输电线路分布式故障测距理论与关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高精度和高可靠性的输电线路故障测距是现代电网安全可靠运行的重要保证。尽管行波测距技术已经得到大面积应用,但弱行波信号的有效提取、故障点反射波与对端母线反射波的有效识别和雷电干扰的有效辨识和定位等问题是影响行波测距技术可靠性和有效性的主要因素。为解决上述问题本文研究了故障电流行波在输电线路上的传播特性,提出全新的分布式故障测距方法,就分布式故障测距方法中的折反射信号的识别、行波信号奇异点确定、雷击干扰的辨识和定位、感应取电等关键问题进行深入研究,并研制出分布式故障测距装置成功的用于示范工程中。取得的主要工作和成果有:
     分析了故障行波及其折反射行波组成的行波序列到达不同位置检测点的时间先后规律,得出输电线路上任意一点故障时,总可在线路上找到对应的检测点使得前3个行波对应的方程唯一确定的结论。提出根据工频故障电流之间的偏离度来判断检测内区段的故障区间,并根据电流行波首波能量和模量时差来判断检测外区段的故障区间的方法。进一步提出两端对称法、中点主导法和四点联合法三种分布式故障测距方法,阐述了上述三种方法的测距原理,并通过仿真验证了上述算法的正确性。
     首次将二分递推奇异值分解(Singular Value Decomposition-SVD)引入故障行波奇异点检测领域,并设计了数字实验以对比其与3次B样条小波和db2小波的性能差异,通过比较发现在故障行波奇异点检测方面(紧支撑、对称性、高阶消失矩等)二分递推SVD具有独特的优势。发现了指示奇异点脉冲的幅值与突变量或者斜率呈线性关系,并通过实验证明了上述结论的正确性。提出迭代SVD降噪的方法,并用仿真实验证明了迭代SVD降噪的正确性,并发现迭代SVD降噪时的奇异点线性偏移现象。
     根据线路故障(雷击和线路本身故障)边界条件和行波传播规律,分析了线路在雷击和线路故障情况下,三相导线上行波极性之间的对应关系,提出根据三相行波极性的异同来识别输电线路反击的方法,进一步根据线路绕击和线路故障时行波能量变化差异,提出基于短视窗内行波修正能量比的输电线路绕击识别方法,并通过实验验证了上述理论的正确性;针对雷击点和闪络点不一致的情况,提出基于短时窗内测点间行波距离的雷击点和闪络点不一致的判断方法及相应的测距方法,同样通过实验验证了此方法的正确性。
     对取电线圈的功率输出特性,分别从理论和实验两个方面进行了分析,发现当取电线圈工作在线性区时,线圈输出功率与原边电流的平方成正比,并且与sin(2)成正比(为原边电流和磁化电流之间的相差),同时功率输出导通角也决定其输出功率的大小;根据上述结论并结合输电线路上负荷变化特点,提出在小负荷时,采用最大功率跟踪的方法实现取电线圈的最大功率输出;在大负荷时,采用功率控制法来限制取电线圈的输出功率。从而保证取电电源稳定输出额定功率,利用上述方法完成了取电电源的设计,实验测试表明取电电源在20-2000A的电流范围内取电电源可稳定输出2W的功率。
     根据上述理论研究基础完成了分布式故障测距装置的研制。并从传感器和测距装置两个方面,分别搭建验证试验平台,并通过实验验证了分布式故障测距装置的性能,结果表明分布式故障测距装置测试结果与理论分析一致。
Fault location with high accuracy and high reliability is one of the major guarantees for thesafety operation for modern power grid. Although traveling wave location technology is widelyused, there still remain problems that will negatively impact its effectiveness and reliability such asthe detection of weak traveling wave signals, the recognition between reflection waves from faultpoint and from the end bus bar, the identification of lighting interference. In this paper, thepropagation characteristics of the fault current traveling waves in transmission lines are analyzed tosolve the above problems, and a new distributed fault location method is proposed which containsrecognition between refraction signal and reflection signal, confirmation of traveling wavesingularity, and identification of lightning interference. A set of distributed fault location device isdeveloped and has been successfully applied in the demonstration project. The main work and resultare as follows.
     The traveling wave sequences consist of fault traveling wave, its refraction and reflection waveThe arrival time regular pattern of traveling wave sequences is studied. And the conclusion has beenreached that when a fault occurs at any point of the transmission line, the corresponding detectionpoint can always be found such that the first three traveling wave can be uniquely determined. Twomethods are proposed to determine the fault interval respectively. By calculating the degree ofdeviation of the power frequency fault current, a fault interval at inner section can be detected. Andouter section fault interval can be determined according to the time difference of first wave energyand modulus of current traveling wave. Furthermore, three distributed fault measuring methods areproposed including the both ends symmetry method, the midpoint dominant method and four pointscombined method. The work principles of the above three methods are explained and accuracy ofthose methods is proved by simulation.
     Binary recursive singular value decomposition (SVD) is firstly introduced to the field of faulttraveling wave singularity detection. Digital experiments are designed to compare the performancedifferences among binary recursive SVD,3B-spline wavelet and db2wavelet. According to theexperiments, binary recursive SVD has unique advantages such as compact support, symmetry andhigher order vanishing moments. Linear relationship is found between amplitude of singular pointpulse and mutation amount or slope. Correctness of the above conclusion is proved throughexperiments. The iterative SVD noise reduction method is proposed and is proved correct bysimulation experiment. Singular points linear offset phenomenon is also found in iterative SVD noise reduction.
     Based on the law of transmission line fault (caused by lighting or line itself) boundaryconditions and traveling wave propagation, the correspondence relationship of three phase travelingwave polarity under conditions of lighting and line fault is analyzed. Then the method to recognizeback lightning flashover of transmission line is proposed based on the polarity difference of threephase traveling wave. Furthermore, shielding failure recognition method is developed based onrevised wave energy ratio in short-time window according to the energy change differences betweenshielding failure and line fault. The above theory is proved correct through experiments. Forconditions that lightning point and flashover point are inconsistent, judgment method andcorresponding measurement method are proposed based on traveling wave distance betweenmeasuring point in short-time window. The correctness of these methods is also proved throughexperiments.
     Both the theoretical and the empirical analysis are applied on the output power characteristicof the electric coil, and the proportional relationship (when electric coil is working in linear interval)between the output power and the primary current is revealed.Moreover, the output power of coil isalso in proportion to sin(2), where is the phase difference between the primary current and themagnetizing current. In the mean time, it is also found that the output power value is decided by theconduction angle.According to the output circuit load changing characteristic and the results above,a novel design is proposed to gain a stable rated output power through getting a maximum outputpower on the electric coil with maximum power tracking when the load is low, and through gettinga limited output power with power controlling when the load is high. Experiments show that thisdesign can achieve a2W stable output power on energy source when the measured current is inrange of20-2000A.
     Based on the theoretical foundations above, a distributed fault location system is implemented.Furthermore, experimental platforms are built in respect of both sensors and fault location device.And experiments show that the performance of the distributed fault location system is consistentwith the theoretical analysis.
引文
[1]高素英.国家电网:计划十二五末总资产超30000亿元[N].财经网,2.16,2011.
    [2]刘振亚.特高压交流输电线路维护与检测[M].北京:中国电力出版社,2008.
    [3]钟庭剑.基于行波法输电线路故障测距的研究及其实现方案[D].硕士,南昌大学2007.
    [4]胡毅.输电线路运行故障的分析与防治[J].高电压技术,2007,33(03):1-8.
    [5]胡毅.输电线路运行故障分析与防治.中国电力出版社:北京,2007.
    [6]葛耀中.新型继电保护和故障测距的原理和技术.西安交通大学出版社:西安,2007.
    [7]高淑萍,宋国兵,焦在滨,等.双端电流时域故障定位法[J].西安交通大学学报,2009,43(04):101-105.
    [8]索南加乐,齐军,陈福锋,等.基于R-L模型参数辨识的输电线路准确故障测距算法[J].中国电机工程学报,2004,24(12):119-125.
    [9]康小宁,索南加乐.基于参数识别的单端电气量频域法故障测距原理[J].中国电机工程学报,2005,25(02):22-27.
    [10]宋国兵,索南加乐,康小宁.不受线路参数影响的双回线双端故障定位方法[J].电力系统自动化,2006,30(24):21-26+32.
    [11]索南加乐,张怿宁,齐军,等.基于参数识别的时域法双端故障测距原理[J].电网技术,2006,30(08):65-70.
    [12]索南加乐,康小宁,宋国兵,等.基于参数识别的继电保护原理初探[J].电力系统及其自动化学报,2007,19(01):14-20+27.
    [13]高淑萍,索南加乐,宋国兵,等.基于分布参数模型的直流输电线路故障测距方法[J].中国电机工程学报,2010,30(13):75-80.
    [14]方敏.基于小波理论的行波故障测距研究[D].硕士,南昌大学2006.
    [15]T. Stringfield,Marihart D.,Stevens R. Fault location methods for overhead lines[J]. PowerApparatus and Systems, Part III. Transactions of the American Institute of Electrical Engineers,1957,76(3):518-529.
    [16]蒋涛.基于暂态行波的输电线路故障测距研究[D].硕士,东南大学2005.
    [17]葛耀中,徐丙垠,陈平.利用暂态行波测距的研究[J].西安交通大学学报,1995,29(03):70-75.
    [18]葛耀中,徐丙垠,陈平.利用暂态行波测距的研究[J].电力系统及其自动化学报,1996,9(03):17-22.
    [19]高厚磊,厉吉文,文锋,江世芳,徐丙垠. GPS及其在电力系统中的应用[J].电力系统自动化,1995,19(09):41-44.
    [20]董新洲,葛耀中,徐丙垠,等.利用GPS的输电线路行波故障测距研究[J].电力系统自动化,1996,20(12):37-40.
    [21]H. Lee,Mousa A. M. GPS travelling wave fault locator systems: investigation into theanomalous measurements related to lightning strikes[J]. Power Delivery, IEEE Transactionson,1996,11(3):1214-1223.
    [22]赵晓微,李桂义,贾明娜,等. GPS同步时钟在电力系统中的应用[J].电力系统通信,1998,(05):4-8.
    [23]董新洲.基于小波变换的输电线路暂态行波分析和故障测距理论研究[M].
    [24]董新洲,耿中行,葛耀中,等.小波变换应用于电力系统故障信号分析初探[J].中国电机工程学报,1997,17(06):421-424.
    [25]董新洲,贺家李,葛耀中.小波变换在行波故障检测中的应用[J].继电器,1998,26(05):1-4.
    [26]董新洲,贺家李,葛耀中,等.基于小波变换的行波故障选相研究第1部分理论基础[J].电力系统自动化,1998,(12):24-26+33.
    [27]董新洲,贺家李,葛耀中.小波变换第1讲基本概念[J].继电器,1999,27(01):64-67.
    [28]董新洲,贺家李,葛耀中.小波变换第2讲离散小波变换[J].继电器,1999,27(02):57-60.
    [29]董新洲,贺家李,葛耀中.小波变换第3讲二进小波变换及信号的奇异性检测[J].继电器,1999,27(03):65-68.
    [30]董新洲,贺家李,葛耀中,等.基于小波变换的行波故障选相研究第2部分仿真试验结果[J].电力系统自动化,1999,23(01):20-22.
    [31]董杏丽,葛耀中,董新洲,等.基于小波变换的行波幅值比较式方向保护[J].电力系统自动化,2000,24(17):11-15+64.
    [32]董杏丽,董新洲,张言苍,等.基于小波变换的行波极性比较式方向保护原理研究[J].电力系统自动化,2000,24(14):11-15+29.
    [33]董新洲,刘建政,张言苍.行波的小波表示[J].清华大学学报(自然科学版),2001,41(09):13-17.
    [34]董杏丽,葛耀中,董新洲,等.基于小波变换的行波测距式距离保护原理的研究[J].电网技术,2001,25(07):9-13.
    [35]C. Aguilera,Orduna E.,Ratta G. Adaptive noncommunication protection based on travelingwaves and impedance relay[J]. Power Delivery, IEEE Transactions on,2006,21(3):1154-1162.
    [36]A. Borghetti,Bosetti M.,Di Silvestro M., et al. Continuous-Wavelet Transform for FaultLocation in Distribution Power Networks: Definition of Mother Wavelets Inferred From FaultOriginated Transients[J]. Power Systems, IEEE Transactions on,2008,23(2):380-388.
    [37]A. Borghetti,Bosetti M.,Nucci C. A., et al. Integrated Use of Time-Frequency WaveletDecompositions for Fault Location in Distribution Networks: Theory and ExperimentalValidation[J]. Power Delivery, IEEE Transactions on,2010,25(4):3139-3146.
    [38]A. O. Ibe,Cory B. J. A Traveling Wave-Based Fault Locator for Two-and Three-TerminalNetworks[J]. Power Engineering Review, IEEE,1986, PER-6(4):55-55.
    [39]M. Korkali,Lev-Ari H.,Abur A. Traveling-Wave-Based Fault-Location Technique forTransmission Grids Via Wide-Area Synchronized Voltage Measurements[J]. Power Systems,IEEE Transactions on,2012,27(2):1003-1011.
    [40]G. Mahmoud,Doaa khalil I.,El Sayed Tag E. Traveling-Wave-Based Fault-Location Scheme forMultiend-Aged Underground Cable System[J]. Power Delivery, IEEE Transactions on,2007,22(1):82-89.
    [41]D. Spoor,Jian Guo Z. Improved single-ended traveling-wave fault-location algorithm based onexperience with conventional substation transducers[J]. Power Delivery, IEEE Transactions on,2006,21(3):1714-1720.
    [42]季涛.基于暂态行波的配电线路故障测距研究[D].博士,山东大学2006.
    [43]马士聪.利用暂态信号的小电流接地故障距离识别技术[D].博士,山东大学2008.
    [44]邹贵彬.输电线路积分型行波方向纵联保护研究[D].博士,山东大学2009.
    [45]孙波.基于暂态信息的配电网单相接地故障定位技术研究[D].博士,山东大学2009.
    [46]司马文霞,陈伟,杜林,等.基于输电网中故障行波分布和网络依赖图的故障定位算法[J].高压电器,2010,46(06):45-49.
    [47]周湶,卢毅,廖瑞金,等.基于小波包提取算法和相关分析的电缆双端行波测距[J].电力系统保护与控制,2012,40(01):1-4.
    [48]覃剑,葛维春,邱金辉,等.输电线路单端行波测距法和双端行波测距法的对比[J].电力系统自动化,2006,30(06):92-95.
    [49]邬林勇.利用故障行波固有频率的单端行波故障测距法[D].博士,西南交通大学2009.
    [50]马欣,程伟.基于阻抗法和行波法组合的复线牵引网故障测距研究[J].继电器,2006,34(20):47-52.
    [51]王茂清.基于阻抗法与行波法相结合的输电线路单端故障测距研究[D].硕士,中国电力科学研究院2010.
    [52]郑秀玉,丁坚勇,黄娜.输电线路单端故障定位的阻抗-行波组合算法[J].电力系统保护与控制,2010,38(06):18-21.
    [53]M. Aurangzeb,Crossley P.,Gale P. Fault location using the high frequency travelling wavesmeasured at a single location on a transmission line[C]. In2001;403-406.
    [54]F. H. Magnago,Abur A. Fault location using wavelets[J]. Power Delivery, IEEE Transactionson,1998,13(4):1475-1480.
    [55]W. Zhao,Song Y.,Chen W. Improved GPS travelling wave fault locator for power cables byusing wavelet analysis[J]. Int J Elec Power,2001,23(5):403-411.
    [56]Z. Bo,Weller G.,Jiang F., et al. Application of GPS based fault location scheme for distributionsystem[C]. In1998;53-57.
    [57]李强,王银乐.高压输电线路的故障测距方法[J].电力系统保护与控制,2009,37(23):192-197.
    [58]邬林勇,何正友,钱清泉.利用CVT二次信号的频域行波故障测距方法[J].电力系统自动化,2008,32(08):73-77+82.
    [59]董新洲,刘建政,余学文.输电线路暂态电压行波的故障特征及其小波分析[J].电工技术学报,2001,16(03):57-61+74.
    [60]曾祥君,尹项根,林福昌,等.基于行波传感器的输电线路故障定位方法研究[J].中国电机工程学报,2002,22(06):42-46.
    [61]楚湘辉.新型行波传感器及其在电网故障行波定位中应用[D].硕士,长沙理工大学2009.
    [62]吴维宁,陈家宏,张勤,等输电线路故障点定位方法和装置[P].2002-1-31.
    [63]邹贵彬,高厚磊,许明,等.一种高压电网电压行波信号的提取方法[J].电力系统自动化,2009,33(02):71-74+100.
    [64]甘磊,张哲,尹项根.基于电容式电压互感器二次信号的行波故障定位方法[J].电网技术,2006,30(05):101-105.
    [65]甘磊.基于电压互感器二次信号的行波定位系统研制[D].硕士,华中科技大学2006.
    [66]甘磊,张哲,叶睆,等.基于CVT二次信号的实用化行波定位方法[J].电力系统自动化,2007,31(03):52-56.
    [67]王绍部,舒乃秋,龚庆武,等.计及TA传变特性的输电线路行波故障定位研究[J].中国电机工程学报,2006,26(02):88-92.
    [68]季涛,孙同景,徐丙垠,等.利用配电变压器获取行波信号[J].电力系统自动化,2006,30(16):66-71.
    [69]孙波,薛永端,孙同景,等.架空线路小电流接地故障电流信息获取新方法[J].电力系统自动化,2008,32(09):74-78.
    [70]高冈本州,杉浦正则.故障点定位系统[P].1999-11-12.
    [71]高冈本州,杉浦正则.故障点定位系统[P].1999-12-22.
    [72]刘亚东,盛戈皞,王葵,等.输电线路分布式综合故障定位方法及其仿真分析[J].高电压技术,2011,37(04):923-929.
    [73]李冰,赵立强.“基于电子式互感器的输电线路精确故障定位技术研究”项目通过国家电网公司验收[N].国家电网中国电力科学研究院官方网站,2011.
    [74]董新洲,葛耀中,徐丙垠.输电线路暂态电流行波的故障特征及其小波分析[J].电工技术学报,1999,14(01):59-62.
    [75]覃剑,陈祥训,郑健超,等.利用小波变换的双端行波测距新方法[J].中国电机工程学报,2000,20(08):6-10.
    [76]何正友,曹军军,陈小勤,等.基于TMS320F2812的电力系统暂态小波分析仪研制[C].四川成都,2004.
    [77]姜晟,舒乃秋,胡芳,等.基于小波变换的含噪声行波信号奇异点检测[J].电网技术,2004,28(10):59-62.
    [78]覃剑,黄震,邱宇峰,等.基于小波变换的同杆并架双回线双端行波故障测距[J].电力系统自动化,2004,28(05):51-55.
    [79]覃剑,彭莉萍,王和春.基于小波变换技术的输电线路单端行波故障测距[J].电力系统自动化,2005,29(19):62-65+86.
    [80]M. da Silva,Coury D. V.,Oleskovicz M., et al. Combined solution for fault location inthree-terminal lines based on wavelet transforms[J]. Generation, Transmission&Distribution,IET,2010,4(1):94-103.
    [81]H. Zhengyou,Ling F.,Sheng L., et al. Fault Detection and Classification in EHV TransmissionLine Based on Wavelet Singular Entropy[J]. Power Delivery, IEEE Transactions on,2010,25(4):2156-2163.
    [82]K. De Kerf,Srivastava K.,Reza M., et al. Wavelet-based protection strategy for DC faults inmulti-terminal VSC HVDC systems[J]. Generation, Transmission&Distribution, IET,2011,5(4):496-503.
    [83]张峰,梁军,张利,等.奇异值分解理论和小波变换结合的行波信号奇异点检测[J].电力系统自动化,2008,32(20):57-60.
    [84]郭方正.双端行波故障测距方法的深入研究[D].硕士,山东大学2007.
    [85]D. J. Zhang,Wu Q. H.,Zhang J. F., et al. Accurate fault location based on transients extractionusing mathematical morphology[J]. Electronics Letters,2002,38(24):1583-1585.
    [86]Z. Lu,Ji T. Y.,Wu Q. H., et al. An adaptive distance relaying algorithm with a morphologicalfault detector embedded[C]. In Power&Energy Society General Meeting,2009. PES '09.IEEE[C],26-30July2009,2009;1-8.
    [87]J. Zhen,Qiming Z.,Jianghai L., et al. A novel mathematical morphology filter for the accuratefault location in power transmission lines[C]. In TENCON2009-2009IEEE Region10Conference[C],23-26Jan.2009,2009;1-6.
    [88]J. F. Zhang,Smith J. S.,Wu Q. H. Morphological undecimated wavelet decomposition for faultlocation on power transmission lines[J]. Circuits and Systems I: Regular Papers, IEEETransactions on,2006,53(6):1395-1402.
    [89]D. J. Zhang,Li Q.,Zhang J. F., et al. Improving the accuracy of single-ended transient faultlocators using mathematical morphology[C]. In Power System Technology,2002. Proceedings.PowerCon2002. International Conference on[C],2002,2002;788-792vol.2.
    [90]夏璐璐,何正友,张钧.基于数学形态学原理的行波波头提取算法在铁路电力贯通线测距中的适应性分析[J].电网技术,2009,33(08):78-83.
    [91]束洪春,程春和,赵文渊,等.形态学与HHT检测相结合的行波波头准确标定方法[J].电力自动化设备,2009,29(07):1-7+37.
    [92]成乐祥,李扬,唐瑜.基于改进形态Haar小波在输电线路故障测距中的应用研究[J].电力系统保护与控制,2010,38(06):30-34.
    [93]束洪春,王晶,陈学允.动态电能质量扰动的多刻度形态学分析[J].中国电机工程学报,2004,24(04):67-71.
    [94]P. F. Alvanitopoulos,Papavasileiou M.,Andreadis I., et al. Seismic Intensity FeatureConstruction Based on the Hilbert&Huang Transform[J]. Instrumentation and Measurement,IEEE Transactions on,2012,61(2):326-337.
    [95]N. Attoh-Okine,Adu-Gyamfi Y.,Mensah S. Potential Application of Hybrid Belief Functionsand Hilbert-Huang Transform in Layered Sensing[J]. Sensors Journal, IEEE,2011,11(3):530-535.
    [96]C. Chengjie,Weixian L.,Fu J. S., et al. Radar Micro-Doppler Signature Analysis with HHT[J].Aerospace and Electronic Systems, IEEE Transactions on,2010,46(2):929-938.
    [97]A. G. Espinosa,Rosero J. A.,Cusido J., et al. Fault Detection by Means of Hilbert&HuangTransform of the Stator Current in a PMSM With Demagnetization[J]. Energy Conversion,IEEE Transactions on,2010,25(2):312-318.
    [98]A. Y. Goharrizi,Sepehri N. Internal Leakage Detection in Hydraulic Actuators Using EmpiricalMode Decomposition and Hilbert Spectrum[J]. Instrumentation and Measurement, IEEETransactions on,2012,61(2):368-378.
    [99]L. Helong,Sam K.,Lihua Y., et al. Hilbert-Huang Transform for Analysis of Heart RateVariability in Cardiac Health[J]. Computational Biology and Bioinformatics, IEEE/ACMTransactions on,2011,8(6):1557-1567.
    [100]S. Mellone,Palmerini L.,Cappello A., et al. Hilbert&Huang-Based Tremor Removal to AssessPostural Properties From Accelerometers[J]. Biomedical Engineering, IEEE Transactions on,2011,58(6):1752-1761.
    [101]A. Roy,Chun-Hsien W.,Doherty J. F., et al. Signal Feature Extraction From MicrobarographObservations Using the Hilbert&Huang Transform[J]. Geoscience and Remote Sensing, IEEETransactions on,2008,46(5):1442-1447.
    [102]Y. Ruqiang,Gao R. X. Hilbert&Huang Transform-Based Vibration Signal Analysis forMachine Health Monitoring[J]. Instrumentation and Measurement, IEEE Transactions on,2006,55(6):2320-2329.
    [103]Z. Wenbiao,Chao W.,Huaxiang W. Hilbert&Huang Transform-Based Electrostatic SignalAnalysis of Ring-Shape Electrodes With Different Widths[J]. Instrumentation andMeasurement, IEEE Transactions on,2012,61(5):1209-1217.
    [104]C. Wenwu,Rushan C. Multi-component LFM signal detection and parameter estimation basedon Radon-HHT[J]. Systems Engineering and Electronics, Journal of,2008,19(6):1097-1101.
    [105]W. Xiaodong,Baoqing L.,Zhiwei L., et al. Analysis of partial discharge signal using theHilbert-Huang transform[J]. Power Delivery, IEEE Transactions on,2006,21(3):1063-1067.
    [106]张小丽.基于希尔伯特—黄变换的输电线路故障行波定位与保护方法[D].硕士,长沙理工大学2008.
    [107]张小丽,曾祥君,马洪江,等.基于Hilbert-Huang变换的电网故障行波定位方法[J].电力系统自动化,2008,33(08):64-68.
    [108]邓军波,施围.输电线路接地故障行波测距新方法[J].继电器,2000,28(08):16-18.
    [109]黄雄,王志华,尹项根,等.高压输电线路行波测距的行波波速确定方法[J].电网技术,2004,28(19):34-37.
    [110]蒋涛,陆于平.不受波速影响的输电线路单端行波故障测距研究[J].电力自动化设备,2004,24(12):29-32.
    [111]李泽文,曾祥君,姚建刚,等.不受波速影响的输电线路双端行波故障测距算法[J].长沙理工大学学报(自然科学版),2006,(04):68-71.
    [112]胡鑫.行波测距中测距波速的实时测量方法研究[D].硕士,四川大学2006.
    [113]骆敬年,颜廷纯.基于行波原理线路故障测距的误差分析及解决措施[J].华东电力,2006,34(10):31-33.
    [114]张峰,梁军,车仁飞.弱行波信号的奇异点检测方法[J].电力系统自动化,2010,34(08):92-96.
    [115]王孔森,盛戈皞,刘亚东,等.基于输电线路轴向张力的导线弧垂在线监测系统[J].华东电力,2011,39(03):339-343.
    [116]陆鑫淼,任丽佳,盛戈皞,等.基于张力的输电线路动态增容系统[J].华东电力,2008,37(12):30-33.
    [117]毛先胤,盛戈皞,刘亚东,等.架空输电线路暂态载流能力的计算和评估[J].高压电器,2011,47(01):70-74.
    [118]王孔森.输电线路动态容量系统应用分析及其风险评估方法[D].硕士,上海交通大学2012.
    [119]输电线路暂态载流能力监测装置及监测方法[P]. CN102141591A,2011-08-03.
    [120]刘亚东.动态提高输电线路容量系统硬件平台的设计与实现[D].硕士,上海交通大学2007.
    [121]陈玥云,覃剑,刘巍,等.影响输电线路长度的主要因素分析[J].电网技术,2007,31(14):41-44.
    [122]覃剑,葛维春,邱金辉,等.影响输电线路行波故障测距精度的主要因素分析[J].电网技术,2007,31(02):28-35.
    [123]郭宁明,覃剑,陈祥训.雷击对行波故障测距的影响及识别[J].电力系统自动化,2008,32(05):76-79.
    [124]郭宁明,覃剑.输电线路雷击故障情况下的短路点定位方法[J].电力系统自动化,2009,33(10):74-77+85.
    [125]董杏丽,葛耀中,董新洲.行波保护中雷电干扰问题的对策[J].中国电机工程学报,2002,22(09):74-78.
    [126]吕艳萍,刘亚东.应用数学形态学方法分析识别特高压线路雷击干扰[J].高电压技术,2010,36(12):2948-2953.
    [127]赵军,吕艳萍,王汉广.基于多尺度形态分解的特高压线路雷击干扰识别新方法[J].高电压技术,2009,35(05):994-998.
    [128]束洪春,王永治,程春和,等.±800kV直流输电线路雷击电磁暂态分析与故障识别[J].中国电机工程学报,2008,28(19):93-100.
    [129]束洪春,张广斌,孙士云,等.±800kV直流输电线路雷电绕击与反击的识别方法[J].中国电机工程学报,2009,29(07):13-19.
    [130]司大军,束洪春,陈学允,等.输电线路雷击的电磁暂态特征分析及其识别方法研究[J].中国电机工程学报,2005,25(07):64-69.
    [131]朱晓栋.输电线路雷击故障辨识与定位新方法研究[D].硕士,昆明理工大学2009.
    [132]束洪春,张斌,张广斌,等.±800kV直流输电线路雷击干扰短时窗电压均值识别方法[J].高电压技术,2010,36(09):2180-2186.
    [133]束洪春,张斌,张广斌,等.±800kV直流输电线路雷击点与闪络点不一致时的行波测距[J].中国电机工程学报,2011,31(13):114-120.
    [134]P. Gale,Stokoe J.,Crossley P. Practical experience with travelling wave fault locators onScottish Power's275&400kV transmission system[C].1997;192-196.
    [135]P. Gale,Taylor P.,Naidoo P., et al. Travelling wave fault locator experience on Eskom'stransmission network[C].2001;327-330.
    [136]陈平,徐丙垠,李京,等.现代行波故障测距装置及其运行经验[J].电力系统自动化,2003,27(06):66-69.
    [137]中国电力企业联合会成果鉴定办公室.武汉三相“SP2000输电线路智能故障监测系统”通过产品鉴定[N]. http://kjfw.cec.org.cn,2012.
    [138]许汉平,魏威,黄涌,等.电力系统仿真器中行波线路模型的分析及其应用[J].华中电力,2001,(02):23-25.
    [139]许汉平,魏威,黄涌,等. RTDS行波线路模型用于输电线路故障测距的研究[J].电网技术,2001,25(10):47-49+62.
    [140]S. Ahmed,Al-Zoubi Q.,Abo-Zahhad M. A hybrid ECG compression algorithm based onsingular value decomposition and discrete wavelet transform[J]. Journal of MedicalEngineering&Technology,2007,31(1):54-61.
    [141]M. Bydder,Du J. Noise reduction in multiple-echo data sets using singular valuedecomposition[J]. Magnetic resonance imaging,2006,24(7):849-856.
    [142]S. K. Jha,Yadava R. D. S. Denoising by Singular Value Decomposition and Its Application toElectronic Nose Data Processing[J]. Sensors Journal, IEEE,2011,11(1):35-44.
    [143]X. Jianmin,Yufeng W. Singular Value Decomposition-Based Algorithm for NoiseSuppression of TH-PAM UWB Signal in AWGN Channel[C]. In Wireless Communications,Networking and Mobile Computing (WiCOM),20117th International Conference on[C],23-25Sept.2011,2011;1-3.
    [144]J. B. Maj,Royackers L.,Moonen M., et al. SVD-based optimal filtering for noise reduction indual microphone hearing aids: a real time implementation and perceptual evaluation[J].Biomedical Engineering, IEEE Transactions on,2005,52(9):1563-1573.
    [145]S.-B. Napa,Udomhunsakul S. Noise suppression using block-based singular valuedecomposition filtering[C]. In Communications,2007. APCC2007. Asia-Pacific Conferenceon[C],18-20Oct.2007,2007;491-494.
    [146]R. D. Phillips,Watson L. T.,Wynne R. H., et al. Feature reduction using a singular valuedecomposition for the iterative guided spectral class rejection hybrid classifier[J]. ISPRSJournal of Photogrammetry and Remote Sensing,2009,64(1):107-116.
    [147]C. Shuyue,Jun F. Research on detection of fabric defects based on singular valuedecomposition[C]. In Information and Automation (ICIA),2010IEEE InternationalConference on[C],20-23June2010,2010;857-860.
    [148]G. W. Chang,Chen C. I.,Chin Y. C. Modified high-resolution Singular Value Decompositionmethod for power signal analysis by using down-sampling technique[C]. In Harmonics andQuality of Power,2008. ICHQP2008.13th International Conference on[C], Sept.282008-Oct.12008,2008;1-6.
    [149]A. A. Khan,Vrabie V.,Mars J. I., et al. Automatic Monitoring System for SingularityDetection in Dikes By DTS Data Measurement[J]. Instrumentation and Measurement, IEEETransactions on,2010,59(8):2167-2175.
    [150]M. H. Omar,Hassan S.,Amphawan A., et al. SVD-Based Signal Detector for Cognitive RadioNetworks[C]. In Computer Modelling and Simulation (UKSim),2011UkSim13thInternational Conference on[C], March302011-April12011,2011;513-517.
    [151]S. YongJune,Sang-Won N.,Chong-Koo A., et al. Design of a time-frequency domain matchedfilter for detection of non-stationary signals[C]. In Acoustics, Speech, and Signal Processing,2001. Proceedings.(ICASSP '01).2001IEEE International Conference on[C],2001,2001;3585-3588vol.6.
    [152]赵学智,叶邦彦. SVD和小波变换的信号处理效果相似性及其机理分析[J].电子学报,2008,36(08):1582-1589.
    [153]赵学智,叶邦彦,陈统坚.多分辨奇异值分解理论及其在信号处理和故障诊断中的应用[J].机械工程学报,2010,46(20):64-75.
    [154]赵学智,叶邦彦,陈统坚.基于SVD的奇异性信号检测原理及其应用[J].振动与冲击,2008,27(06):11-14+44+184.
    [155]赵学智,叶邦彦.基于二分递推SVD的信号奇异性位置精确检测[J].电子学报,2012,40(01):53-59.
    [156]范红波,张英堂,李国璋,等.基于奇异值分解的电感式磨粒传感器信号降噪方法研究[J].传感技术学报,2010,23(08):1129-1133.
    [157]汤宝平,蒋永华,张详春.基于形态奇异值分解和经验模态分解的滚动轴承故障特征提取方法[J].机械工程学报,2010,46(05):37-42+48.
    [158]徐锋,刘云飞.基于中值滤波-奇异值分解的胶合板拉伸声发射信号降噪方法研究[J].振动与冲击,2011,30(12):135-140.
    [159]徐锋,刘云飞,宋军.基于中值滤波-SVD和EMD的声发射信号特征提取[J].仪器仪表学报,2011,32(12):2712-2719.
    [160]J. Marti. Accurate modeling of frequency-dependent transmission lines in electromagnetictransient simulations[J]. Power Engineering Review, IEEE,1982,(1):29-30.
    [161]张志刚.直流输电系统线路过电压的研究[D].硕士,华中科技大学2006.
    [162]J. LaForest. Transmission-line reference book.345kV and above[R]. General Electric Co.,Pittsfield, MA (USA). Large Transformer Div.; General Electric Co., Schenectady, NY (USA).Electric Utility Systems Engineering Dept.,1981.
    [163]伏进.特高压直流输电线路耐雷性能分析方法研究[D].博士,重庆大学2009.
    [164]杨庆,王荆,陈林,等.计及冲击电晕的输电线路雷电绕击和反击智能识别方法[J].高电压技术,2011,37(05):1149-1157.
    [165]S. Beeby,Tudor M.,White N. Energy harvesting vibration sources for microsystemsapplications[J]. Measurement science and technology,2006,171-175.
    [166]T. Galchev,McCullagh J.,Peterson R. L., et al. Energy harvesting of radio frequency andvibration energy to enable wireless sensor monitoring of civil infrastructure[C]. In2011;798314.
    [167]B. Garca,Burgos J. C.,Alonso M. Transformer tank vibration modeling as a method ofdetecting winding deformations-Part I: Theoretical foundation[J]. Power Delivery, IEEETransactions on,2006,21(1):157-163.
    [168]E. Koukharenko,Li X.,Nandhakumar I., et al. Towards Nanostructured ThermoelectricGenerator For Energy Harvesting[C]. In145-148.
    [169]H. Zangl,Bretterklieber T.,Brasseur G. A Feasibility Study on Autonomous Online ConditionMonitoring of High-Voltage Overhead Power Lines[J]. Instrumentation and Measurement,IEEE Transactions on,2009,58(5):1789-1796.
    [170]H. Zangl,Bretterklieber T.,Brasseur G. Energy harvesting for online condition monitoring ofhigh voltage overhead power lines[C]. In1364-1369.
    [171]T. C. Banwell,Estes R. C.,Reith L. A., et al. Powering the fiber loop optically-a costanalysis[J]. Lightwave Technology, Journal of,1993,11(3):481-494.
    [172]J. Ahola,Ahonen T.,Sarkimaki V., et al. Design considerations for current transformer basedenergy harvesting for electronics attached to electric motor[C]. In901-905.
    [173]M. Zhu,Baker P.,Roscoe N., et al. Alternative Power Sources for Autonomous Sensors inHigh Voltage Plant[C]. In2009;36-40.
    [174]A. Ben-Kish,Tur M.,Shafir E. Geometrical separation between the birefringence componentsin Faraday-rotation fiber-optic current sensors[J]. Optics letters,1991,16(9):687-689.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700