基于拓扑算法的团簇结构全局搜索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
团簇的基态结构确定,是团簇研究中最为基础和重要的课题之一。当团簇尺寸较大时,势能面上异构体的数目非常多,这使得对团簇基态结构的寻找变得非常困难。本论文借助于图论中图的定义,通过第一性原理计算,从团簇的拓扑结构出发搜寻了非经典碳富勒烯、ZnO笼状团簇、TiO2团簇及MgO团簇的基态结构。另外,对包络甲烷分子的笼形水团簇进行了全面考察,以帮助进一步理解甲烷水合物的成核机制。
     非经典富勒烯可能在富勒烯的生长、分解和包络富勒烯复合物的合成过程中发挥一定的作用,但是人们对非经典富勒烯的结构和稳定性了解得比较少。本论文中,我们用扩展的Spiral算法结合密度泛函理论(DFT)计算对含七元环的非经典富勒烯C。(30≤n≤40)及C50的结构和稳定性进行了全面研究,在此基础上,提出了一个新的经验指标。当有含七元环非经典富勒烯存在时,这个指标相比于原来针对经典富勒烯提出的PAPR (Pentagon Adjacency Penalty Rule),能够更好地反映异构体的相对稳定性。
     ZnO是一种重要的光学材料,近年来,它的纳米结构在科技上得到了广泛的应用。前人的理论工作表明中等尺寸的(ZnO)n (n=9-25)团簇的基态构型是笼状/管状的结构,但是他们对可能的笼状结构的考察不够全面,因此不能保证得到的结构是真实的基态结构。本论文中,我们用扩展的Spiral算法对含四、六、八元环的(ZnO)n (n=15-24)笼状团簇进行了全面考察,确定了它们的基态构型。
     甲烷水合物对人类的能源和环境有显著的影响。前人的实验和理论工作表明在甲烷水合物的成核过程中,有大量的非标准笼子存在。为了研究这些非标准笼子在甲烷水合物成核过程中的作用,本论文利用扩展的Spiral算法对含四、五、六、七元环的包络甲烷分子的笼状水团簇CH4@(H2O)n (n=16,18,20,22,24)的结构和稳定性进行了全面考察。我们发现水环境有利于水的笼状结构的形成,很多非标准笼子与标准笼子的总能差很小,并且它们在构型上有很大的相似性。这些低能的水笼异构体之间能通过两种方式相互转化:水分子二聚体的插入及氢键的转动。这两种结构转化方式均可能在甲烷水合物的成核过程中真实存在。另外,我们计算了甲烷分子在一些异构体笼中的C-H伸缩振动频率及13C的NMR化学位移,这些数据为未来实验上探测这些非规则笼子提供了理论依据。
     针对带有离子性的化合物团簇,我们提出了一种基于拓扑结构的新的团簇全局优化算法。这种算法在给定团簇中原子配位数和成键规则的情况下,能对势能面上所有可能的异构体进行全面考察。我们把这种算法应用于(TiO2)n(n=1-6)(?)团簇和(MgO)n (n=1-7)团簇,除了前人报道的结构外,我们得到了一些新的低能异构体。另外,我们模拟了(TiO2)n-(n=1-6)负离子团簇的光电子谱,获得了与实验非常一致的结果。
Searching the ground state cluster structures is one of the most fundamental and important issue in the cluster science. The number of isomers on the potential energy surface is tremendous for large size clusters. Thus it is very difficult to search for the lowest-energy structure when the cluster size becomes large. With the aid of the definition of graph in graph theory, we searched for the ground state structures for nonclassical fullerenes with heptagons, ZnO cage clusters, TiO2clusters as well as MgO clusters based on the topological structures of clusters. In addition, we explored systematically the H2O cage clusters encapsulated with methane molecules in order to shed some light on the nucleation mechanism of methane hydrate.
     Nonclassical fullerene may be involved in fullerene growth, fragmentation and preparation of endohedral fullerene complex. Compared with classical fullerenes, less attention has been paid to noncalssical ones. In this article, we comprehensively explored the nonclassical Cn (30≤n≤40) and C50fullerenes with heptagons using generalized Spiral algorithm and DFT methods. A new empirical index was proposed. When noncalssical isomers with heptagons exist, this index performs better for estimating the relative stabilities of fullerene isomers compared with the PAPR (Pentagon Adjancy Penalty Rule) which is presented for classical fullerenes.
     ZnO is one important kind of optical materials. In the past decades, ZnO nanostructures had wide range of technological applications. Previous theortical works suggested that cage/tube structures are ground state structures for (ZnO)n (n=9-25) clusters. However, the reported structures can not be guaranteed to be the true global minima due to the insufficient exploration for the initial structures. In this article, the structures of (ZnO)n(n=15-24) cage clusters were comprehensively studied using generalized Spiral algorithm and the lowest-energy structures were determined for each cluster size.
     Methane hydrate has significant impacts on the energy and environmental science. Previously, both theoretical and experimental works indicated that nonstandard cages appeared during the nucleation process of methane hydrate. In order to understand the effect of nonstandard cages during the nucleation of methane hydrate, we studied the CH4@(H2O)n (n=16,18,20,22,24) clusters with four-, five-, six-and seven-membered rings impolying generalized Spiral algorithm. We found that aqueous environment is favorable for the formation of water cage configurations. Many nonstandard cages have small energy difference and large structural similarities with the standard ones. These low-energy structures can transform each other in two ways:the insertion of water dimmers and the orientation of hydrogen bonds, which may truly exist in the nucleation process of methane hydrate. In addition, for the methane molecules in some low-energy isomer cages, we calculated their OH stretching modes and the13C NMR chemical shifts. These theoretical data may be helpful for the identification of these nonstandard cages experimentally in future.
     For clusters with ionic characters, we presented a new algorithm for global optimization of clusters based on their topological structures. Under given rule for the coordination number of atoms, our method can explore all possible structures on the potential energy surface. We applied this method to (TiO2)n (n=1-6) and (MgO)n(n=17) clusters. Except the structures reported previously, some new low-energy isomers were obtained. We have simulated the photoelectron spectra of anionic (TiO2)n (n=1-6) clusters, which agree well with experiments.
引文
[1]王广厚.团簇物理学[M].上海:上海科技出版社,2003.
    [2]Valden M, Lai X, Goodman D W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties [J]. Science,1998,281:1647-1650.
    [3]Li J, Li X, Zhai H J, et al. Au20.:A tetrahedral cluster[J]. Science,2003,299:864-867.
    [4]Harris I A, Kidwell R S, Northby J A. Structure of charged argon clusters formed in a free jet expansion [J]. Physical Review Letters,1984,53:2390-2393.
    [5]Rohlfing E A, Cox D M, Kaldor A. Production and characterization of supersonic carbon cluster beams [J]. Journal of Chemical Physics,1984,81:3322-3330.
    [6]P.W. Fowler D E M. An Atlas of fullerene [M]. New York:Oxford University Press Inc, 1995.
    [7]Kroto H W, Heath J R, Obrien S C, et al. C60:Buckminsterfullerene [J]. Nature,1985, 318:162-163.
    [8]Raghavachari K, Binkley J S. Structure, stability, and fragmentation of small carbon clusters [J]. Journal of Chemical Physics,1987,87:2191-2197.
    [9]Parasuk V, Almlof J. The electronic and molecular structure of C6.:complete active space self-consistent-field and multireference configuration interaction[J]. Journal of Chemical Physics,1989,91:1137-1141.
    [10]Hoffmann R. Extended Huckel theory-V:cumulenes, polyenes, polyacetylenes and cn[J]. Tetrahedron,1966,22:521-538.
    [11]Schmalz T G, Seitz W A, Klein D J, et al. Elemental carbon cages [J]. Journal of the American Chemical Society,1988,110:1113-1127.
    [12]Kroto H W. The stability of the fullerenes C21,C28, C32, C36,C50,C60 and C70 [J]. Nature, 1987,329:529-531.
    [13]Kratschmer W, Lamb L D, Fostiropoulos K, et al. Solid C60:A new form of carbon[J]. Nature,1990,347:354-358.
    [14]Taylor R, Hare J P, Abdulsada A K, et al. Isolation, Sepration and characterization of the fullerenes C60 and C70:The 3rd form of carbon[J]. Journal of the Chemical Society,Chemical Communications,1990:1423-1424.
    [15]Ettl R, Chao I, Diederich F, et al. Isolation of C76, a chiral (D2) allotrope of carbon [J]. Nature,1991,353:149-153.
    [16]Diederich F, Whetten R L, Thilgen C, et al. Fullerene isomerism:isolation of C2v-C78 and D3-C78[J]. Science,1991,254:1768-1770.
    [17]Kikuchi K, Nakahara N, Wakabayashi T, et al. NMR characterization of isomers of C78, C82 and C84 fullerenes [J]. Nature,1992,357:142-145.
    [18]Manolopoulos D E, Fowler P W, Taylor R, et al. An end to the search for the ground-state of C84 [J]. Journal of the Chemical Society, Faraday Transactions,1992,88:3117-3118.
    [19]H. S. M. Coxeter. Virus macromolecules and geodesic domes [M]. New York:Oxford University Press,1971.
    [20]Manolopoulos D E, May J C, Down S E. Theoretical studies of the fullerenes:C34 to C7 [J]. Chemical Physics Letters,1991,181:105-111.
    [21]Zhao J, Ma L, Tian D, et al. Fullerene-like cage clusters from non-carbon elements [J]. Journal of Computational and Theoretical Nanoscience,2008,5:7-22.
    [22]G.kell, The physics and physical chemistry of water, in:F.Franks (Ed.), Water:A Comhensive Treatise [M]. New York:Plenum,1972.
    [23]Fine R A, Millero F J. Compressibility of water as a funct ion of temperature and pressure [J]. Journal of Chemical Physics,1973,59:5529-5536.
    [24]Angell C A, Water and aqueous solutions at subzero temperatures, in:F.Franks (Ed.), Water:A Comprehensive Treatise [M], New York:Plenum,1972.
    [25]B.V.Zheleanyi. The density of supercooled water[J]. Russian Journal of Physical Chemistry,1969,43:1311.
    [26]B.V.Zheleanyi. The crystallisation of supercooled water in capillaries[J]. Russian Journal of Physical. Chemistry,1968,42:950-952.
    [27]Ludwig R. Water:From clusters to the bulk [J]. Angewandte Chemie International Edition, 2001,40:1808-1827.
    [28]Geiger A, Rahman A, Stillinger F H. Molecular dynamics study of the hydration of Lennard-Jones solutes[J]. Journal of Chemical Physics,1979,70:263-276.
    [29]Xantheas S S, Dunning T H. Ab initio studies of cyclic water clusters (H2O)n, n=1-6. Ⅰ. optimal structures and vibrational spectra [J]. Journal of Chemical Physics,1993,99: 8774-8792.
    [30]Xantheas S S. Ab initio studies of cyclic water clusters (H2O)n, n=1-6.Ⅲ. comparison of density functional with MP2 results [J]. Journal of Chemical Physics,1995,102: 4505-4517.
    [31]Xantheas S S. Ab initio studies of cyclic water clusters (H2O)n, n=1-6.Ⅱ. analysis of many-body interaction[J]. Journal of Chemical Physics,1994,100:7523-7534.
    [32]Pugliano N, Saykally R J. Measurement of the V8 intermolecular vibration of (D2O)2 by tunable far infrared laser spectroscopy[J]. Journal of Chemical Physics,1992,96: 1832-1839.
    [33]Pugliano N, Saykally R J. Measurement of quantum tunneling between chiral isomers of the cyclic water trimer [J]. Science,1992,257:1937-1940.
    [34]Cruzan J D, Braly L B, Liu K, et al. Quantifying hydrogen bond cooperativity in water VRT spectroscopy of the water tetramer [J]. Science,1996,271:59-62.
    [35]Liu K, Cruzan J D, Saykally R J. Water clusters[J]. Science,1996,271:929-933.
    [36]Kim J, Kim K S. Structures, binding energies, and spectra of isoenergetic water hexamer clusters:Extensive ab initio studies [J]. Journal of Chemical Physics,1998,109: 5886-5895.
    [37]Liu K, Brown M G, Carter C, et al. Characterization of a cage form of the water hexamer [J]. Nature,1996,381:501-503.
    [38]Nauta K, Miller R E. Formation of cyclic water hexamer in liquid helium:The smallest piece of ice [J]. Science,2000,287:293-295.
    [39]Tsai C J, Jordan K D. Theoretical study of small water clusters:low-energy fused cubic structures for (H2O)n, n=8,12,16, and 20[J]. Journal of Physical Chemistry,1993,97: 5208-5210.
    [40]Tsai C J, Jordan K D. Use of the histogram and jump-walking methods for overcoming slow barrier crossing behavior in Monte Carlo simulations:applications to the phase transitions in the (Ar)13 and (H2O)8 clusters [J]. Journal of Chemical Physics,1993,99: 6957-6970.
    [41]Buck U, Ettischer I, Melzer M, et al. Structure and spectra of three-dimensional (H2O)n clusters, n=8,9,10 [J]. Physical Review Letters,1998,80:2578-2581.
    [42]Kim J, Majumdar D, Lee H M, et al. Structures and energetics of the water heptamer: Comparison with the water hexamer and octamer [J]. Journal of Chemical Physics,1999,110: 9128-9134.
    [43]Li F, Liu Y, Wang L, et al. Improved stability of water clusters (H2O) (30-48):A Monte Carlo search coupled with DFT computations [J]. Theoretical Chemistry Accounts,2012, 131:1163-1169
    [44]Wales D J, Hodges M P. Global minima of water clusters (H2O)n, n<=21, described by an empirical potential [J]. Chemical Physics Letters,1998,286:65-72.
    [45]Takeuchi H. Development of an efficient geometry optimization method for water clusters [J]. Journal of Chemical Information and Modeling,2008,48:2226-2233.
    [46]Sloan E D. Clathrate Hydrates of Natural Gases [M]. Boca Raton:CRC Press/Taylor&Francis Group,2008.
    [47]陈光进,孙长宇,马庆兰.气体水合物科学与技术[M].北京:化学工业出版社,2007.
    [48]Sloan E D. Fundamental principles and applications of natural gas hydrates [J]. Nature, 2003,426:353-359.
    [49]Jacobson L C, Hujo W, Molinero V. Thermodynamic stability and growth of guest-free clathrate hydrates:A low-density crystal phase of water[J]. Journal of Physical Chemistry B,2009,113:10298-10307.
    [50]Khan A. Theoretical studies of CH4 (H2O)20, (H2O)21, (H2O)20, and fused dodecahedral and tetrakaidecahedral structures:How do natural gas hydrates form?[J]. Journal of Chemical Physics,1999,110:11884-11889.
    [51]Vatamanu J, Kusalik P G. Observation of two-step nucleation in methane hydrates[J]. Physical Chemistry Chemical Physics,2010,12:15065-15072.
    [52]Gratzel M. Photoelectrochemical cells [J]. Nature,2001,414:338-344.
    [53]Fujishima A H, K.; Watanabe, H. TiO2 Photocatalysis:Fundamentals and Applications [M]. Tokyo:BKC Inc.,1997.
    [54]Sunada K, Kikuchi Y, Hashimoto K, et al. Bactericidal and detoxification effects of TiO2 thin film photocatalysts[J]. Environmental Science & Technology,1998,32:726-728.
    [55]Wang R, Hashimoto K, Fujishima A, et al. Light-induced amphiphilic surfaces [J]. Nature, 1997,388:431-432.
    [56]Calatayud M, Maldonado L, Minot C. Reactivity of (TiO2)n clusters (n=1-10):Probing gas-phase acidity and basicity properties[J]. Journal of Physical Chemistry C,2008,112: 16087-16095.
    [57]Zhai H J, Wang L S. Probing the electronic structure and band gap evolution of titanium oxide clusters (TiO2)n (n=1-10) using photoelectron spectroscopy[J]. Journal of the American Chemical Society,2007,129:3022-3026.
    [58]Hamad S, Cat low C R A, Woodley S M, et al. Structure and stability of small TiO2 nanoparticles[J]. Journal of Physical Chemistry B,2005,109:15741-15748.
    [59]Shevlin S A, Woodley S M. Electronic and optical properties of doped and undoped (TiO2)n nanoparticles[J]. Journal of Physical Chemistry C,2010,114:17333-17343.
    [60]Campbell E E B, Fowler P W, Mitchell D, et al. Increasing cost of pentagon adjacency for larger fullerenes[J]. Chemical Physics Letters,1996,250:544-548.
    [61]Albertazzi E, Domene C, Fowler P W, et al. Pentagon adjacency as a determinant of fullerene stability[J]. Physical Chemistry Chemical Physics,1999,1:2913-2918.
    [62]张跃,谷景华,尚家香,马岳.计算材料学基础[M].北京:北京航空航天大学出版社,2007.
    [63]Born M O R. Zur Quantentheorie der Molekeln [J]. Annalen der Physik,1927,389:457-484.
    [64]Hohenberg P, Kohn W. Inhomogeneous electron gas [J]. Physical Review,1964,136: B864-B871.
    [65]Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects [J]. Physical Review,1965,140:A1133-A1138.
    [66]Martin R M. Electronic Structure:Basic theory and practical methods [M]. Cambridge: Cambridge University Press,2004.
    [67]Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy[J]. Physical Review B,1992,45:13244-13249.
    [68]Perdew J P, Wang Y. Pair-distribution function and its coupling-constant average for the spin-polarized electron gas[J]. Physical Review B,1992,46:12947-12954.
    [69]Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple[J]. Physical Review Letters,1996,77:3865-3868.
    [70]Tkatchenko A, Scheffler M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data [J]. Physical Review Letters, 2009,102:073005-1-073005-4
    [71]Grimme S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction [J]. Journal of Computational Chemistry,2006,27:1787-1799.
    [72]Chu X, Dalgarno A. Linear response time-dependent density functional theory for van der Waals coefficients[J]. Journal of Chemical Physics,2004,121:4083-4088.
    [73]Delley B. An all-electron numerical method for solving the local density functional for polyatomic molecules[J]. Journal of Chemical Physics,1990,92:508-517.
    [74]Delley B. From molecules to solids with the DMol3 approach[J]. Journal of Chemical Physics,2000,113:7756-7764.
    [75]Frisch M J, et al. Gaussian 09 [CP], Wallingford CT:Gaussian Inc,2009.
    [76]Ayuela A, Fowler P W, Mitchell D, et al. C62:Theoretical evidence for a nonclassical ful lerene with a heptagonal ring[J]. Journal of Physical Chemistry,1996,100:15634-15636.
    [77]Sanchez G, Diaz-Tendero S, Alcami M, et al. Size dependence of ionization potentials and dissociation energies for neutral and singly-charged Cn fullerenes (n=40-70) [J]. Chemical Physics Letters,2005,416:14-17.
    [78]Diaz-Tendero S, Sanchez G, Alcami M, et al. Ionization potentials and dissociation energies of neutral, singly and doubly charged Cn fullerenes from n=20 to 70 [J]. International Journal of Mass Spectrometry,2006,252:133-141.
    [79]Cui Y H, Chen D L, Tian W Q, et al. Structures, stabilities, and electronic and optical properties of G62 fullerene isomers [J]. Journal of Physical Chemistry A,2007,111: 7933-7939.
    [80]Troshin P A, Avent A G, Darwish A D, et al. Isolation of two seven-membered ring C58 ful lerene derivatives:C58F17CF3 and C58F18[J]. Science,2005,309:278-281.
    [81]An W, Shao N, Bulusu S, et al. Ab initio calculation of carbon clusters. Ⅱ. Relative stabilities of fullerene and nonfullerene C21[J]. Journal of Chemical Physics,2008,128: 084301-1-084301-9
    [82]Killblane C, Gao Y, Shao N, et al. Search for lowest-energy nonclassical fullerenes Ⅲ:C22[J]. Journal of Physical Chemistry A,2009,113:8839-8844.
    [83]Diederich F, Whetten R L. Beyond C60:the higher fullerene [J]. Acc. Chem. Res,1992, 25:119-126.
    [84]Diaz-Tendero S, Alcami M, Martin F. Theoretical study of ionization potentials and dissociation energies of Cnq- fullerenes (n=50-60, q=0,1 and 2) [J]. Journal of Chemical Physics,2003,119:5545-5557.
    [85]Lu X, Chen Z F. Curved Pi-conjugation, aromaticity, and the related chemistry of small fullerenes (    [86]Shao N, Gao Y, Yoo S, et al. Search for lowest-energy fullerenes:G98 to C110[J]. Journal of Physical Chemistry A,2006,110:7672-7676.
    [87]Shao N, Gao Y, Zeng X C. Search for lowest-energy fullerenes 2:C38 to C80 and C112 to C120[J]. Journal of Physical Chemistry C,2007,111:17671-17677.
    [88]Gao Y D, Herndon W C. Fullerenes with four-membered rings[J]. Journal of the American Chemical Society,1993,115:8459-8460.
    [89]Fowler P W, Heine T, Manolopoulos D E, et al. Energetics of fullerenes with four-membered rings[J]. Journal of Physical Chemistry,1996,100:6984-6991.
    [90]Fowler P W, Heine T, Mitchell D, et al. Energetics of fullerenes with heptagonal rings [J]. Journal of the Chemical Society, Faraday Transactions,1996,92:2203-2210.
    [91]Fowler P W, Mitchell D, Seifert G, et al. Energetics of fullerenes with octagonal rings [J]. Fullerene Science and Technology,1997,5:747-768.
    [92]Hernandez E, Ordejon P, Terrones H. Fullerene growth and the role of nonclassical isomers[J]. Physical Review B,2001,63:193403-1-193403-4
    [93]Gan L H, Liu J, Hui Q, et al. General geometrical rule for stability of carbon polyhedra [J]. Chemical Physics Letters,2009,472:224-227.
    [94]Li P, Ning X J. Evolution spectrum of C60 isomers in buffer gas[J]. Journal of Chemical Physics,2004,121:7701-7707.
    [95]Stone A J, Wales D J. Theoretical studies of icosahedral C60 and some related species [J]. Chemical Physics Letters,1986,128:501-503.
    [96]Xu C H, Scuseria G E. Tight-binding molecular dynamics simulations of fullerene annealing and fragmentation [J]. Physical Review Letters,1994,72:669-672.
    [97]Hu Y H, Ruckenstein E. Ab initio quantum chemical calculations for fullerene cages with large holes[J]. Journal of Chemical Physics,2003,119:10073-10080.
    [98]Lee S U, Han Y K. Structure and stability of the defect fullerene clusters of C60:C5 C58, and C57 [J]. Journal of Chemical Physics,2004,121:3941-3942.
    [99]Hu Y H, Ruckenstein E. Quantum chemical density-functional theory calculations of the structures of defect C60 with four vacancies [J]. Journal of Chemical Physics,2004,120: 7971-7975.
    [100]Raghavachari K. Ground-state of C84:two almost isoenergetic isomers [J]. Chemical Physics Letters,1992,190:397-400.
    [101]Austin S J, Fowler P W, Manolopoulos D E, et al. Structural motifs and the stability of fullerenes[J]. Journal of Physical Chemistry,1995,99:8076-8081.
    [102]Kind H, Yan H Q, Messer B, et al. Nanowire ultraviolet photodetectors and optical switches [J]. Advanced Materials,2002,14:158-160.
    [103]Tang Z K, Wong G K L, Yu P, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films[J]. Applied Physics Letters,1998,72: 3270-3272.
    [104]Wang Z L, Kong X Y, Ding Y, et al. Semiconducting and piezoelectric oxide nanostructures induced by polar surfaces [J]. Advanced Functional Materials,2004,14: 943-956.
    [105]Gao P X, Ding Y, Mai W J, et al. Conversion of zinc oxide nanobelts into superlattice-structured nanohelices[J]. Science,2005,309:1700-1704.
    [106]Kong X Y, Ding Y, Yang R, et al. Single-crystal nanorings formed by epitaxial self-coiling of polar nanobelts[J]. Science,2004,303:1348-1351.
    [107]Pan Z W, Dai Z R, Wang Z L. Nanobelts of semiconducting oxides [J]. Science,2001, 291:1947-1949.
    [108]Huang M H, Mao S, Feick H, et al. Room-temperature ultraviolet nanowire nanolasers [J]. Science,2001,292:1897-1899.
    [109]Jain A, Kumar V, Kawazoe Y. Ring structures of small ZnO clusters [J]. Computational Materials Science,2006,36:258-262.
    [110]Matxain J M, Fowler J E, Ugalde J M. Small clusters of Ⅱ-Ⅵ materials:ZnA, i=1-9 [J]. Physical Review A,2000,62:053201-1-053201-10
    [111]Matxain J M, Mercero J M, Fowler J E, et al. Electronic excitation energies of Zn1O1 clusters[J]. Journal of the American Chemical Society,2003,125:9494-9499.
    [112]Wang B, Nagase S, Zhao J, et al. Structural growth sequences and electronic properties of zinc oxide clusters (ZnO),, (n=2-18) [J]. Journal of Physical Chemistry C,2007,111: 4956-4963.
    [113]Cheng X, Li F, Zhao Y. A DFT investigation on ZnO clusters and nanostructures[J]. Journal of Molecular Structure:Theochem,2009,894:121-127.
    [114]Behrman E C, Foehrweiser R K, Myers J R, et al. Possibility of stable spheroid molecules of ZnO [J]. Physical Review A,1994,49:R1543-R1546.
    [115]Wang B, Wang X, Chen G, et al. Cage and tube structures of medium sized zinc oxide clusters (ZnO)n(n=24,28,36, and 48) [J]. Journal of Chemical Physics,2008, 128:144710-1-144710-6
    [116]Zhao M, Xia Y, Tan Z, et al. Design and energetic characterization of ZnO clusters from first-principles calculations [J]. Physics Letters A,2007,372:39-43.
    [117]Dmytruk A, Dmitruk I, Blonskyy I, et al. ZnO clusters:Laser ablation production and time-of-flight mass spectroscopic study[J]. Microelectronics Journal,2009,40:218-220.
    [118]Kasuya A, Sivamohan R, Barnakov Y A, et al. Ultra-stable nanoparticles of CdSe revealed from mass spectrometry [J]. Nature Materials,2004,3:99-102.
    [119]Wang X, Wang B, Tang L, et al. What is atomic structures of (ZnO)34 magic cluster? [J]. Physics Letters A,2010,374:850-853.
    [120]Wang B, Wang X, Zhao J. Atomic Structure of the Magic (ZnO)60 Cluster:First-Principles Prediction of a Sodalite Motif for ZnO Nanoclusters [J]. Journal of Physical Chemistry C, 2010,114:5741-5744.
    [121]Zope R R, Dunlap B I. Are hemispherical caps of boron-nitride nanotubes possible? [J]. Chemical Physics Letters,2004,386:403-407.
    [122]Oku T, Nishiwaki A, Narita I. Formation and atomic structures of BnNn (n=24-60) clusters studied by mass spectrometry, high-resolution electron microscopy and molecular orbital calculations [J]. Physica B-Condensed Matter,2004,351:184-190.
    [123]Oku T, Hirano T, Kuno M, et al. Synthesis, atomic structures and properties of carbon and boron nitride fullerene materials [J]. Materials Science and Engineering B-Solid State Materials for Advanced Technology,2000,74:206-217.
    [124]Sloan E D, Fleyfel F. A molecular mechanism for gas hydrate nucleation from ice [J]. Aiche Journal,1991,37:1281-1292.
    [125]Christiansen R L, Sloan E D, Mechanisms and kinetics of hydrate formation [J]. Annals of the New York Academy of Science,1994,715:283-305.
    [126]Radhakrishnan R, Trout B L. A new approach for studying nucleation phenomena using molecular simulations:Application to CO2 hydrate clathrates[J]. Journal of Chemical Physics,2002,117:1786-1796.
    [127]Walsh M R, Koh C A, Sloan E D, et al. Microsecond simulations of spontaneous methane hydrate nucleation and growth[J]. Science,2009,326:1095-1098.
    [128]Hawtin R W, Quigley D, Rodger P M. Gas hydrate nucleation and cage formation at a water/methane interface[J]. Physical Chemistry Chemical Physics,2008,10:4853-4864.
    [129]Guo G J, Li M, Zhang Y G, et al. Why can water cages adsorb aqueous methane? A potential of mean force calculation on hydrate nucleation mechanisms[J]. Physical Chemistry Chemical Physics,2009,11:10427-10437.
    [130]Guo G J, Zhang Y G, Liu H. Effect of methane adsorption on the lifetime of a dodecahedral water cluster immersed in liquid water:A molecular dynamics study on the hydrate nucleation mechanisms [J]. Journal of Physical Chemistry C,2007,111:2595-2606.
    [131]Jacobson L C, Hujo W, Molinero V. Amorphous precursors in the nucleation of clathrate hydrates[J]. Journal of the American Chemical Society,2010,132:11806-11811.
    [132]Jacobson L C, Hujo W, Molinero V. Nucleation pathways of clathrate hydrates:effect of guest size and solubility[J]. Journal of Physical Chemistry B,2010,114:13796-13807.
    [133]Guo G J, Zhang Y G, Zhao Y J, et al. Lifetimes of cagelike water clusters immersed in bulk liquid water:A molecular dynamics study on gas hydrate nucleation mechanisms [J]. Journal of Chemical Physics,2004,121:1542-1547.
    [134]Guo G J, Zhang Y G, Li M, et al. Can the dodecahedral water cluster naturally form in methane aqueous solutions? A molecular dynamics study on the hydrate nucleation mechanisms[J]. Journal of Chemical Physics,2008,128:194504-1-194504-8
    [135]Guo G J, Zhang Y G, Liu C J, et al. Using the face-saturated incomplete cage analysis to quantify the cage compositions and cage linking structures of amorphous phase hydrates [J]. Physical Chemistry Chemical Physics,2011,13:12048-12057.
    [136]Walsh M R, Rainey J D, Lafond P G, et al. The cages, dynamics, and structuring of incipient methane clathrate hydrates [J]. Physical Chemistry Chemical Physics,2011,13: 19951-19959.
    [137]Vatamanu J, Kusalik P G. Unusual crystalline and polycrystalline structures in methane hydrates[J]. Journal of the American Chemical Society,2006,128:15588-15589.
    [138]Subramanian S, Sloan E D. Molecular measurements of methane hydrate formation[J] Fluid Phase Equilibria,1999,158:813-820.
    [139]Subramanian S, Sloan E D, Microscopic measurements and modeling of hydrate formation kinetics[J]. Annals of the New York Academy of Science,2000,912:583-592.
    [140]Koh C A, Wisbey R P, Wu X P, et al. Water ordering around methane during hydrate formation[J]. Journal of Chemical Physics,2000,113:6390-6397.
    [141]Thompson H, Soper A K, Buchanan P, et al. Methane hydrate formation and decomposition: Structural studies via neutron diffraction and empirical potential structure refinement [J]. Journal of Chemical Physics,2006,124:164508-1-164508-12
    [142]Khan A. Stabilization of hydrate structure H by N2 and CH4 molecules in 435663 and 512 cavities, and fused structure formation with 51268 cage:A theoretical study[J]. Journal of Physical Chemistry A,2001,105:7429-7434.
    [143]Terleczky P, Nyulaszi L. DFT study of possible lattice defects in methane-hydrate and their appearance in 13C NMR spectra[J]. Chemical Physics Letters,2010,488:168-172.
    [144]Lebsir F, Bouyacoub A, Bormann D, et al. Theoretical investigations of CH4, C2H6, CO2 and N2 guest molecules into a dodecahedron water cluster cavities [J]. Journal of Molecular Structure:Theochem,2008,864:42-47.
    [145]Ida T, Mizuno M, Endo K. Electronic state of small and large cavities for methane hydrate [J]. Journal of Computational Chemistry,2002,23:1071-1075.
    [146]Kohn W, Meir Y, Makarov D E. Van der Waals energies in density functional theory [J]. Physical Review Letters,1998,80:4153-4156.
    [147]Dion M, Rydberg H, Schroder E, et al. Van der Waals density functional for general geometries[J]. Physical Review Letters,2004,92:246401-1-246401-4.
    [148]Grimme S. Density functional theory with London dispersion corrections [J]. Wiley Interdisciplinary Reviews Computational Molecular Science,2011,1:211-228.
    [149]Kumar P, Sathyamurthy N. Theoretical studies of host-guest interaction in gas hydrates [J]. Journal of Physical Chemistry A,2011,115:14276-14281.
    [150]Khan A. Theoretical studies of CO2(H2O) (20,24,28) clusters:stabilization of cages in hydrates by CO2 guest molecules [J]. Journal of Molecular Structure:Theochem,2003,664: 237-245.
    [151]Kirov M V, Fanourgakis G S, Xantheas S S. Identifying the most stable networks in polyhedral water clusters[J]. Chemical Physics Letters,2008,461:180-188.
    [152]Curtiss L A, Frurip D J, Blander M. Studies of molecular association in H2O and D2O vapors by measurement of thermal conductivity [J]. Journal of Chemical Physics,1979,71: 2703-2711.
    [153]Odutola J A, Dyke T R. Partially deuterated water dimers:microwave spectra and structure [J]. Journal of Chemical Physics,1980,72:5062-5070.
    [154]Bryantsev V S, Diallo M S, van Duin A C T, et al. Evaluation of B3LYP, X3LYP, and M06-class density functionals for predicting the binding energies of neutral, protonated, and deprotonated water clusters [J]. Journal of Chemical Theory and Computation,2009,5: 1016-1026.
    [155]Santra B, Michael ides A, Fuchs M, et al. On the accuracy of density-functional theory exchange-correlation functionals for H bonds in small water clusters. Ⅱ. The water hexamer and van der Waals interactions [J]. Journal of Chemical Physics,2008,129: 194111-1-194111-14
    [156]Santra B, Michael ides A, Scheffler M. On the accuracy of density-functional theory exchange-correlation functionals for H bonds in small water clusters:Benchmarks approaching the complete basis set limit[J]. Journal of Chemical Physics,2007, 127:184104-1-184104-9.
    [157]Xantheas S S, Burnham C J, Harrison R J. Development of transferable interaction models for water. Ⅱ. Accurate energetics of the first few water clusters from first principles [J]. Journal of Chemical Physics,2002,116:1493-1499.
    [158]Fanourgakis G S, Apra E, Xantheas S S. High-level ab initio calculations for the four low-lying families of minima of (H2O)20. I. Estimates of MP2/CBS binding energies and comparison with empirical potentials [J]. Journal of Chemical Physics,2004,121: 2655-2663.
    [159]Tkatchenko A, DiStasio R A, Jr., Head-Gordon M, et al. Dispersion corrected Moller-Plesset second order perturbation theory [J]. Journal of Chemical Physics,2009, 131:094106-1-094106-7
    [160]Klamt A, Schuurmann G. COSMO:a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient [J]. Journal of the Chemical Society,Perkin Transactions 2,1993:799-805.
    [161]Barone V, Cossi M. Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model[J]. Journal of Physical Chemistry A,1998,102: 1995-2001.
    [162]Cossi M, Rega N, Scalmani G, et al. Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model[J]. Journal of Computational Chemistry,2003,24:669-681.
    [163]Ditchfie. R. Self-consistent perturbation theory of diamagnetism. I. gauge-invariant lcao method for NMR chemical shifts[J]. Molecular Physics,1974,27:789-807.
    [164]Wolinski K, Hinton J F, Pulay P. Efficent implementation of the gauge-independent atomic orbital method for NMR chemical shift calculations[J]. Journal of the American Chemical Society,1990,112:8251-8260.
    [165]Dec S F. Clathrate Hydrate Formation:Dependence on Aqueous Hydration Number [J]. Journal of Physical Chemistry C,2009,113:12355-12361.
    [166]Dec S F, Bowler K E, Stadterman L L, et al. Direct measure of the hydration number of aqueous methane[J]. Journal of the American Chemical Society,2006,128:414-415.
    [167]pimental G C, Charles S W. Infrared spectra of some organic sulphur compounds[J]. Pure Appl.Chem,1963,7:111-123.
    [168]Uchida T, Okabe R, Gohara K, et al. Raman spectroscopic observations of methane-hydrate formation and hydrophobic hydration around methane molecules in solution [J]. Canadian Journal of Physics,2003,81:359-366.
    [169]Ripmeester J A, Ratcliffe C I. Low-temperature cross-polarization/magic angle spinning 13C NMR of solid methane hydrates:structure, cage occupancy, and hydration number [J]. Journal of Physical Chemistry,1988,92:337-339.
    [170]Yeon S H, Seol J, Lee H. Structure transition and swapping pattern of clathrate hydrates driven by external guest molecules [J]. Journal of the American Chemical Society, 2006,128:12388-12389.
    [171]Kim D Y, Lee J W, Seo Y T, et al. Structural transition and tuning of tert-butylamine hydrate [J]. Angewandte Chemie International Edition,2005,44:7749-7752.
    [172]Seo Y, Kang S-P, Jang W. Structure and composition analysis of natural gas hydrates: 13C NMR spectroscopic and gas uptake measurements of mixed gas hydrates [J]. Journal of Physical Chemistry A,2009,113:9641-9649.
    [173]Volodin A M. Photoinduced phenomena on the surface of wide-band-gap oxide catalysts [J]. Catalysis Today,2000,58:103-114.
    [174]Greenwood N N, Earnshaw A. Chemistry of the Elements [M]. Oxford:Pergamon Press, 1984.
    [175]Cotton F A, Wilkinson G, Murillo C A, et al. Advanced inorganic chemistry [M]. New York:Wiley,1999.
    [176]Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature,1972,238:37-38.
    [177]Hoffmann M R, Martin S T, Choi W Y, et al. Enviormental applications of semiconductor photocatalysis [J]. Chemical Reviews,1995,95:69-96.
    [178]Persson P, Bergstrom R, Lunell S. Quantum chemical study of photoinjection processes in dye-sensitized TiO2 nanoparticles[J]. Journal of Physical Chemistry B,2000,104: 10348-10351.
    [179]Ducati C, Barborini E, Bongiorno G, et al. Titanium fullerenoid oxides [J]. Applied Physics Letters,2005,87:201906-1-201906-3
    [180]Mogilevsky G, Chen Q, Kulkarni H, et al. Layered nanostructures of delaminated anatase: Nanosheets and nanotubes[J]. Journal of Physical Chemistry C,2008,112:3239-3246.
    [181]Mowbray D J, Martinez J I, Lastra J M G, et al. Stability and electronic properties of TiO2 nanostructures with and without B and N doping[J]. Journal of Physical Chemistry C,2009,113:12301-12308.
    [182]Yu W, Freas R B. Formation and fragmentation of gas-phase titanium/oxygen cluster positive ions[J]. Journal of the American Chemical Society,1990,112:7126-7133.
    [183]Guo B C, Kerns K P, Castleman A W. Studies of reactions of small titanium oxide cluster cations toward oxygen at thermal energies[J]. International Journal of Mass Spectrometry and Ion Processes,1992,117:129-144.
    [184]Foltin M, Stueber G J, Bernstein E R. On the growth dynamics of neutral vanadium oxide and titanium oxide clusters [J]. Journal of Chemical Physics,1999,111:9577-9586.
    [185]Matsuda Y, Bernstein E R. On the titanium oxide neutral cluster distribution in the gas phase:Detection through 118 nm single-photon and 193 nm multiphoton ionization [J]. Journal of Physical Chemistry A,2005,109:314-319.
    [186]von Helden G, van Heijnsbergen D, Meijer G. Resonant ionization using IR light:A new tool to study the spectroscopy and dynamics of gas-phase molecules and clusters [J]. Journal of Physical Chemistry A,2003,107:1671-1688.
    [187]Hagfeldt A, Bergstrom R, Siegbahn H O G, et al. Structure and stability of small titanium oxygen clusters studied by ab initio quantum chemical calculations [J]. Journal of Physical Chemistry,1993,97:12725-12730.
    [188]Albaret T, Finocchi F, Noguera C. Ab initio simulation of titanium dioxide clusters [J]. Applied Surface Science,1999,144-45:672-676.
    [189]Albaret T, Finocchi F, Noguera C. Density functional study of stoichiometric and 0-rich titanium oxygen clusters [J]. Journal of Chemical Physics,2000,113:2238-2249.
    [190]Jeong K S, Chang C, Sedlmayr E, et al. Electronic structure investigation of neutral titanium oxide molecules TixO(?)[J]. Journal of Physics B:Atomic, Molecular and Optical Physics,2000,33:3417-3430.
    [191]Walsh M B, King R A, Schaefer H F. The structures, electron affinities, and energetic stabilities of TiOn and TiOn (n=1-3) [J]. Journal of Chemical Physics,1999,110:5224-5230.
    [192]Grein F. Density functional theory and multireference configuration interaction studies on low-lying excited states of TiO2[J]. Journal of Chemical Physics,2007,126: 034313-1-034313-8
    [193]Li S, Dixon D A. Molecular structures and energetics of the (TiO2)n (n=1-4) clusters and their anions[J]. Journal of Physical Chemistry A,2008,112:6646-6666.
    [194]Qu Z W, Kroes G J. Theoretical study of the electronic structure and stability of titanium dioxide clusters (TiO2)n with n=1-9 [J]. Journal of Physical Chemistry B,2006, 110:8998-9007.
    [195]Qu Z-W, Kroes G-J. Theoretical study of stable, defect-free (TiO2)n nanoparticles with n-10-16[J]. Journal of Physical Chemistry C,2007,111:16808-16817.
    [196]Becke A D. Density-functional thermochemistry. Ⅲ. the role of exact exchange[J]. Journal of Chemical Physics,1993,98:5648-5652.
    [197]Hay P J. Gaussian basis sets for molecular calculations. The representation of 3d orbitals in transition-metal atoms[J]. Journal of Chemical Physics,1977,66:4377-4384.
    [198]Lee C T, Yang W T, Parr R G. Development of the colle-salvetti correlation-energy formula into a functional of the electron density [J]. Physical Review B,1988,37:785-789.
    [199]Rassolov V A, Pople J A, Ratner M A, et al.6-31G* basis set for atoms K through Zn [J]. Journal of Chemical Physics,1998,109:1223-1229.
    [200]Wachters A J. Gaussian basis set for molecular wavefunctions containing third-row atoms[J]. Journal of Chemical Physics,1970,52:1033-1036.
    [201]Chertihin G V, Andrews L. Reactions of laser ablated titanium, zirconium, and hafnium atoms with oxygen molecules in condensing argon [J]. Journal of Physical Chemistry,1995, 99:6356-6366.
    [202]Akola J, Manninen M, Hakkinen H, et al. Photoelectron spectra of aluminum cluster anions:Temperature effects and ab initio simulations [J]. Physical Review B,1999,60: 11297-11300.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700