosides [J]. Nucleos Nucleot Nucl.2000, 19(4):723-733.
    [48]Klimova E I, Lopez E A V, Klimova T, Garcia M M, Hernandez O S, Ramirez L R. Ferrocenyl-substituted α,β-unsaturated ketones in synthesis of tetrahydropyrimidinones[J]. Russ J Gen Chem.2004,74(11):1757-1762.
    [49]Al-Omar M A, Youssef K M, El-Sherbeny M A, Awadalla S A A, El-Subbagh H I. Synthesis and in vitro antioxidant activity of some new fused pyridine analogs[J]. Arch Pharm.2005,338(4):175-180.
    [50]Ali M I, Hammam A E-F G, Youssef N M. Reactions with (arylmethylene)cycloalkanones.3. Synthesis of 11-(arylmethylene)octahydrocyc-loocta[d]thiazolo[3,2-a]pyrimidin-3-one derivatives of expected biological activity[J]. J Chem Eng Data.1981,26(2):214-215.
    [51]Zhu Y, Huang S, Pan Y. Highly chemoselective multicomponent Biginelli-type condensations of cycloalkanones, urea or thiourea and aldehydes[J]. Eur J Org Chem. 2005, (11):2354-2367.
    [52]Zhang H, Zhou Z, Yao Z, Xu F, Shen Q. Efficient synthesis of pyrimidinone derivatives by ytterbium chloride catalyzed Biginelli-type reaction under solvent-free conditions[J]. Tetrahedron Lett.2009,50(14):1622-1624.
    [53]Wang L, Sheng J, Tian H, Han J, Fan Z, Qian C. A convenient synthesis of α,α'-bis(substituted benzylidene)cycloalkanones catalyzed by Yb(OTf)3 under solvent-free conditions[J]. Synthesis.2004, (18):3060-3064.
    [54]Eisner U, Kuthan J. Chemistry of dihydropyridines[J]. Chem Rev.1972,72(1):1-42.
    [55]Kawase M, Shah A, Gaveriya A, Motphashi N, Sakagami H. Varga A, Molnar J. 3,5-Dibenzoyl-1,4-dihydropyridines:synthesis and MDR reversal in tumor cells[J]. Bioorg Med Chem.2002,10(4):1051-1055.
    [56]Shan R, Velazquez C, Knaus E E. Syntheses, calcium channel agonist-antagonist modulation activities, and nitric oxide release studies. of hitrooxyalky(?) 1,4-dihydro-2.6-dimethyl-3-nitro-4-(2.1,3-benzoxadiazol-4-yl)pyridine-5-carboxylate racemates, enantiomers, and diastereomers[J].J Med Chem.2004,47(1): 254-261.
    [57]Sawada Y, Kayakiri H, Abe Y, Mizutani T, Inamura N, Asano M, Hatori C, Araniori I, Oku T, Tanaka H. Discovery of the first non-peptide full agonists for the human bradykinin B2 receptor incorporating 4-(2-picolyloxy)quinoiine and 1-(2-picolyl)benzimidazole frameworks[J]. J Med Chem.2004,47(11):2853-2863.
    [58]Klusa V. Cerebrocrast, neuroprotectant, cognition cnhancer[J]. Drugs Future.1995,20(2): 135-138.
    [59]Simsek R, Safak C, Erol K, Sirmagul B. Synthesis of hexahydroquinoline derivatives possessing calcium antagonistic activity[J]. Pharmazie.2001,56(8):665-666.
    [60]Kismetli E, Safak C, Erol K. Sirmagul B, Linden A. Studies on 3-diethylaminocarbonyl-1,4,5,6,7,8-hexahydroquinoline derivatives and their calcium channel antagonistic activities in vitro[J]. Arzneim Forsch.2004,54(7):371-375.
    [61]Moseley J D. Alternative esters in the synthesis of ZD0947[J]. Tetrahedron Lett.2005; 46(18):3179-3181.
    [62]Hantzsch A. Ueber die synthese pyridinartiger verbindungen aus acetessigather und aldehydammoniak[J]. Justus Liebigs Ann Chem.1882,215(1):1-82.
    [63]Sainani J B, Shah A C, Arya V P. Synthesis of 4-aryl-1,4,5,6,7,8-hexahydro-5-oxo-2,7,7-trimethyl-quinoline-3-carboxylates and amides [J]. Indian J Chem Sect B.1994,33(6):526-531.
    [64]屠树江,于晨侠,刘晓红,姚昌盛,刘芳,高原.微波辐射下2,7,7-三甲基-3-乙氧羰基-4-(3-硝基苯基)-5-氧代-1,4,5,6,7,8-六氢喹啉的合成和晶体结构[J].结构化学.2002,1(1):99-102.
    [65]Ko S, Sastry M N V, Lin C, Yao C-F. Molecular iodine-catalyzed one-pot synthesis of 4-substituted-1,4-dihydropyridine derivatives via Hantzsch reaction [J]. Tetrahedron Lett. 2005,46(34):5771-5774.
    [66]Ko S, Yao C-F. Ceric ammonium nitrate (CAN) catalyzes the one-pot synthesis of polyhydroquinoline via the Hantzsch reaction[J]. Tetrahedron.2006,62(31):7293-7299.
    [67]Kumar A, Maurya R A. Synthesis of polyhydroquinoline derivatives through unsymmetric Hantzsch reaction using organocatalysts[J]. Tetrahedron.2007,63(9): 1946-1952.
    [68]Kumar A, Maurya R A. Efficient synthesis of Hantzsch esters and polyhydroquinoline derivatives in aqueous micelles[J]. Synlett.2008, (6):883-885.
    [69]Evans C G, Gestwicki J E. Enantioselective organocatalytic Hantzsch synthesis of polyhydroquinolines[J]. Org Lett.2009,11(14):2957-2959.
    [70]Das B, Ravikanth B, Ramu R, Vittal Rao B. An efficient one-pot synthesis of polyhydroquinolines at room temperature using HY-zeolite[J]. Chem Pharm Bull.2006, 54(7):1044-1045.
    [71]Cherkupally S R, Mekalan R. P-TSA catalyzed facile and efficient synthesis of polyhydroquinoline derivatives through Hantzsch multi-component condensation[J]. Chem Pharm Bull.2008,56(7):1002-1004.
    [72]Ji S-J, Jiang Z-Q, Lu J, Loh T-P. Facile ionic liquids-promoted one-pot synthesis of polyhydroquinoline derivatives under solvent free conditions [J]. Synlett.2004 (5): 831-835.
    [73]Sridhar R, Perumal P T. A new protocol to synthesize 1,4-dihydropyridines by using 3,4,5-trifluorobenzeneboronic acid as a catalyst in ionic liquid:synthesis of novel 4-(3-carboxyl-1H-pyrazol-4-yl)-1,4-dihydropyridines[J]. Tetrahedron.2005,61(9): 2465-2470.
    [74]杜百祥,李玉玲,王香善,张梅梅,史达清,屠树江.在离子液体中4-芳基-5-氧代-1,4,5,6,7,8-六氢喹啉-3-羧酸酯的合成[J].有机化学.2006,26(5):698-701.
    [75]Brooks G T, Ottridge A P, Jennings R C, Mace D W, Alexander B A. The effect of 2,2-dimethylchromene derivatives and some other compounds on the development of Oncopeltus fasciatus (dallas) and Locusta migratoria migratorioides (R&F)[J]. Pestic Sci. 1985,16(6):571-588.
    [76]Brooks G T, Ottridge A P, Mace D W. The effect of some furochromene and benzochromene analogues of 2,2-dimethyl-7-methoxychromene (precocene Ⅰ) and benzofuran precursors on Oncopeltus fasciatus (dallas) and locusta migratoria migratorioides (R&F)[J]. Pestic Sci.1988,22(1),41-50.
    [77]Witte E C, Neubert P, Roesch A.2H-1-benzopyran-2-on derivatives, process for their preparation and medicines containing these compounds[P]. DE 3427985,1986.
    [78]Chand N, Diamantis W, Sofia R D. Modulation of in vitro anaphylaxis of guinea-pig isolated tracheal segments by azelastine, inhibitors of arachidonic acid metabolism and selected antiallergic drugs[J]. Br J Pharmacol.1986.87(2):443-448.
    [79]Greenblatt M S, Bennett W P, Hollstein M, Harris C C. Mutations in the p53 tumor suppressor gene:clues to cancer etiology and molecular pathogenesis[J]. Cancer Res. 1994,54(18):4855-4878.
    [80]Hatakeyama S, Ochi N, Numata H, Takano S. A new route to substituted 3-methoxycarbonyldihydropyrans[J]. J Chem Soc, Chem Commun.1988, (17): 1202-1204.
    [81]Fan X, Zhang X, Zhou L, Keith K A, Prichard M N, Kem E R, Torrence P F. Toward orthopoxvirus countermeasures:a novel heteromorphic nucleoside of unusual structure[J]. J Med Chem.2006,49(14):4052-4054.
    [82]姜虹,王丽君,赵志学.苯并吡喃衍生物降血糖作用的研究[J].北华大学学报(自然科学版).2001,2(6):489-490.
    [83]Abdelrazek F M, Metz P, Farrag E K. Synthesis and molluscicidal activity of 5-oxo-5,6,7,8-tetrahydro-4H-chromene derivatives[J]. Arch Pharm (Weinheim).2004, 337(9):482-485.
    [84]史达清,张姝,庄启亚,屠树江,胡宏纹.水中2-氨基-3-氰基-4-芳基-7,7-二甲基-5-氧代-4 H-5,6,7,8-四氢苯并[b]吡喃的洁净合成[J].有机化学.2003,23(8):877-879.
    [85]Jin T S, Wang A Q, Wang X, Zhang J S, Li T S. A clean one-pot synthesis of tetrahydrobenzo[b]pyran derivatives catalyzed by hexadecyltrimethyl ammonium bromide in aqueous media[J]. Synlett.2004, (5):871-873.
    [86]Balalaie S, Bararjanian M, Amani A M, Movassagh B. (S)-Proline as a neutral and efficient catalyst for the one-pot synthesis of tetrahydrobenzo[b]pyran derivatives in aqueous media[J]. Synlett.2006, (2):263-266.
    [87]Hekmatshoar R, Majedi S, Bakhtiari K. Sodium selenate catalyzed simple and efficient synthesis of tetrahydro benzo[b]pyran derivatives[J]. Catal Commun.2008,9(2): 307-310.
    [88]Wang X S, Shi D Q, Tu S J, Yao C S. A convenient synthesis of 5-oxo-5,6,7,8-tetrahydro-4H-benzo-[b]-pyran derivatives catalyzed by KF-alumina[J]. Synth Commun.2003,33(1):119-126.
    [89]Shahrisa A, Banaei A. Chemistry of pyrones, part 5:new crown ether and podand derivatives of 3,5-bis(bromomethyl)-2,6-diphenyl-4H-pyran-4-one[J]. Molecules.2001, 6(9),721-729.
    [90]庄启亚,吴楠,史达清,屠树江,王香善.KF-蒙脱土催化下2-氨基-3-氰基-4-芳基-7,7-二甲基-5-氧代-4H-5,6,7,8-四氢苯并[b]吡喃的合成[J].有机化学.2006,26(9):12]7-1220.
    [91]D'Ambrosio M, Guerriero A, Debitus C, Rihes O, de Forges B R, Pietra F. Corallistin A, a second example of a free porphyrin from a living organism. Isolation from the demosponge Covallistes sp. of the coral see and inhibition of abnormal cells[J]. Helv Chim Acta.1989,72:1451-1453.
    [92]Lahtinen R, Fermin D J, Kontturi K, Girault H H. Artificial photosynthesis at liquid vertical bar liquid interfaces:photoreduction of benzoquinone by water soluble porphyrin species[J]. J Electroanal Chem.2000,483(1-2):81-87.
    [93]Konishi T, Ikeda A, Shinkai S. Supramolecular design of photocurrent-generating devices using fullerenes aimed at modelling artificial photosynthesis[J]. Tetrahedron.2005, 61(21):4881-4899.
    [94]Rose E, Quelquejeu M, Pandian R P, Lecas-Nawrocka A, Vilar A, Ricart G, Collman J P, Wang Z, Straumanis A. Synthesis of porphyrins:models of natural hemoproteins and impressive catalysts for asymmetric epoxidation of olefins[J]. Polyhedron.2000,19(5): 581-586.
    [95]Adler A D, Longo F R, Shergalis W. Mechanistic investigations of porphyrin syntheses. I. preliminary studies on ms-tetraphenylporphin[J]. J Am Chem Soc.1964,86(15): 3145-3149.
    [96]Adler A D, Longo F R, Finarelli J D, Goldmacher J, Assour J, Korsakoff L. A simplified synthesis for meso-tetraphenylporphine[J]. J Org Chem.1967,32(2):476.
    [97]郑维忠,曾庆平,王先元.高分子键联金属卟啉的合成及催化性能的研究[J].有机化学,1995,15(5):520-524.
    [98]Lavallee D K, Xu Z J, Pina R. Synthesis and properties of new cationic-periphery porphyrins, tetrakis(p-(aminomethyl)phenyl)porphyrin and N-methyltetrakis(p-(amin omethyl)phenyl)porphyrin[J]. J Org Chem.1993,58 (22):6000-6008.
    [99]潘继刚,何明威,刘轻轻.四苯基卟啉及其衍生物的合成[J].有机化学.1993,(13):533-536.
    [100]Lindsey J S, Schreiman I C, Hsu H C, Kearney P C, Marguerettaz A M. Rothemund and Adler-Longo reactions revisited:synthesis of tetraphenylporphyrins under equilibrium conditions[J]. J Org Chem.1987,52(5):827-836.
    [101]Lindsey J S. Metallopophyrins catalyzed oxidations[M]. Montanari F, Casella L, Eds.; Kluwer, Boston,1994.
    [102]Dolphin D. Porphyrinogens and porphodimethenes, intermediates in the synthesis of meso-tetraphenylporphins from pyrroles and benzaldehyde[J]. J Heterocycl Chem.1970, 7(2):275-283.
    [1]Hoshino M, Degenkolb P, Curran D P. Palladium-catalyzed stille couplings with fluorous tin reactants[J]. J Org Chem.1997,62(24):8341-8349.
    [2]Yamazaki O, Hao X H, Yoshida A, Nishikido J. Fluorous reverse-phase silica gel-supported Lewis acids as recyclable catalysts in water[J]. Tetrahedron Lett.2003, 44(49):8791-8795.
    [3]Tzschucke C C, Markert C, Glatz H, Bannwarth W. Fluorous biphasic catalysis without perfluorinated solvents:application to Pd-mediated Suzuki and Sonogashira couplings[J]. Angew Chem Int Ed.2002,41(23):4500-4503.
    [4]王宏舍,杨建奎,覃海错.缩醛(酮)类香料的合成方法研究[J].广西化工.2000,29(4):27-30.
    [5]Greene T W, Wuts P G M. Protective groups in organic synthesis[M]. John Wiley and Sons, New York,1999.
    [6]Katritzky A R, Otto M C. Comprehensive organic functional group transformations[M]. Vol 4. Perga-mon Press, Oxford,1995.
    [7]Kocienski P J. Protecting groups[M]. George Thieme Verlag, New York,1994.
    [8]Clode D M. Carbohydrate cyclic acetal formation and migration[J]. Chem Rev.1979, 79(6):491-513.
    [9]Bull J R, Floor J. Kruger G J. Synthesis and crystal structure of 4-methyl-14-beta-estra-1,3,5(10)-trien-15-one[J]. J Chem Res(S).1979,224-225.
    [10]罗三中,张宝莲,鲜明,谢文华,程津培,王鹏.质子型溶剂中Ln(OTf)3催化的有机反应研究进展[J].科学通报.2001,46(13):1059-1067.
    [11]Zhu Z, Espenson J H. Formation of 1,3-dioxolanes and their analogs analogs catalyzed by methylrhenium tri oxide [J]. Organometallics.1997,16(16):3658-3663.
    [12]Lipshutz B H, Pollart D, Monforte J, Kotsuki H. Pd(Ⅱ)-catalyzed acetal ketal hydrolysis exchange reactions[J]. Tetrahedron Lett.1985,26(6):705-708.
    [13]Hoffman R V. The Rh2(CO)4Cl2 catalyzed acetalization of crotonaldehyde[J]. Tetrahedron Lett.1974,15(28):2415-2416.
    [14]Ott J, Ramos Tombo G M, Schmid B, Venanzi L M, Wang G, Ward T R. A versatile rhodium catalyst for acetalization reactions under mild conditions[J]. Tetrahedron Lett. 1989,30(45):6151-6154.
    [15]Ji S J, Wu L. Acetalization of carbonyl compounds catalyzed by polymer-bound metal complexes[J]. J Mol Catal A-Chem.2003,22(1):41-46.
    [16]Diaz I, Marquez-Alvarez C, Mohino F, Perez-Pariente J, Sastre E. Combined alkyl and sulfonic acid functionalization of MCM-41-type silica:Part 2. Esterification of glycerol with fatty acids[J]. J Catal.2000,193(2):295-302.
    [17]Das D, Lee J F, Cheng S. Sulfonic acid functionalized mesoporous MCM-41 silica as a convenient catalyst for bisphenol-A synthesis[J]. Chem Commun.2001, (21): 2178-2179.
    [18]Wilson K, Lee A F, Macquarrie D J, Clark J H. Structure and reactivity of sol-gel sulphonic acid silicas[J]. Appl Catal A:General.2002,228(1-2):127-133.
    [19]Mbaraka I K, Radu D R, Lin V S, Shanks B H. Organosulfonic acid-functionalized mesoporous silicas for the esterification of fatty acid[J]. J Catal.2003,219(2):329-336.
    [20]Wang B, Gu Y, Song G, Yang T, Yang L, Suo J. An efficient procedure for protection of carbonyls catalyzed by sulfamic acid[J]. J Mol Catal A-Chem.2005,233(1-2): 121-126.
    [21]Moghadam M, Mohammadpoor-Baltork I, Tangestaninejad S, Mirkhani V, Yazdani P, Ghorjipoor S. Highly efficient and chemoselective acetalization of carbonyl compounds catalyzed by new and reusable zirconyl triflate, ZrO(OTf)2[J]. Heteroatom Chem.2009, 20(3):131-135.
    [22]Gregg B T, Golden K C, Quinn J F. Indium(Ⅲ)trifluoromethanesulfonate as a mild, efficient catalyst for the formation of acetals and ketals in the presence of acid sensitive functional groups[J]. Tetrahedron.2008,64(15):3287-3295.
    [23]Duan Z, Gu Y, Deng Y. Green and moisture-stable Lewis acidic ionic liquids (choline chloride·xZnCl2) catalyzed protection of carbonyls at room temperature under solvent-free conditions[J]. Catal Commun.2006,7(9):651-656.
    [24]Gupta N, Sonu, Kad G L, Singh J. Acidic ionic liquid [bmim]HSO4:an efficient catalyst for acetalization and thioacetalization of carbonyl compounds and their subsequent deprotection[J]. Catal Commun.2007,8(9):1323-1328.
    [25]Fang D, Gong K, Shi Q, Liu Z. A green procedure for the protection of carbonyls catalyzed by novel task-specific room-temperature ionic liquid[J]. Catal Commun.2007, 8(10):1463-1466.
    [26]Wang Y, Jiang D, Dai L. Novel Brφstcd acidic ionic liquids based on benzimidazolium cation:synthesis and catalyzed acetalization of aromatic aldehydes with diols[J]. Catal Commun.2007,9(15):2475-2480.
    [27]Cataldo M, Nieddu E, Gavagnin R, Pinna F, Strukul G. Hydroxy complexes of palladium(Ⅱ) and platinum(Ⅱ) as catalysts for the acetalization of aldehydes and ketones [J]. J Mol Catal A-Chem.1999,142(3):305-316.
    [28]Karimi B, Ghoreishi-Nezhad M. Highly chemoselective acetalization of carbonyl compounds catalyzed by a novel recyclable ammonium triflate-functionalized silica[J]. J Mol Catal A-Chem.2007,277(1-2):262-265.
    [29]Kobayashi K, Nagato S, Kawakita M, Morikawa O, Konishi H. Synthesis of 1-formyl-1,2-dihydroquinoline derivatives by a Lewis acid-catalyzed cyclization of o-(1-hydroxy-2-alkenyl)phenyl isocyanides[J]. Chem Lett.1995,24(7):575-576.
    [30]Chen B-C, Bendarz M S, Zhao R, Sundeen J E, Chen P, Shen Z, Skoumbourdis A P, Barrish J C. A new facile method for the synthesis of 1-arylimidazole-5- carboxylates[J]. Tetrahedron Lett.2000,41(29):5453-5456.
    [31]Jackson A, Meth-Cohn O. A new short and efficient strategy for the synthesis of quinolone antibiotics[J]. J Chem Soc, Chem Commun.1995, (13):1319-1320.
    [32]Downie I M, Earle M J, Heaney H, Shuhaibar K F. Vilsmeier formylation and glyoxylation reactions of nucleophilic aromatic compounds using pyrophosphoryl chloride [J]. Tetrahedron.1993,49(19):4015-4034.
    [33]Kobayashi S, Nishio K. Facile and highly stereoselective synthesis of homoallylic alcohols using organosilicon intermediates [J]. J Org Chem.1994,59(22):620-6628.
    [34]Kobayashi S, Yasuda M, Hachiya I. Trichlorosilane-dimethylformamide (Cl3SiH-DMF) as an efficient reducing agent. Reduction of aldehydes and imines and reductive amination of aldehydes under mild conditions using hypervalent hydridosilicates[J]. Chem Lett.1996,25(5):407-408.
    [35]Martinez J, Laur J. Active esters of formic acid as useful formylating agents: improvements in the synthesis of formyl-amino acid esters, N-a-Formyl-Met-Leu-Phe-OH, and Formyl-Met-Lys-Pro-Arg, a phagocytosis stimulating peptide[J]. Synthesis.1982, (11):979-980.
    [36]Kraus M A. The formylation of aliphatic amines by dimethylformamide[J]. Synthesis. 1973, (6):361-362.
    [37]Kizuka H, Elmaleh D R. Selective monomethylation of the primary amine function using [11C]CH3I and the N-trifluoroacetyl derivative:preparation of N-[11C-methyl]chlorphentermine[J]. Nucl Med Biol.1993,20(2):239-242.
    [38]Krishnamurthy S. A highly efficient and general N-monomethylation of functionalized primary amines via formylation-borane:methyl sulfide reduction[J]. Tetrahedron Lett. 1982,23(33):3315-3318.
    [39]Hofmann A W. Zur kenntniss der aethylenbasen[J]. Ber.1872,5(1):240-248.
    [40]Merck E. Verfahren zur gewinnung von formylderivaten sekundarer basen[P]. German Paten 334555,1920.
    [41]Blicke F F, Lu C J J. Formylation of amines with chloral and reduction of the N-formyl derivatives with lithium aluminum hydride[J]. J Am Chem Soc.1952,74(15): 3933-3934.
    [42]Yale H L. Formylation of amines with phenyl formate[J]. J Org Chem.1971,36(21): 3238-3240.
    [43]Neveux M, Bruneau C, Dixneuf P H. Enol Formates:ruthenium catalysed formation and formylating reagents[J]. J Chem Soc, PerkinTrans I.1991,1197-1199.
    [44]Duczek W, Deutsch J, Vieth S, Niclas H J. A simple and convenient synthesis of N-formyl amino acid esters under mild conditions[J]. Synthesis.1996, (1):37-38.
    [45]Reddy P G, Kumar G D K, Baskaran S. A convenient method for the N-formylation of secondary amines and anilines using ammonium formate[J]. Tetrahedron Lett.2000, 41(47):9149-9151.
    [46]Sambasivarao K, Manoranjan B, Priti K. Environmentally benign process for the synthesis of N-formyl amino acid esters[J]. Tetrahedron Lett.2004,45(41):7589-7590.
    [47]Hill D R, Hasiao C N, Kurukulasuriya R, Wittenberger S.2,2,2-Trifluoroethyl formate: a versatile and selective reagent for the formylation of alcohols, amines, and N-hydroxylamines[J]. Org Lett.2002,4(1):111-113.
    [48]Shekhar A C, Kumar A R, Sathaiah G, Paul V L, Sridhar M, Rao P S. Facile N-formylation of amines using Lewis acids as novel catalysts[J]. Tetrahedron Lett.2009, 50(50):7099-7101.
    [49]Das B, Krishnaiah M, Balasubramanyam P, Veeranjaneyulu B, Kumar D N, Nandankumar D. A remarkably simple N-formylation of anilines using polyethylene glycol[J]. Tetrahedron Lett.2008,49(14):2225-2227.
    [50]Lei M, Ma L, Hua L. A convenient one-pot synthesis of formamide derivatives using thiamine hydrochloride as a novel catalyst[J]. Tetrahedron Lett.51(32):4186-4188.
    [51]Hosseini-Sarvari M, Sharghi H. ZnO as a new catalyst for N-formylation of amines under solvent-free conditions [J]. J Org Chem.2006,71(17):6652-6654.
    [52]Zhang X Y, Li Y Z, Fan X S, Qu G R, Hu X Y, Wang J J. Multicomponent reaction in ionic liquid:a novel and green synthesis of 1,4-dihydropyridine derivatives[J]. Chin Chem Lett.2006,17(2):150-152.
    [53]Maheswara M, Siddaiah V, Rao Y K, Tzeng Y M, Sridhar C. A simple and efficient one-pot synthesis of 1,4-dihydropyridines using heterogeneous catalyst under solvent-free conditions[J]. J Mol Catal A-Chem.2006,260(1-2):179-180.
    [54]Legeay J-C, Vanden Eynde J J, Bazureau J P. Ionic liquid phase technology supported the three component synthesis of Hantzsch 1,4-dihydropyridines and Biginelli 3,4-dihydropyrimidin-2(1H)-ones under microwave dielectric heating[J]. Tetrahedron. 2005,61(52):12386-12397.
    [55]Lee J H. Synthesis of Hantsch 1,4-dihydropyridines by fermenting bakers'yeast[J]. Tetrahedron Lett.2005,46(43):7329-7330.
    [56]Chari M A, Syamasundar K. Silica gel/NaHSO4 catalyzed one-pot synthesis of Hantzsch 1,4-dihydropyridines at ambient temperature[J]. Catal Commun.2005,6(9):624-626.
    [57]Miri R, Javidnia K, Sarkarzadeh H, Hemmateenejad B. Synthesis, study of 3D structures, and pharmacological activities of lipophilic nitroimidazolyl-1,4-dihydropyridines as calcium channel antagonist[J]. Bioorg Med Chem.2006,14(14):4842-4849.
    [58]屠树江,冯建青,王海,唐爱玲,冯骏材.2,6-二甲基-4-苯基-1,4-二氢吡啶-3,5-甲酸乙酯的合成和晶体结构[J].结构化学.20(2):131-133.
    [59]Stout D M, Meyers A I. Recent advances in the chemistry of dihydropyridines[J]. Chem Rev.1982,82(2):223-243.
    [60]Gopalakrishnan M, Miller T R, Buckner S A, Milicic I, Molinari E J, Whiteaker K L, Davis-Taber R, Scott V E, Cassidy C, Sullivan J P, Carroll W. Pharmacological characterization of a 1,4-dihydropyridine analogue,9-(3,4-dichlorophenyl)-3,3,6,6-tetramethyl-3,4,6,7,9,10-hexahydro-1,8(2H,5H)-acridinedione (A-184209) as a novel KATP channel inhibitor[J]. Br J Pharmacol.2003,138(2):393-399.
    [61]Shanmugasundaram P, Murugan P, Ramakrishnan V T, Srividya N, Ramamurthy P. Synthesis of acridinedione derivatives as laser dyes[J]. Heteroactom Chem.1996,6(1): 17-22.
    [62]Timpe H-J, Ulrich S, Fouassier J-P. Photochemistry and use of decahydroacridine-1,8-diones as photosensitizers for onium salt decomposition[J]. J Photochem Photobiol A-Chem.1993,73(2):139-150.
    [63]Ulrich S, Timpe H-J, Fouassier J-P, Morlet-Savary F. Photoreduction of decahydroacridine-1,8-diones by amines[J]. J Photochem Photobiol A-Chem.1993, 74(2-3):165-170.
    [64]Mohan H, Srividya N, Ramamurthy P, Mittal J P. Kinetics and spectral characteristics of transient species formed on one-electron oxidation of acridine-1,8-dione in aqueous solution pulse radiolysis study[J]. J Chem Soc Faraday Trans.1996,92(13):2353-2359.
    [65]Mohan H, Srividya N, Ramamurthy P, Mittal J P. One-electron reduction of acridine-1,8-dione in aqueous solution:a pulse radiolysis study[J]. J Phys Chem.1997, 101(16):2931-2935.
    [66]Timpe H J, Ulrich S, Decker C, Fouassier J P. Photoinitiated polymerization of acrylates and methacrylates with decahydroacridine-1,8-dione/onium salt initiator systems[J]. Macromolecules.1993,26(17):4560-4566.
    [67]Srividya N, Ramamurthy P, Shanmugasundaram P. Ramakrishnan V T. Synthesis, characterization, and electrochemistry of some acridine-1,8-dione dyes[J]. J Org Chem. 1996,61(15):5083-5089.
    [68]Murugan P, Shanmugasundaram P, Ramakrishnan V T, Venkatachalapathy B, Srividya N, Ramamurthy P, Gunasekaran K, Velmurugan D. Synthesis and laser properties of 9-alkyl-3,3,6,6-tetramethyl-1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-dione derivatives[J]. J Chem Soc, Perkin Trans 2.1998, (4):999-1004.
    [69]Horning E C, Horning M G. Methone derivatives of aldehydes[J]. J Org Chem.1946, 11(1):95-99.
    [70]Martin N, Quinteiro M, Seoane C, Soto J L, Mora A, Suarez M, Ochoa E, Morales A, Bosque J R D. Synthesis and conformational study of acridine derivatives related to 1,4-dihydropyridines[J]. J Heterocycl Chem.1995,32(1):235-238.
    [71]Suarez M, Loupy A, Salfran E, Moran L, Rolando E. Synthesis of decahydroacridines under microwaves using ammonium acetate supported on alumina[J]. Heterocycles. 1999,51(1):21-27.
    [72]Tu S J, Lu Z S, Shi D Q, Yao C S, Gao Y, Guo C. A convenient synthesis of 9-aryl-3,3,6,6-tetramethyl-1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-diones under microwave irradiation without solvent[J]. Synth Commun.2002,32(14):2181-2185.
    [73]Tu S J, Miao C B, Gao Y, Fang F, Zhuang Q Y, Feng Y J, Shi D Q. A Novel cascade reaction of aryl aldoxime with dimedone under microwave irradiation:the synthesis of N-hydroxylacridine[J]. Synlett.2004, (2):255-258.
    [74]王香善,史达清,王苏惠,屠树江.微波辐射下9-芳基-10-对甲苯基多氢吖啶衍生物的合成[J].有机化学.2003,23(11):1291-1293.
    [75]王香善,史达清,张燕飞,王苏惠,屠树江.三乙基苄基氯化铵(TEBA)催化下水中9-芳基多氢吖啶衍生物的合成[J].有机化学.2004,24(4):430-432.
    [76]Jin T S, Zhang J S, Guo T T, Wang A Q, Li T S. One-pot clean synthesis of 1,8-dioxo-decahydroacridines catalyzed by p-dodecylbenezenesulfonic acid in aqueous media[J]. Synthesis.2004, (12):2001-2005.
    [77]Shen W, Wang L M, Tian H, Tang J, Yu J J. Brφsted acidic imidazolium salts containing perfluoroalkyl tails catalyzed one-pot synthesis of 1,8-dioxo-decahydroacridines in water[J]. J Fluorine Chem.2009,130(6):522-527.
    [78]Wang X S, Zhang M M, Zeng Z S, Shi D Q, Tu S J, Wei X Y, Zong Z M. A simple and clean procedure for the synthesis of polyhydroacridine and quinoline derivatives: reaction of schiff base with 1,3-dicarbonyl compounds in aqueous medium[J]. Tetrahedron Lett.2005,46(42):7169-7173.
    [79]Jin T S, Zhang J S, Guo T T, Wang A Q, Li T S. One-pot clean synthesis of 1,8-dioxo-decahydroacridines catalyzed by p-dodecylbenezenesulfonic acid in aqueous media[J]. Synthesis.2004, (12):2001-2005.
    [80]史达清,倪赛男,窦国兰.离子液体中5,5-二甲基-1,3-环己二酮与N-芳亚甲基芳胺反应合成吖啶衍生物[J].有机化学.2009,29(5):788-793.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700