用户名: 密码: 验证码:
甲苯仿生催化氧化过程及卟啉合成工业应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以仿生催化应用于甲苯空气氧化制备苯甲醛与苯甲醇的过程为研究目的,采用自行设计的连续式氧化装置,考察了甲苯仿生催化连续氧化的反应规律,在有关仿生催化剂对甲苯氧化的影响方面获得了新的认识与结果;发现可以通过控制氧化反应工艺条件使甲苯仿生催化氧化在动力学与氧传递两种控制条件下发生反应,对动力学控制和氧传递控制下甲苯仿生催化氧化反应规律获得了新的认识与结果;根据甲苯生物循环与化学循环耦合反应过程机理,首次完整获得了甲苯仿生催化氧化反应动力学,定量的认识了仿生催化甲苯氧化过程各物质的转化规律,建立了甲苯仿生催化反应器模型,优化了甲苯仿生催化反应器与工艺条件,甲苯仿生催化氧化优化条件下的实验结果验证了模型的准确性与可靠性;以卟啉工业生产为研究对象,解决了卟啉生产过程中存在的关键工程问题,采用自行设计的卟啉工业化生产装置,首次成功高产率工业合成了四对氯苯基卟啉与对氯双铁卟啉,并改进了工业合成四苯基钴卟啉生产工艺。
     本文围绕上述甲苯仿生催化氧化过程和卟啉合成工业应用中相关的问题,具体完成以下7个方面内容的研究:
     1.研究了甲苯仿生催化连续氧化反应规律;在自行设计的连续反应装置中对甲苯仿生催化进行连续性氧化实验,考察了不同操作方式、金属卟啉催化剂对甲苯仿生催化氧化的影响,确定合适的甲苯仿生催化连续氧化的催化剂为对氯双铁卟啉,催化剂的浓度为2ppm;
     2.为研究甲苯仿生催化氧化反应过程的控制步骤,针对甲苯仿生催化氧化反应体系的反应特征,设计了一套可以准确快速测定反应物氧在反应液中溶解浓度的装置;
     3.研究了动力学控制和传质控制两种情况对甲苯仿生催化氧化的影响,发现动力学与传质控制条件下,反应转化率和选择性区别很大,同一反应时刻动力学控制较传质控制转化率高2-4%(moI);在相同转化率时动力学控制目标产物苯甲醛和苯甲醇选择性较传质控制条件下转化率高8-10%(mo1);结合甲苯仿生催化氧化反应机理和甲苯仿生催化氧化反应过程解释了上述实验现象;
     4.研究了甲苯仿生催化氧化反应动力学,建立了甲苯仿生催化和化学催化耦合过程反应动力学模型;结合甲苯仿生催化氧化过程分析了动力学模型参数的物理意义;
     5.在分批式甲苯仿生催化氧化反应中应用仿生催化氧化动力学模型,动力学模型模拟值与实验测量值相对标准偏差小于5%;获得了16个动力学模型参数,定量分析甲苯仿生催化和化学催化耦合过程关系;根据获得的甲苯仿生催化氧化各步反应活化能,解释了卟啉仿生催化过程中高选择性制备易于氧化的苯甲醛与苯甲醇的原因;
     6.应用甲苯仿生催化氧化反应动力学,结合连续氧化反应器操作特征建立了甲苯仿生催化氧化反应器模型,优化了甲苯仿生催化氧化反应器,优化结果表明:三釜串联搅拌式全混反应器为适合甲苯仿生催化氧化较优的反应器组合形式。以苯甲醇苯甲醛产率为目标产物,控制目标产物选择性(50±3)%,优化的工艺条件为:三釜反应温度分别为463K,468K,473K;三釜平均停留时间为39min,30min,21min。苯甲醛与苯甲醇的产率为4.79%(mol),选择性为47.57%,甲苯转化率为10.07%(mol);9L串联三釜连续甲苯氧化实验结果验证了模型的可靠性与准确性,实验数据与模型模拟值相对误差小于7.97%,平均相对误差为3.69%;
     7.设计并安装了甲苯仿生催化氧化催化剂工业化生产装置,优化了四对氯苯基卟啉工业合成工艺,四对氯苯基卟啉的工业合成产率为31.90%优于实验室规模合成四对氯苯基卟啉和现有工业合成卟啉20%的产率;结合四苯基钴卟啉合成反应动力学与分批式操作反应器特征建立了四苯基钴卟啉合成反应器数学模型,改进了四苯基钻卟啉工业合成工艺条件,提高了四苯基钴卟啉合成产率与产品质量;研究了温度,反应体系初始PH值等关键的工艺因素对副产物对氯单铁卟啉转化为对氯双铁卟啉的影响,通过优化工艺参数控制副产物对氯单铁卟啉的形成,提高了对氯双铁卟啉工业合成产率与产品质量,四批对氯双铁卟啉工业实验合成产率>98.00%。
The process of toluene oxidation with air in the presence of metalloporphrin catalyst to produce benzaldehyde and benzyl alcohol has been studied in this paper. The design and installation of three stirred tank reactors in series as well as continuous experiments in laboratory scale have been carried out. The effect of metalloporphyrin catalyst on continuous oxidation of toluene as well as the influence of oxygen transfer limitations and kinetic control on biomimetic catalytic oxidation of toluene has been investigated. On basis of the biological-chemical-cycle coupling mechanism, the kinetics of biomimetic catalytic oxidation of toluene has been studied. And the corresponding kinetics mathematic model of toluene oxidation is developed firstly. Then by use of the kinetics model the experiment phenomena and the law of toluene oxidation have been analyzed quantitatively. According to the kinetics model several possible reactor models are established to optimize the oxidation reactor and reaction conditions for toluene oxidation in presence of metalloporphyrin. Finally the some chemical engineering problems of industrial synthesis of porphyrin are solved successfully. First industrial-scale synthesis of T(p-C1)PPH2and (T(p-C1)PPFe)2O has been carried out successfully in the plant designed by ourselves to produce porphyrin catalyst, and the process of industrial synthesis of cobaltporphyrin has been developed too. The main research works and results are as follows:
     1. The liquid-phase catalytic aerobic oxidation of toluene by metalloporphyrin is studied in a series of three stirred tank reactors. The effects of operation mode(including batch and continuous operation), catalyst and optimal catalyst concentration on the oxidation process are examined. The conversion of toluene and the selectivity to benzaldehyde and benzyl alcohol are chosen as the evaluating index. The research results are:the best catalyst is (T(p-C1)PPFe)2O and its concentration is2ppm.
     2. In order to determine the control step of toluene oxidation process accurately an improved technique of measuring dissolved oxygen levels for gas-liquid reaction at the elevated temperatures and pressures is used to take the sequential data in the oxidation of toluene catalyzed by metalloporphyrin.
     3. Under oxygen transfer limitations and kinetic control, liquid-phase catalytic oxidation of toluene over metalloporphyrin is studied. The effect of both oxygen transfer and kinetic control on the toluene conversion and the selectivity of benzaldehyde and benzyl alcohol in biomimetic catalytic oxidation of toluene are systematically investigated. The results show that the toluene conversion under the oxygen transfer limitations is lower by2~4%(mol) than that under kinetic control under same oxidation conditions. And the total selectivity of benzaldehyde and benzyl alcohol under the oxygen transfer limitations is lower by8~10%(mol) than that under kinetic control with the same conversion of toluene. The rate of oxygen transfer doesn't influence toluene conversion and the selectivity of benzaldehyde and benzyl alcohol under the kinetics control conditions, and toluene oxidation is zero-order with respect to oxygen. The experimental results are identical with the biomimetic catalytic mechanism of toluene oxidation over metalloporphyrin.
     4. On basis of the biological-chemical-cycle coupling mechanism, the kinetics of biomimetic catalytic oxidation of toluene has been studied. And the corresponding kinetics mathematic model of toluene oxidation is developed firstly. Then by use of the kinetics model the physical meaning of model parameters are analyzed in detail according to the oxidation process of toluene.
     5. The16kinetics model parameters are determined in a nonlinear optimization, minimizing the difference between the simulated and experimental time evolution of the product composition obtained in a batch oxidation reactor where the gas and liquid phases are well mixed, and the standard deviation of the simulated and experimental data is less than5%. The biological-chemical-cycle coupling process of toluene oxidation is explained quantitatively, the reason of high selectivity to benzaldehyde and benzyl alcohol during the toluene oxidation in presence of metalloporphrin is explained successfully according the relation of reaction activation energy.
     6. According to the kinetics model several possible reactor model are established to optimize the oxidation reactor and reaction conditions for toluene oxidation in presence of metalloporphyrin. The optimal results are:the conversion of toluene and the selectivity to benzaldehyde and benzyl alcohol is chosen as the evaluating index, the three continuous stirred tank reactors in series is appropriate for toluene oxidation; the optimal reaction temperature is463K,468K,473K each and average residence time of each is39min, 30min,21min; Under these reaction conditions the toluene conversion is10.07%(mol) and the selectivity to benzaldehyde and benzyl alcohol is47.57%(mol). By using the continuous mathematic reaction model for toluene oxidation with biomimetic catalyst, the maximal relative deviation between the experimental and calculated data is less than7.97%.The average relative deviation between the experimental and calculated data equals to3.69%.The reactor model predicted data for toluene oxidation systems agree with the experimental determined results satisfactorily.
     7. The plant to produce porphyrin catalyst has been designed and installed. The process of industrial synthesis of T(p-C1)PPH2has been optimized.The results are:the yield of T(p-C1)PPH2can reach31.90%, while the yield is only about20%in laboratory; According to kinetics of synthesis of cobaltporphyrin, a batch reaction model for synthesis of cobaltporphyrin has been established, and by use of this model the optimal synthesis conditions have been obtained successfully. Under these optimal conditions the yield of the industrial synthesis of cobaltporphrin can reach98.00%; Final the effects of reaction temperature and PH on the yield for industrial synthesis of (T(p-C1)PPFe)2O has been investigated. And the yield for industrial synthesis of (T(p-C1)PPFe)2O is more than98.00%.
引文
[1]Gelbein A, Nislick A.Make Phenol from Benzoic Acid. Hydrocarb. Process.,1978,57(11):125-128
    [2]Kaeding W. How Dow Makes Phenol from Toluene. Hydrocarb.Process., 1964,43(11):173-176
    [3]Messina G. Upgrade Toluene to Benzoic Acid. Hydrocarb. Process.,1964, 43(11):191-192
    [4]Hoorn J A A, Soolingen J V.Modeling Toluene Oxidation Incorporation of Mass Transfer Phenomena. Chem. Eng. Res. Des.,2005,83(A2):187-195
    [5]Kantam M L, Sreekanth P, Rao K K, et al.An Improved Process for Selective Liquid-Phase Air Oxidation of Toluene. Catal. Lett.,2002,81(3-4):223-232
    [6]Satrio J A B, Doraiswamy L K. Production of benzaldehyde: A case study in a possible industrial application of phase-transfer catalysis. Chem. Eng. J.,2001,82:43-56
    [7]Romain L, Arsam B, Badie I M.Hydrodynamic and Mass-Transfer Characteristics in Organic Liquid Mixtures in a Large-scale Bubble Column Reactor for the Toluene Oxidation Process. Ind. Eng. Chem. Res.,2004,43:6195-6212
    [8]魏文德.有机化工原料大全.北京:化学工业出版社,1999,241-548
    [9]Shearon W H, Hall E H, Stevens J E. A staff-industy collaborative report. Ind. Eng. Chem.,1949,41:1812-1820
    [10]Floke H G, Risto R.Method and apparatus for the hydrolysis of alpha-chlorinated toluene compounds.EP Patent,64486.1981-01-03
    [11]刘正西.苯甲醛生产工艺探讨.辽宁化工,2001,30(1):21-33
    [12]Bayer.Process for the preparation of benzaldehyde.US. Patent,4229379. 1980-06-07
    [13]Bayer. Process for the preparation of benzaldehyde.DE. Patent,2752612. 1977-11-22
    [14]Bayer. Process for the preparation of aromatic aldehyde.EP. Patent,41672. 1980-09-15
    [15]Argus Chem Corp.Preparation of substituted benzaldehydes.US. Patent, 3691217.1970-12-16
    [16]徐克勋.精细有机化工原料及中间体手册.北京:化学工业出版,1999,97-110
    [17]Hancock E G.甲苯、二甲苯及其工业衍生物.王杰,白庚辛.北京:化学工业出版社,1987,114-138
    [18]刘伟华,张同来,张建国等.甲苯氧化制苯甲醛技术进展.化工生产与技术,2004,11(3):24-28
    [19]百度百科.苯甲醇.http://baike.baidu.com/view/77606.htm,2011-4-17
    [20]Sheldon R A. Fine Chemicals by Catalytic Oxidation.Chem. Tech.,1991,21(9):566-576
    [21]Sheldon R A, Brink G J, Arends I. Selective oxidation-Homogeneous. In Horvath, Eds. Encyclopedia of Catalysis. Vol.6. Weinheim:Wiley,2002, 189-239
    [22]Sheldon R A, Kochi J K. Metal catalyzed oxidations of organic compounds, New York:Academic Press,1981,58-123
    [23]Hill C L, Weinstock I A. Homogeneous catalysis on the trail of dioxygen activation. Nature,1997,388:332-336
    [24]Hill C L.Homogenous catalysis controlled green oxidation.Nature,1999, 401:436-437
    [25]Buijs W. Challenges in oxidation catalysis.Top.Catal.,2003,24(1-4):73-78
    [26]Shilov A E, Shul'pin G B. Activation of C-H Bonds by Metal Complexes. Chem. Rev.,1997,97:2879-2932
    [27]Ueda W.Challenges in alkane activation and selective oxidation. Catal. Today,2001,71:1-1
    [28]Centi G, Corberan V C, Perathoner S, et al. Outlooks for selective oxidation.Catal. Today,2000,61:1-1
    [29]Moro-oka Y. Reactivities of active oxygen species and their roles in the catalytic oxidation of inactive hydrocarbon.Catal. Today,1998,45:3-12
    [30]Centia G, Misono M. New possibilities and opportunities for basic and applied research on selective oxidation by solid catalysts:an overview. Catal. Today,1998,41:287-296.
    [31]Kung H H.Desirable catalysis properties in selective oxidation reactions. Ind. Eng. Chem. Prod. Res. Dev.,1986,25(2):171-178
    [32]Millsa P L, Chaudhari R V. Reaction engineering of emerging oxidation processes.Catal. Today,1999,48:17-29
    [33]王旭涛.金属卟啉催化空气选择性液相氧化甲苯制苯甲醛及苯甲醇:[湖南大学硕士学位毕业论文].长沙:湖南大学,2003,40-80
    [34]宋世谟,王正烈,李文斌.物理化学(下册).第三版.北京:高等教育出版社2000,46-48
    [35]姜权.金属卟啉醋酸钴对空气氧化对二甲苯反应的复合催化作用研究:[湖南大学博士学位毕业论文].长沙:湖南大学,2008,1-80
    [36]刘强.金属卟啉催化的碳氢化合物选择性空气氧化反应研究:[湖南大学博士学位论文].长沙:湖南大学,2003,1-133
    [37]Okada T,Kamiya Y.The liquid-phase oxidation of methylbenzene by the cobalt-copper-bromide system. Bull. Chem. Soc. Jpn.,1981,54:2724-2727
    [38]Rozie J H, Dsinter, Christina M L.Process for the manufacture of benzaldehyde. WO. Patent,9520560.1985-08-07
    [39]Borgaonkar H V, Raverkar S R, Chandalla S B. Liquid phase oxidation of toluene to benzaldehyde by air. Ind. Eng. Chem. Prod. Res. Dev. 1984,23(3):455-458
    [40]李明生,张振杰,马永祥.甲苯液相氧化法制取苯甲酸和苯甲醛.兰州大学学报,1981,1:89-94
    [41]王忠元,张艳熹.甲苯液相空气氧化制苯甲酸.黑龙江石油化工,1996,1:1-3
    [42]吴鑫干,陈舒伐.苯甲酸的合成和精制.现代化工,2000,20(8):10-14
    [43]吴鑫干,尹娟娟,胡在君.苯甲醛的合成进展.精细石油化工,2002,1:57-62
    [44]吴鑫干,李陵岚.苯甲醇的制造方法.工业催化,2002,10(2):26-32
    [45]严旭辉.液相空气氧化甲苯研究:[湖南大学硕士学位毕业论文].长沙:湖南大学,2006,1-80
    [46]张帅,刘强,郭灿城.锰卟啉-醋酸钻复合催化体系对甲苯氧气氧化的催化作用.化工学报,2008,59(6):1396-1399
    [47]李庆宏,李勇飞,张帅等.醋酸钻和金属卟啉复合催化甲苯氧化的研究.见:中国化学会第十届全国络合催化学术讨论会论文汇编.武汉:中国化学会,2007,245-246.
    [48]张帅.醋酸钻和金属卟啉复合催化甲苯氧化的研究:[湖南大学硕士学位毕业论文].长沙:湖南大学,2007,20-60
    [49]Gonzalez M A, Howell S G, Sikdar S K.Photocatalytic selective oxidation of hydrocarbons in the aqueos phase. J. Catal.,1999,183(1):159-162
    [50]Worsley D, Mills A, Smith K, et al.Acid enhancement effect in the clean oxidation of toluene photocatalysed by TiO2. J. Chem. Soc. Chem. Commun.,1995,1119-1120
    [51]Ohkubo K, Fukuzumi S.100% Selective oxygenation of p-xylene to p-tolualdehyde via photoinduced electron transfer. Org. Lett.,2000,2(23): 3647-3650
    [52]Ohkubo K, Suga K, Morikawa K, et al. Selective oxygenation of ring-substituted toluenes with electron-donating and-withdrawing substituents by molecular oxygen via photoinduced electron transfer. J. Am. Chem. Soc.2003,125(42):12850-12859
    [53]Maldotti A, Molinari A, Amadel R. Photocatalysis with organized systems for the oxofunctionalization of hydrocarbons by O2. Chem. Rev. 2002,102:3811-3836
    [54]百度百科.电化学氧化http://baike.baidu.com/view/3118325.htm,2009-12-28
    [55]Dorin B, Jean L, Gilles F, et al. Electrochemical assistance of catalytic oxidation in liquid-phase using molecular oxygen:oxidation of toluenes. Catal. Today,1999,48(1-4):363-369
    [56]Onouha A C, Zu X L, Rusling. Electrochemical generation and reaction of ferrylmyo. J. Am. Chem. Soc.,1997,199:3979-3986
    [57]Stamicarbon.Method for the preparation of aldehydes.EP.Patent,37149, 1980-09-17
    [58]Ma H Zh, Wang B, Liang Y Q. Synthesis of benzyl alcohol by indirect electrochemical catalyzed oxidation of toluene in basic methanol solvent. Catal. Commun.,2004,5(10):617-620
    [59]陆军,高新蕾,詹流鑫.苯甲醛的绿色电合成.武汉工业学院学报,2005,24(3):66-68
    [60]朱宪,王倩,蒋超.超(近)临界流体中甲苯氧化成苯甲醛.化工学报,2004,55(12):2001-2007
    [61]蒋超,于洋.超临界CO2中甲苯氧化为苯甲醛的研究.化学工业与工程技术,2006,27(5):1-7
    [62]蒋超.超临界二氧化碳中甲苯氧化为苯甲醛研究:[上海大学硕士学位毕业论文].上海:上海大学,2005,30-52
    [63]王倩,朱宪.近临界水中甲苯氧化成苯甲醛的工艺研究.高校化学工程学报,2005,19(4):503-506
    [64]杨美健,张广信,陶敏莉.超临界二氧化碳中的甲苯选择性氧化反应.化学工业与工程,2010,27(5):424-428
    [65]Zhu J, Robertson A, Tsang S C. Aqueous emulsion containing fluorous cobalt species in supercritical CO2 for catalytic air oxidation of toluene. Chem. Commun.,2002,18:2044-2046
    [66]Zhu J, Tsang S C. Micellar catalysis for partial oxidation of toluene to benzoic acid in supercritical CO2:effects of fluorinated surfactants. Catal. Today,2003,81 (4):673-679
    [67]Ishii Y, Sakaguchi S. A new strategy for alkane oxidation with O2 using N-hydroxy- phthalimide (NHPI) as a radical catalyst. Catal. Surv. Jpn. 1999,3:27-35
    [68]Ishii Y, Nakayama K, Mitsuhiro T, et al.A novel catalysis of N-hydroxyphthalimide in the oxidation of organic substrates by molecular oxygen. J. Org. Chem.,1995,60:3934-3935
    [69]Ishii Y, Iwahama T, Sakaguchi S,et al. Alkane oxidation with molecular oxygen using a new efficient catalytic system:N-hydroxyphthalimide(NHPI) combined with Co(acac)n(n=2 or 3). J. Org. Chem.,1996,61:4520-4526
    [70]Ishii Y, Kato S, Iwahama T, et al. Hydroxylation of polycyclic alkanes with molecular oxygen catalyzed by N-hydroxyphthalimide (NHPI) combined with transiation metal salt. Tetrahedron Lett.,1996,37:4993-4996
    [71]Yoshino Y, Hayashi Y, Ishii Y, et al. Catalytic oxidation of alkylbenzenes with molecular oxygen under normal presuure and temperature by N-hydroxyphthalimide combined with Co(OAc)2. J. Org. Chem.,1997,62: 6810-6813
    [72]Ishii Y. A Novel catalysis of N-hydroxylphthalimide(NHPI) combined with Co(acac)n(n=2 or 3) in the oxidation of organic substrates with molecular oxygen. J. Mol. Catal. A:Chem.,1997,117:123-137
    [73]Iwahama T, Syojyo K, Ishii Y. Direct Conversion of cyclohexane into adipic acid with molecular oxygen catalyzed by N-hydroxyphthalimide combined with Mn(acac)2 and Co(OAc)2. Org. Pro. Res. Dev.,1998,2: 255-260
    [74]Kato S, Iwahama T, Ishii Y. N-Hydroxyphthalimide-catalyzed carboxylation of polycyclic alkanes with carbon monoxide in the presence of dioxygen. J. Org. Chem.,1998,63:222-223
    [75]Matsunaka K, Iwahama T, Ishii Y. A remarkable effect of quaternary ammonium bromide for the N-hydroxyphthalimide catalyzed aerobic oxidation of hydrocarbons. Tetrahedron Lett.,1999,40:2165-2168
    [76]Sawatari N, Yokota T, Ishii Y. Alkane Oxidation with Air Catalyzed by Lipophilic N-Hydroxyphthalimides without Any Solvent. J. Org. Chem. 2001,66:7889-7891
    [77]Shibamoto A, Sakaguchi S. Ishii Y. Aerobic oxidation of ethane to acetic acid catalyzed by N,N'-dihydroxypyromellitimide combined with Co species. Tetrahedron Lett.2002,43:8859-8861
    [78]Sawatari N, Sakaguchi S, Ishii Y. Oxidation of nitrotoluenes with air using N-hydroxyphthalimide analogues as key catalysts. Tetrahedron Lett. 2003,44:2053-2056
    [79]Hirai N, Sawatari N, Nakamura N, Ishii Y. Oxidation of substituted toluenes with molecular oxygen in the presence of N,N',N' trihydroxyisocyanuric acid as a key catalys. J. Org. Chem.,2003,68: 6587-6590
    [80]卓广澜,赵卫娟,姜玄珍.甲苯氧化制苯甲酸的新催化体系.有机化学,2004,24(8):962-965
    [81]沈晓冬,卓广澜NHPI/Co(Salen)催化氧化取代甲苯.合成化学2010,18(3):305-309
    [82]方亚辉,户安军,吕春绪等.NHPI/过渡金属催化甲苯氧化制苯甲酸.化工进展,2006,25(11):1359-1361
    [83]方亚辉.控制氧化合成苯甲醛的研究:[南京理工大学硕士学位毕业论文].南京:南京理工大学,2007,35-61
    [84]刘连冲.金属卟啉/NHPI选择性催化甲苯氧化制备苯甲醛与苯甲醇的研究:[湖南大学硕士学位毕业论文].长沙:湖南大学,2009,35-50
    [85]刘昭敏.简单脂肪醇促进的卟啉/NHPI催化甲苯分子氧氧化反应研究:[湖南大学硕士学位毕业论文].长沙:湖南大学,2010,37-55
    [86]戚以政,夏杰,王炳武.生物反应工程.北京:化学工业出版社,2009,6-8
    [87]Antje P, Thomas R, Chen C L, et al. Selective enzymatic oxidation of aromatic methyl groups to aldehyde. J. Org. Chem.,1995,60:4320-4321
    [88]Meunier B. Metalloporphyrins as Versatile Catalysts for Oxidation Reactions and Oxidative DNA Cleavage. Chem. Rev.,1992,6:1411-1456
    [89]Groves J T, Nemo T E. Aliphatic Hydroxylation Catalyzed by Iron Porphyrin complexes. J. Am. Chem. Soc.,1983,105(20):6243-6248
    [90]Lyons J E, Ellis P E, Mayers H K. Halogenated metalloporphyrin complexes as catalysts for selective reactions of acyclic alkane with molecular oxygen. J. Catal.,1995,155(1):59-73
    [91]Mansuy D. Activation of alkanes:the biomimetic approach. Coord. Chem. Rev.,1993,125(1-2):129-141
    [92]Barton D H R, Taylor D K. Models for non-heme oxidation enzymes. Pure & Appl. Chem.,1996,68(3):497-504
    [93]Quici S, Banfi S, Pozzi G. Simple synthetic models of cytochrome P-450: efficient catalysts in hydrocarbon oxidations. Gazz. Chim. Ital.,1993,123: 597-612
    [94]Rocha G A M, Pereira M. State of the art in the development of biomimetic oxidation catalysts. J Mol. Catal. A:Chemical,1996,113: 209-211
    [95]Gunter M J, Turner P. Metalloporphyrins as models for the cytochromes P-450. Coord. Chem. Rev.,1991,108:115-161
    [96]Menuier B, Robert A, Pratviel G, et al. Metalloporphyrins in catalytic oxidations and oxidative DNA cleavage. In Kadish K M, Smith K M, Guilard R., Eds. Porphyrin Handbook.Vol4. Bi-ochemistry and binding: activation of small moleculars. New York:Academic Press,2000,119-187
    [97]Li Z, Xia C G. Review on mechanism of alkene epoxidation by metalloporphyrins. Prog. Chem.,2002,14(5):384-390
    [98]Maravin G B, Avdeev M V, Bagrii E I. Oxidative functionalization of saturated hydrocarbons on porphyrin metal complex catalysts (a review). Petrol. Chem.,2000,40 (1):1-18
    [99]Ellis P E, Lyons J E. Selective air oxidation of light alkanes catalyzed by activated metalloporphyrins- the search for a suprabiotic system. Coord. Chem. Rev.,1990,105(2):181-193
    [100]Ellis P E, Lyons J E. Effect of fluorination of the meso-phenyl groups of selective tetraphenylporphyrinato metal(Ⅲ)-catalysed reactions of isobutene with molecular oxygen. J. Chem. Soc. Chem. Commun. 1989,10:1187-1188
    [101]Lyons J E, Ellis P E. Shaikh S N. Azide promotion of alkane oxidations catalyzed by metal complexes in solution. Inorg. Chim. Acta.,1998, 270(1-2):162-168
    [102]Ellis P E, Lyons J E. Hydrocarbon oxidation catalyzed by azide -or nitride-activated metal coordination complexes. EP. Patent,274909. 1988-12-25
    [103]Ellis PE, Lyons J E. Process and ionic iron coordination complex catalysts containing halogenated ligands for hydrocarbon oxidation. EP. Patent,296712.1988-04-22
    [104]Taku N, Noriko A, Shiori K, et al. Abiomimatic study of ytochrome P-450 related oxidations toluene using synthetic hemin. Bull. Chem. Soc. Jpn.,1996,69:3513-3521
    [105]Steven E, Lindsay S J H. The oxidation of ethylbenzene and other by dioxygen alkylaromatics catalysed by iron(Ⅲ)tetra(pentafluorophenyl)-porphyrin and related iron porphyrin. J. Chem. Soc.,Perkin Trans 2,2000, 11:1541-1551
    [106]Guo C C, Liu Q, Wang X T, et al. Selective liquid phase oxidation of toluene with air. Appl. Catal. A:Gen.,2005,282:55-59
    [107]Li Y F, Guo C C. Toluene Oxyfunctionalization with Air over Metalloporphyrins and Reaction Condition Optimization. Chin. J. Chem. Eng.,2007,15(3):453-457
    [108]Hu, H Y, Guo, C C. Catalysis of μ-oxo-bis[porphyriniron(Ⅲ)] for Toluene Oxidation with Molecular Oxygen. J. Porphyr. Phthalocya.,2006,10: 948-952
    [109]先进催化工程研究中心.我校甲苯仿生催化氧化技术输出印度.http://cc.hnu.cn/index.php?option=com_content&task=view&id=835, 2010-4-17
    [110]熊海,石峰,邓友全.负载钴催化剂的合成及其催化环己烷和甲苯选择氧化的研究.催化学报,2004,25(11):887-891
    [111]Subrahmanyam C, Louis B, Viswanathan B, et al. Synthesis, characterisation and catalytic properties of vanadium substituted mesoporous aluminophosphates. Appl. Catal. A:Gen.,2005,282(1-2): 67-71
    [112]Nomiya K, Hashino K, Nemoto Y, et al. Oxidation of toluene and nitrobenzene with 30% aqueous hydrogenperoxide catalyzed by vanadium(Ⅴ) substituted polyoxometalates. J. Mol. Catal. A:Chem., 2001,176(1-2):79-86
    [113]余雅琴,陈丽娟,许利闽等.镧钼钒磷杂多化合物氧化甲苯制苯甲醛的催化性能研究.宁夏大学学报(自然科学版),2001,22(2):118-120
    [114]汪小强,欧光南,袁友珠.钒基催化剂在双氧水存在下对甲、乙苯液相选择氧化的研究.化学学报,2004,62(18):1695-1700
    [115]尹国川,奚祖威,曹国英等.钉配合物Ru(PA)2Cl对C-H键的选择氧化研究.分子催化,1999,13(2):93-98
    [116]Partenheimer, W. Methodology and scope of metal bromide catalyzed autoxidations of hydrocarbons. Catal. Today,1995,23 (2):69-73
    [117]Morimoto T, Ogata Y. Kinetics of the Autoxidation of Toluene Catalysed by Cobaltic Acetate. J.Chem.Soc.(B),Phy. Org.,1967,1:62-64
    [118]Morimoto T, Ogata Y. Kinetics of the Autoxidation of Toluene Catalysed by Cobaltic Acetate.Part Ⅱ.Effects of Benzaldehyde,Cobalt,and Substituent. J.Chem.Soc.(B),Phy. Org.,1967,12:1353-1357
    [119]Hendriks C F, Hendrik C A, Heertjes P M. The Structure of Cobalt(Ⅱ) Acetate and Cobalt (Ⅲ)Acetate in Acetic Acid Solution. Ind. Eng. Chem. Prod. Res. Dev.,1979,18(1):43-46
    [120]Cooper T A, Cliford A A, William A W. Oxidation of Organic Compounds by Cobaltic Salts. Part Ⅶ. The Oxidation of Toluene and its Promotion by Al Jpbatic Acids. J.Chem. Soc(B).Phys.Org.,1966:793-799
    [121]Cooper T A, Waters W A. Oxidation of Organic Compounds by Cobaltic Salts. PartX.The Oxidation of Aromatic Hydrocarbons. J. Chem. Soc(B).Phys.Org.,1967:687-695
    [122]Scott E J Y, Chester A W.Kinetics of the Cobalt-Catalyzed Autoxidation of Toluene in Acetic Acid.The Role of Cobalt. J. Phys. Chem.,1972, 76(11):1520-1524
    [123]Koichiro S, Kamiya Y, Ohta N. The Autoxidation of Toluene Catalyzed with Cobalt Monobromide in Acetic Acid. Bull. Chem. Soc. Japan,1968, 41:641-646
    [124]Bhattacharya D, Guha, D K, Roy A N. Liquid phase air oxidation of toluene to benzoic acid. Ⅱ. Kinetics and mechanism. Chem. Age India, 1973,24:87-90
    [125]Roby, A K, Kingsley J P. Oxide safely with pure oxygen. Chemtech,1996, 26 (2):39-46
    [126]张楠,刘建松,陈纪忠.甲苯液相催化氧化反应动力学.化学工程与工艺,2008,24(1):18-22
    [127]邹隐文,顾维毅,程宗泽等.甲苯液相氧化动力学研究.化学工程,2007,35(9):33-36
    [128]张玉坤,李初福,陈丙珍等.甲苯液相催化氧化过程稳态模拟.化工进展,2006,25(12):1481-1483
    [129]Wang H, Chen B Z, He X R. Modeling, simulation and analysis of the liquid-phase catalytic oxidation of toluene. Chem. Eng. J.,2010, doi:10.1016/j.cej.2009.09.039
    [130]Hoorn J A A, Alsters P L, Versteeg G F A. Kinetic Model for Toluene Oxidation Comprising Benzylperoxy Benzoate Ester as Reactive Intermediate in the Formation of Benzaldehyde. Int. J. Chem. React. Eng.,2005,3(A6):1-19
    [131]Tang, S.W, Liang, B. Kinetics of the Liquid-Phase Oxidation of Toluene by Air. Ind. Eng. Chem. Res.2007,46:6442-6448
    [132]唐盛伟.甲苯液相空气氧化反应研究:[四川大学博士学位毕业论文].成都:四川大学,2005,103-150
    [133]Rothemund P. Formation of porphyrion from aldehydes and pyrroles. J. Am. Chem. Soc.,1935,57(10):2010-2011
    [134]Rothemund P. A new porphyrin synthesis:The synthesis of porphyrin. J. Am. Chem. Soc.,1936,58(4):625-627
    [135]Rothemund P. Porphyrin studies III:The structure of the porphrine ring system. J. Am. Chem. Soc.,1939,61(10):2912-2915
    [136]Ball R H, Dorough G D, Calvin M. A further study of porphine-like products of the reaction of benzaldehyde and pyrrole. J. Am. Chem. Soc. 1946,68(11):2278-2280
    [137]Adler A D, Longo F R, Finarelli J D, et al. A simplified synthesis for meso-tetraphenylporphyrin. J. Org. Chem.,1967,32(2):476-478
    [138]潘继刚,何明威,刘轻轻.四苯基卟啉及衍生物的合成.有机化学,1993,13(5):533-536
    [139]Lindesy J S, Scheiman I C, Hsu H C, et al. Rothemund and Adler-Longo reaction revisited:Synthesis of tetraphenylporphyrins under equilibrium conditions. J. Org. Chem.,1987,52(5):827-836
    [140]Lindsey J S, Kristy A, MacCrum, et al. Investigation of a synthesis of meso-porphyrins employing high concentration condition and an electron transoport chain for aerobic oxidation. J. Org. Chem.,1994,59:579-587
    [141]Petit A, Loupy A, Maillard P. Microwave irradiation dry mesia:A new and easy method for synthesis of tetrapyrrolic compounds. Synth. Commun.,1992,22(28):1137-1142
    [142]刘云,徐同宽,肖德宝等.四苯基卟啉的催化合成和微波合成研究.北京轻工业学院学报,1998,16(4):37-44
    [143]郭灿城,何兴涛,邹纲要.合成四苯基卟啉及其衍生物的新方法.有机化学,1991,11(3):416-418
    [144]雷裕武,郭灿城,曾德章.取代四苯基卟啉的催化合成.化学试剂,1994,16(2):105-106
    [145]刘强,欧阳玉祝,郭灿城等.合成四苯基卟啉的影响因素研究.益阳师专学报,1999,6(16):64-67
    [146]张银汉,刘允平,倪其道等.间-四(4-羟基苯基)卟啉金属配合物的固相合成研究.无机化学学报,1996,12(3):333-335
    [147]Adler A D, Longo F R, Kampas F, et al. On the preparation of metalloporphyrin. J. Inorg. Nucl. Chem.,1970,32:2443-2445
    [148]Rothermund P, Menotti A R. Porphyrin studies V.1 the metal complex salts of α,β,γ,δ,-tetraphenylporphine. J. Am. Chem. Soc.,1948,70:1808-1812
    [149]Tsuki M, Hrong C P, Ostfeld D, et al. Unusual metalloporphyrin complexses of rhenium and techanitium. J. Am. Chem. Soc.,1975,97: 3952-3965
    [150]Okuro I, Gordon B. Photosensitization of porphyrin and phthalocyanines. Science Publisher,2000,185-190
    [151]Minoru T, Mitsuo I, Friedrich V,et al. Unusual metalloporphyrins: preparation of chromium mesoporphyrin dimethyl ester. J. Am. Chem. Soc.,1966,88:854-855
    [152]Fleischer E B, Lavallee D. Phenylrhodium tetraphenylporphine. Novel synthesis of a rhodium-carbon sigma bond. J. Am. Chem. Soc.,1967,89: 7132-7133
    [153]郭灿城,刘强,公衍之.一种金属卟啉的合成方法.中国专利,ZL200310110537.5.2006-1-25
    [154]刘小秦.环己烷仿生催化氧化工业应用研究:[湖南大学博士学位毕业论文].长沙:湖南大学,2004,1-80
    [155]Guo, C. Synthesis of [mu]-Oxo-bisiron(Ⅲ)Porphyrin Compounds and Their Catalysis for Cyclohexane Hydroxylation. J. Catal.,1998,178(1): 182-187
    [156]Guo C, Li H, Xu J. Study of Synthesis of [mu]-Oxo-bismanganese(Ⅲ) Porphyrin Compounds and Their Catalysis of Cyclohexane Oxidation by PhIO. J. Catal.,1999,185 (2):345-351
    [157]刘敬兰,周鸿娟,陈连文等.气相色谱法测定甲苯氧化产物中的苯甲醛及苯甲酸.色谱,1996,14(1):79-82
    [158]孙远华,张同来,张建国.气相色谱法测定甲苯氧化产物中的甲苯及苯甲醛.分析科学学报,2005,21(2):229-230
    [159]Jean L, Gilles F, Andre S. Kinetics of the Electrochemically Assisted Autoxidation of Toluene in Acetic Acid. Ind Eng Chem Res.,2001,40: 6055-6062
    [160]左识之.精细化工反应器及车间工艺设计.上海:华东理工大学,1996,7-15
    [161]刘小秦.金属卟啉催化烷烃氧化研究及工业应用进展.合成纤维工业,2003,26(3):35-37
    [162]肖俊钦,李皓.环己烷仿生催化工艺.化工进展,2003,22(7):751-754
    [163]Ye S K, Han F R, Chang S S,et al. Catalytic action of metal ions in liquid-phase oxidation. Ⅲ. Catalytic action of metal ions, especially cerium ion in the decomposition of tert-butyl hydroperoxide. Oxid. Commum.,1983,3:135-146
    [164]Wu X W, Oshima Y, Koda S. Aerobic oxidation of cyclohexane catalyzed by Fe(Ⅲ)(5,10,15,20-tetrakis(pentafluorophenyl)porphyrin)C1 in sub-and super-critical CO2. Chem. Lett.,1997,26(10):1045-1046
    [165]谭平华,唐盛伟,梁斌等.氧气分压对甲苯液相氧化的影响.化学反应工程与工艺,2008,24(3):211-215
    [166]Suresh A K, Sharma M M, Sridhar T. Engineering Aspects of Industrial Liquid-Phase Air Oxidation of Hydrocarbons. Ind. Eng. Chem. Res. 2000,39:3958-3997
    [167]Suresh A K, Sridhar T, Potter O E.Autocatalytic Oxidation of Cyclohexane Modeling Reaction Kinetics.AICHE J.,1988,34:69-80
    [168]张小燕.金属卟啉醋酸钴复合催化空气氧化对二甲苯反应动力学研究:[湖南大学硕士学位毕业论文].长沙:湖南大学,2010,30-50
    [169]Ryszard P, Jerzy B. Kinetic model of cyclohexane oxidation.Chem. Eng. Sci.,2001,56:1285-1291
    [170]Guo C, Peng Q, Liu Q, et al. Selective oxidation of ethylbenzene with air catalyzed by simple mu-oxo dimeric metalloporphyrins under mild conditions in the absence of additives. J. Mol.Catal. A:Chemical,2003, 192:295-302
    [171]Lyons J E, Ellis Jr P E, Myers Jr H K,et al. Halogenated substituent effects on the catalytic activity of iron porphyrin complexes for the decompostion of tert-butyl hydroperoxide. J. Catal.,1993,141:311-315
    [172]Birnbaum E R, Labinger J A, Bercaw J E, et al. Catalysis of aerobic olefin oxidation by a ruthenium perhaloporphyrin complex. Inorg. Chim.Acta,1998,270:433-439
    [173]Grinstaff M W, Hill M G, Labinger J A, et al. Mechanism of catalytic oxygenation of alkanes by halogenated iron porphyrins. Science,1994, 264:1311-1313
    [174]Grinstaff M W, Hill M G, Birnbaum E R, Schaefer W P, Labinger J A, Gray H B. Structures, electric properties, and oxidation-reduction reactivity of halogenated iron porphyrins. Inorg.Chem.,1995,34:4896-4902
    [175]Birnbaum E R, Grinstaff M W, Labinger J A, et al. On the mechanism of catalytic alkene oxidation by molecular oxygen and halogenated iron porphyrins. J. Mol. Catal. A:Chem.,1995,104:L119-L122
    [176]Baettcher A, Labinger J A. How electronegative substituents make metal complexes better catalysts for the oxidation of hydrocarbons by dioxygen? J. Mol. Catal. A:Chem.,1997,117(1-3):229-242
    [177]Labinger J A. A simplified model for catalyzed isobutane autoxidation: implications for the mechanism of catalysis by halogenated porphyrin complexes. Catal. Lett.,1994,26(1-2):95-99
    [178]Moore K T, Horvath I T, Therien M J. High-pressure NMR studies of (porphi-nato)iron-catalyzed isobutane oxidation utilizing dioxygen as the stoichiometric oxidant, J. Am. Chem. Soc.,1997,119(7):1791-1792
    [179]Moore K T, Horvath I T, Therien M J. Mechanistic studies of (porphinato)iron-catalyzed isobutane oxidation, comparative studies of three classes of electron-deficient porphyrin catalysts, Inorg. Chem. 2000,39(15):3125-3139
    [180]Guo C C, Liu Q, Liu X Q. First industrial-scale biomimetic oxidation of hydrocarbonwith air over metalloporphyrins as cytochrome P-450 monooxygenase model and its mechanistic studies. J. Porphyr. Phthalocya.,2009,13:1250-1254
    [181]Doraiswamy, L. K.; Sharma, M. M. Heterogeneous Reactions:Analysis, Examples and Reactor Design, NewYork:John Wiley,1984,95-123
    [182]王丽军.PX氧化动力学研究及氧化反应器模拟:[浙江大学硕士学位毕业论文].杭州:浙江大学,2001,67-68
    [183]刘向丹Co(Ⅲ)ClTPP的合成及催化性能研究:[湖南大学硕士学位毕业论文].长沙:湖南大学,2010,20-45
    [184]黄庆.四苯基卟啉的金属化及动力学研究:[湖南大学硕士学位毕业论文].长沙:湖南大学,2010,20-50
    [185]Alben J O, Fuchsman W H, Beaudreau C A, et al. Substituted deuteroporphyrins. Ⅲ. iron(Ⅱ) derivatives. reactions with oxygen and preparations from chloro- and methoxohemins.Biochemistry,1968,7:624-635
    [186]Wollmann R G, Hendrickson D V. Preparation and physical properties of oxidation of oxo-bridged binuclear iron(Ⅲ) complexes. mixed-valence diiron (Ⅲ, Ⅳ) complexes. Inorg. Chem.,1977,16:723-733
    [187]Latos-Grazynski L, Cheng R J, La Mar G N, et al. Oxygenation patterns for substituted meso-tetraphenylporphyrin complexes of iron(Ⅱ). spectroscopic detection of dioxygen complexes in the absence of amines. J. Am. Chem. Soc.,1982,104:5992-6000
    [188]Pistorio B J, Chang C J, Nocera D G. A phototriggered molecular spring for aerobic catalytic oxidation reactions. J. Am. Chem. Soc.,2002,124: 7884-7885
    [189]Liston D J, Kennedy B J, Murray KS, West B. Oxochromium compounds. Ⅰ. synthesis and properties ofμ-oxo chromium-iron porphyrin and phthalocyaine compounds. Inorg. Chem.,1985,24:1561-1567
    [190]Fleischer E B, Srivastava T S. Structure and properties of μ-oxobis(tetraphenyl- porphineiron). J.Am.Chem.Soc.,1969,91:2403-2045
    [191]Fleischer E B, Palmer J M, Srivastava T S, Chatterjee A. Thermodynamic and kinetic properties of an ironporphyrin system. J. Am. Chem. Soc. 1971,93:3162-3167
    [192]郭灿城,桂明德,朱申杰TPPFeCl向(TPPFe)2O的转化及对其合成方法的研究.化学试剂,1990,12:270-271
    [193]Sadasivan N, Eberspaecher H I, Fuchsman W H, et al. Substituted deuterophorphyrins. Ⅵ. ligand-exchange and dimerization reactions of deuterohemins. Biochemistry,1969,8:534-541
    [194]Cohen I A. Dimeric nature of hemin hydroxides, J. Am. Chern. Soc., 1969,91:1980-1983
    [195]Helms J H, Hatfield W E, Harris D L, et al. Effect of meso substituents on exchange-coupling interactions in μ-oxo iron(Ⅲ) porphyrin dimmers. Inorg. Chem.,1986,25:2334-2337
    [196]Jiao X D, Huang J W, Ji L N, et al. Molecular stereochemistry of μ-oxobis[5,10,15,20-tetra(4-chlorophenyl)porphyrinatoiron(Ⅲ)].—A model compound of cytochrome P450. J. Inorg. Biochem.,1997,65:229-233
    [197]Moore K T, Fletcher J T, Therien M J. Syntheses, NMR and EPR Spectroscopy, electrochemical properties, and structural studies of [5,10,15,20-tetrakis(perfluoroalkyl)-porphinato]iron(Ⅱ) and -iron(Ⅲ) complexes. J. Am. Chem. Soc.,1999,121:5196-5209
    [198]Ikezaki A, Nakamura M. Formation of μ-oxo dimmer by reaction of (meso- tetraphenylporphyrinato)iron(Ⅲ) with various imidazoles. J. Inorg. Biochem.,2001,84:137-144
    [199]Cheng B, Hobbs J D, Debrunner P G, et al, An unusual near-eclipsed porphyrin ring orientation in two crystalline forms of (μ-oxo)bis[(octaethylporphinato)iron(Ⅲ)]. structural and molecular mechanics studies. Inorg. Chem.,1995,34:102-110
    [200]Oyaizu K, Haryono A, Natori J, et al. Electroreduction of (μ-oxo iron(Ⅲ) porphyrins adsorbed on an electrode leading to a cofacial geometry for the iron(Ⅲ) complex:unexpected active site for the catalytic reduction of O2 and H2O. Bull. Chem. Soc. Jpn.,2000,73:1153-1163
    [201]Nanthakumar A, Goff H M, Solution spectroscopic studies of electrolytically generated iron(Ⅲ) and iron(IV) tetrkis(2,6-difluorophenyl)porphyrin π cation radicals. Inorg. Chem.,1991,30: 4460-4464
    [202]刘强,石变芳,郭灿城.均匀设计和偏最小二乘方法在一步合成μ-氧代双铁卟啉中的应用.湖南大学学报(自然科学版),2004,31(2):1-4
    [203]郭灿城,罗伟平,陈铁桥等.四芳基卟啉的合成与设备.中国专利,ZL200910043414.1.2009-10-07

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700