混凝土斜拉桥的长期性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大跨混凝土结构由于收缩徐变等作用引起的结构反应的合理确定,是桥梁工程界迫切需要解决但又尚未完全解决的一个极为复杂的问题。以广东省惠州市的科研项目“混凝土斜拉桥模型试验研究”为依托,通过对实桥在建设与营运过程中的观测和对模型桥的一系列测试、分析,对斜拉桥的收缩徐变问题进行研究,以期获得大跨径混凝土斜拉桥在收缩徐变作用下的实际反应。主要进行了以下研究:
     (1)设计并制作了模型桥
     对模型试验的相关理论进行了介绍,包括模型桥的设计准则和要求、模型桥的制作、测试内容等。模型桥以广东省惠州市合生大桥为工程背景,现场按1:15的比例制作了预应力混凝土斜拉桥模型,其主梁和索塔均采用混凝土材料,拉索采用同材质的高强钢丝。测试了不同龄期混凝土的弹性模量数据,以供结构有限元分析确定材料弹性模量时参考。
     (2)进行了混凝土斜拉桥模型收缩徐变试验研究
     现场同步制作了与混凝土斜拉桥模型同材质的混凝土试件,同条件养护,进行了混凝土模型斜拉桥和棱柱体的长期性能试验。基于对棱柱体试验数据的整理、分析,提出了自然环境下实桥和模型桥所使用混凝土材料的徐变模型。
     斜拉桥模型的试验观测结果表明:与时间相关的预应力损失主粱为3.6%,上、下游塔柱分别为3.0%、2.0%。边跨支座反力基本不变,主跨支座和辅助墩支座反力随时间呈增加的趋势。徐变应变在55-85“占之间,主梁位移最大3.0mm,桥塔收缩徐变引起的主梁位移占总位移的30%-60%。主跨的两对尾索索力变化最大,下降约6.5%。
     由于实测混凝土棱柱体试件的徐变曲线不含体表比参数,参照JTGD62、 GL2000模型所采用的构件体表比修正方法,对所提混凝土材料的徐变模型进行相应的修正,得到了可应用于混凝土结构长期性能分析的徐变模型,分别记为TEST-JTG和TEST-GL模型。分别采用JTGD62、ACI209R、GL2000以及所提出的TEST-JTG和TEST-GL等模型对混凝土斜拉桥模型的长期性能进行了分析,并与应变、位移、索力变化的实测数据进行了比较,验证了TEST-GL模型的适用性。此外,JTGD62、ACI209R、GL2000等3种模型中,GL2000模型的计算结果最接近实测结果。
     (3)对实桥进行了施工监测与长期性能预测
     跟踪研究了实桥施工监控的全过程,营运过程中对全桥标高和索力进行了多次测试。将理论计算与实测结果进行比较分析,评价了JTGD62、ACI209R和TEST-GL三种收缩徐变模型用于该桥计算结果的准确性,其中,TEST-GL模型的计算结果与实测数据吻合较好。成桥2年以后,实测主跨最大位移约23mm,预测5年后该主跨最大位移值为37mm,10年后为52mm;预测10年后索塔顺桥向位移值为14.8mm,偏向主跨侧,横桥向位移1.41mm,偏向内侧;可见收缩徐变效应引起的索塔横桥向位移很小。成桥2年以后,实测索力最大变化为3.8%,预测10年后最大索力变化为6.0%,20年后为7.7%。
     (4)提出了考虑收缩徐变效应的混凝土斜拉桥初始平衡构形的确定方法
     为了对混凝土斜拉桥的长期性能进行有效预测,建立了考虑收缩徐变效应的斜拉桥初始平衡构形。在斜拉桥索力模拟常规迭代法的基础上,从迭代初值的选取和迭代加速的超松弛法两方面实现了迭代计算的加速,提高了计算效率;提出了成桥线形修正的建模坐标迭代法,与迭代加速法一起,共同应用于斜拉桥的初始平衡构形的建立;通过收集混凝土斜拉桥的施工记录,在有限元模型中考虑收缩徐变效应的影响。采用该方法建立的初始平衡构形,能快速、准确的模拟斜拉桥的索力分布和成桥线形,可用于混凝土斜拉桥的长期性能预测、极限承载力计算等后续分析。
The structural behavior caused by shrinkage and creep effects of long span concrete bridge is a complicated problem which has not been resolved completely but needing resolved urgently in bridge engineering. In conjunction with a project "Concrete cable-stayed bridge model test" of Huizhou city, Guangdong province, a series of experimental and analytical research on the shrinkage and creep effects of the real and model bridges had been performed, in order to obtain structural behaviors of long span concrete bridges under non-loading actions. The main investigations are summarized as follows:
     (1) Design and fabrication of model bridge
     Introduced the theroy of model test, including model bridge design criteria and requirements; model bridge fabrication, testing content, et al. Based on the scheme design of Hesheng Bridge in Guangdong Province, a large prestressed concrete cable-stayed bridge model (1:15) was made on site. The beam and towers are made of concrete materials, and the cables using the same high-strength cable wires with the real bridge. The elastic moduli of concrete of different load ages have been tested in order to afford a reference for finite element analysis.
     (2) Creep and shrinkage tests and analysis of the model bridge
     The cable-stayed model bridge and prism specimens were made on site, with the same maintenance conditions. Long-term performance tests of cable-stayed model bridge and prism specimens were performed and porposed a conrete creep model of real and model bridge under the natural environment.
     Experimental observations of the cable-stayed model bridge showed that: time-related prestress loss of the main beam was3.6%, the upstream and downstream tower was respectively3.0%,2.0%. The side span support reaction was remain basically unchanged, the main span and auxiliary pier bearing reaction showed an increasing tendency over time. Creep strain was between55~85με. The main beam maximum displacement was3.0mm. the displacement caused by bridge tower shrinkage and creep occupies the total displacement30%~60%. Tension of the two pairs of cables near main span beam end had a large change, decreased by6.5%.
     As the measured creep curve of concrete prism specimens didn't contain volume to surface ratio(V/S) parameter, so modified it according to the V/S considerable method of JTGD62model, GL2000model,respectively, obtained two concrete creep models:TEST-JTG model and TEST-GL model which can be applied to calculate long-term performance of concrete structure. JTGD62, ACI209R, GL2000, TEST-JTG, TEST-GL models are used to analyze creep effect of the model bridge, compared the calculated results with the measured data of strain, displacement and cable force, verify the applicability of TEST-GL model. The results also show that, the three kinds of models JTGD62, ACI209R, GL2000, the results of last model are closest to the measured data.
     (3) Test and long-term performance prediction of the real bridge
     We tracked the whole process of the construction monitoring, and conducted a number of test of the full bridge elevation and cable force on operational status. Compared the theoretical calculations and experimental results, and evaluated the results of three creep and shrinkage models, they are JTGD62, ACI209R and TEST-GL, in which; the results of TEST-GL model were in good agreement with the measured data. After the bridge had been operating for two years, the measured largest vertical displacement of the mid-span is about23mm, according to the TEST-GL model,5and10years later the predictive value is37mm.52mm. respectively. The transverse displacement of bridge tower is-1.41mm, so, it can be seen that the transverse displacement is almost zero.10years later, the tower will lean to the mid-span14.8mm.2years later, the measured biggest change in cable tension was3.8%,10years later, the predicted biggest change in cable tension was6.0%,7.7%after20years.
     (4) The initial equilibrium configuration determination method which can consider the creep and shrinkage effect of concrete cable-stayed bridge
     In order to predict the long-term performance of concrete cable-stayed bridge, the initial equilibrium configuration of cable-stayed bridge that considered the effects of shrinkage and creep was established. Based on the general iteration methods of cable force simulation, a method for accelerating iteration is obtained from the two aspects including the selection of initial values and over-relaxation iterative method. Modeling coordinate iteration method for bridge line-shape correction is given, and in company of accelerated iteration method are successfully applied in the modeling of initial equilibrium configuration of cable-stayed bridge, by collecting the construction records of the concrete cable-stayed bridge,creep and shrinkage effect can be considered in this model, so the initial equilibrium configuration of cable-stayed bridge established by these methods gives an adequate simulation of cable force distribution and bridge line-shape, and it can be used to several follow-up analysis, such as the long-term performance prediction of concrete cable-stayed bridge, the ultimate bearing capacity calculation etc..
引文
[1]姚振纲,刘祖华.建筑结构试验.上海:同济大学出版社,1 996,1-32
    [2]章关永.桥梁结构试验.北京:人民交通出版社,2001,1-25
    [3]杨俊杰.相似理论与结构模型试验.武汉:武汉理工大学出版社,2005,1-112
    [4]Zdenek P. Bazant, Wittmann,F.H. Creep and Shrinkage in Concrete Structures. John Wiley & Sons Ltd,1982,2-99
    [5]Zdenek P. Bazant. Mathematical Modeling of Creep and Shrinkage of Concrete. John Wiley & Sons Ltd,1988,6-100
    [6]Neville,A.M., Dilger,W.H., Brooks,J.J. Creep of Plain and Structural Concrete. London&New York,1983,1-50
    [7]Ghail,A, R.Favre. Concrete Structures:Stresses and Deformations. Chapman and Hall Ltd,1994,1-60
    [8]周履,陈永春.收缩徐变.北京:中国铁道出版社,1994,1-30
    [9]惠荣炎,黄国兴,易若冰.混凝土的徐变.北京:中国铁道出版社,1988,1-60
    [10]AASHTO.美国公路桥梁设计规范(1994,辛济平等译.北京:人民交通出版社,1998,55-65
    [11]ACI Committee 209. Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structures(209R-92). America Concrete Institute, Farmington Hills, Mich.,1992
    [12]N.J.Gardner, J.W.Zhao. Creep and Shrinkage Revisited. ACI Materials Journal, 1993,90(3):36-46
    [13]Gardner, N. J., Lockman, M. J. Design Provisions for Drying Shrinkage and Creep of Normal-Strength Concrete. ACI Materials Journal,2001,98(2): 159-167
    [14]CEB-FIP Model Code for Concrete Structures 1990. Comite Euro-international du Beton/Federation International de la Precon-strainte.Paris,1990
    [15]Zdenek P. Bazant, Baweja. Creep and Shrinkage Prediction Model for Analysis and Design of Concrete Structures (Model B3). Report, Northwestern University, submitted to ACI Comm.209,1994
    [16]Zdenek P. Bazant, Sandeep Baweja. Justification and Refinements of Model B3 for Concrete Creep and Shrinkage. Materials and Structures,1995,28:415-430
    [17]Zdenek P. Bazant, Sandeep Baweja. Creep and Shrinkage Prediction Model for Analysis and Design of Concrete Structures (Model B3). Materials and Structures,1995,28:357-365
    [18]James Andrew Gilliland. Thermal and Shrinkage Effects in High Performance Concrete Structures During Construction:[D]. Canada:The University of Calgary,2000,2-220
    [19]Jian-Ping Lam. Evaluation of Concrete Shrinkage and Creep Prediction Models: [thesis]. America:The San Jose State University,2002,1-200
    [20]Bradley D. Townsend. Creep and Shrinkage of a High Strength Concrete Mixture:[thesis].America:The Virginia Polytechnic Institute and State University,2003,2-65
    [21]Cole Mortensen. Creep and Shrinkage Losses in Prestressed Concrete in Highly Variable Climate:[thesis]. America:The University of Nevada,2002,6-45
    [22]Karim W.Nasser, A.M.Neville. Creep of Concrete at Elevated Temperatures. Journal of the American Concrete Institute,1965,62(12):1567-1579
    [23]Hani M.Fahmi, Boris Bresler, Milos Polivka. Prediction of Creep of Concrete at Variable Temperatures. Journal of the American Concrete Institute,1973, 70(10):709-713
    [24]Zdenek P. Bazant, Gianluca Cusatis, Luigi Cedolin. Temperature Effect on Concrete Creep Modeled by Microprestress-Solidification Theory. J. Engrg. Mech.,2004,130(6):691-699
    [25]Peter F. Takacs. Deformations in Concrete Cantilever Bridges:Observations and Theoretical Modelling:[dissertation]. Norway:The Norwegian University of Sciencs and Technology,2002,1-105
    [26]Vladimir Kristek, Zdenek P. Bazant, Milos Zich. Box Girder Bridge Deflections. ACI Concrete International,2006,28(1):55-63
    [27]Xianping Li, Ian N. Robertson. Long-term Performance Predictions of the North Halawa Valley Viaduct. Research Report UHM/CEE/03-04, University of Hawaii,2003
    [28]孙海林,叶列平,杨孚衡.城市轨道交通预应力混凝土连续梁桥的收缩和徐变分析.公路交通科技,2005,22(1):89-92
    [29]汪剑,方志.大跨预应力混凝土箱梁桥收缩徐变效应测试与分析[J].土木工程学报,2008,41(1):70-81
    [30]裴炳志,叶见曙,汪剑.地锚式斜拉桥收缩徐变效应测试与分析[J].桥梁建设,2008,1(6):25-29
    [31]Torben C.Hanson, Alan H.Mattock. Influence of Size and Shape of Member on the Shrinkage and Creep of Concrete. Journal of the American Concrete Institute,1966,63(2):267-289
    [32]William G.Corley, Mete A.Sozen. Time-Dependent Deflections of Reinforced Concrete Beams. Journal of the American Concrete Institute,1966,63(3): 373-386
    [33]Zdenek P. Bazant. Prediction of Concrete Creep Effects Using Age-Adjusted Effective Modulus Method. Journal of the American Concrete Institute,1972, 69(4):212-217
    [34]A.H.Bryant. Creep and Shrinkage of a Bridge-Building Concrete. Journal of the American Concrete Institute,1979,76(3):387-403
    [35]Zdenek P. Bazant, Jenn-Chuan Chern. Log Double Power Law for Concrete Creep. Journal of the American Concrete Institute,1985,82(5):665-675
    [36]Luigino Dezi, Angelo Marcello Tarantino. Creep in Composite Continuous Beams-Parametric Study. Journal of Structural Engineering,1993,119(7): 2112-2133
    [37]潘家英.混凝土结构的徐变计算.土木工程学报,1983,16(4):29-40
    [38]周履,诸林,黎锡吾.长跨度预应力混凝土铁路连续梁的收缩徐变计算.桥梁建设,1984,(4):59-72
    [39]范立础,杜国华,鲍卫刚.桥梁结构徐变次内力分析.同济大学学报,1991,19(1):23-31
    [40]郑信光,韩振勇,项海帆.桥梁节段施工过程的徐变分析.同济大学学报,1991,19(3):355-362
    [41]周乐农.预应力混凝土简支梁徐变特性影响因素的分析.长沙铁道学院学报,1993,11(2):1-7
    [42]周乐农.预应力混凝土简支梁徐变特性参数的确定.长沙铁道学院学报,1993,11(1):19-26
    [43]刘忠.混凝土徐变收缩的递推AEMM法.重庆交通学院学报,1994,13(5):31-34
    [44]刘德宝,郑信光.徐变系数计算的应用研究.同济大学学报,1998,26(5):533-536
    [45]段明德.预应力混凝土桥施工仿真分析徐变计算.铁道学报,1998,20(5):91-97
    [46]朱伯芳.大体积混凝土温度应力与温度控制.北京:中国电力出版社,1999,1-207
    [47]王书庆.徐变自动增量分析方法及其实现.同济大学学报,2000,28(2):138-142
    [48]杨美良,李传习,夏桂云.初应变法在节段施工桥梁徐变分析中的应用.长沙交通学报,2000,16(3):47-52
    [49]李传习,杨飞跃,张建仁.节段施工桥梁的徐变变形及内力重分布研究.中国公 路学报,2000,13(4):47-52
    [50]陈太聪,苏成,韩大建.桥梁节段施工过程中混凝土收缩徐变效应仿真计算.中国公路学报,2003,16(4):55-58
    [51]胡狄,陈政清.预应力混凝土桥梁收缩与徐变变形试验研究.土木工程学报,2003,36(8):79-85
    [52]胡狄.预应力混凝土桥梁徐变效应分析:[博士学位论文].长沙:中南大学土木建筑学院,2003,1-20
    [53]颜东煌,田仲初,李学文等.混凝土桥梁收缩徐变计算的有限元方法与应用.中国公路学报,2004,17(2):55-58
    [54]丁文胜,吕志涛,孟少平等.混凝土收缩徐变预测模型的分析比较.桥梁建设,2004,(6):13-16
    [55]胡狄,陈政清.预应力混凝土桥梁徐变分析的全量形式自动递进法.工程力学,2004,21(5):41-45,71
    [56]张子明,周红军,殷波.基于等效时间的混凝土徐变.河海大学学报,2005,33(2):173-176
    [57]Zienkiewicz O C, Waston M. Some Creep Effects in Stress Analysis with Particular Reference to Concrete at Pressure Vessels. Nuclear Enginering and Design,1966,(4):38-47
    [58]Taylor R L, Pister K S, Goudreau G L. Thermomechanical analysis of viscoe-lastic solids. Num.Meth.Eng.,1970,(2):45-60
    [59]朱伯芳.混凝土结构徐变应力分析的隐式解法.水利学报,1983(5):40-46
    [60]高政国,黄达海,赵国藩.混凝土结构徐变应力分析的全量方法.土木工程学报,2001,32(4):10-14
    [61]D.W.Chen, F.T.K.Au,L.G.Tham and P. K. K. Lee. Determination of Initial Cable Forces in Prestressed Concrete Cable-Stayed Bridges for Given Design Deck Profiles Using the Force Equilibrium Method[J]. Computers & Structures, 2000,74(1):1-9
    [62]D. Janjic, M. Pircher and H. Pircher. Optimization of Cable Tensioning in Cable-Stayed Bridges[J]. Journal of Bridge Engineering,2003,8(3):131-137
    [63]严国敏.现代斜拉桥[M].成都:西南交通大学出版社,1996:1-88
    [64]程进,江见鲸,肖汝诚,项海帆.基于ANSYS平台的斜拉桥调索方法研究[J].公路交通科技,2002,19(3):50-52
    [65]李义强,张彦兵,杨丽ANSYS中准确施加斜拉桥索力方法的研究[J].国防交通工程与技术.2006,4(1):23-25
    [66]叶梅新,韩衍群,张敏.基于ANSYS平台的斜拉桥调索方法研究[J].铁道学报, 2006,28(4):128-131
    [67]张杨永,周云岗,姜海西.基于ANSYS的超大跨度斜拉桥的索力模拟[J].沈阳建筑大学学报,2009,25(5):909-913
    [68]肖汝诚,项海帆.斜拉桥索力优化的影响矩阵法[J].同济大学学报,1998,26(3):235-240
    [69]任伟新,彭雪林.青洲斜拉桥的基准动力有限元模型[J].计算力学学报,2007,24(5):609-614
    [70]唐盛华.试验斜拉桥的模型修正研究:[硕士学位论文].长沙:湖南大学,2009,9-28
    [71]David W. Mokarem. Development of Concrete Shrinkage Performance specifi-cation[D].Faculty of the Virginia Polytechnic Institute and State University, 2002,5-220
    [72]A.M.Neville, W.H.Dilger, JJ. Broks. Creep of Plain and Structural Concrete[M]. London, Construction Press,1983,2-66
    [73]李启棣.早强钢纤维喷射混凝土的特性及在补强和加固工程中的应用[J].混凝土与水泥制品,1987,6:13-16
    [74]惠荣炎,易冰若,黄国兴.安康工程粉煤灰混凝土依时性变形的试验研究[A].水利水电科学研究院(资料),1984.1
    [75]李传习,夏桂云.大跨度桥梁结构计算理论[M].北京:人民交通出版社,2002,1-200
    [76]中华人民共和国交通部部颁标准.JTG D62-2004公路钢筋混凝土及预应力混凝土桥涵设计规范[S].北京:人民交通出版社,2004,1-180
    [77]Meyerson,R. Compressive Mixtures, Master of Science Creep of Prestressed Concrete Mixtures with and without Thesis in Civil Enginering[D],Virginal Tech, February 2001,1-23
    [78]Wassim Naguib, Amir Mirmiran. Creep Analysis of Axially Loaded Fiber Reinforced Poly mer-Confined Concrete Columns[J], Journal of Engineering Mechanics,2003,20(11):1308-1319
    [79]中华人民共和国国家标准.GB/T 50081-2002普通混凝土力学性能试验方法标准[S].北京:中国建筑工业出版社,2003,1-35
    [80]巫祖烈,管延武,张永水,等.大吨位徐变仪的研制及徐变试验[J].公路交通科技,2008,25(1):98-103
    [81]林波.混凝土收缩徐变及其效应的计算分析和试验研究:[硕士学位论文].南京:东南大学,2006,1-45
    [82]陈志华,陕亮,关富玲.基于演化程序的混凝土徐变参数识别[J].长江科学院院 报,2005,22(2):47-49
    [83]Rajeev Goel, Ram Kumar, D. K. Paul. Comparative Study of Various Creep and Shrinkage Prediction Models for Concrete [J]. ASCE,2007,19(3):249-260
    [84]陈志华,彭少民,蒋沧如,等.荆州长江公路大桥主梁高性能混凝土徐变试验[J].中国公路学报,2006,19(4):98-102
    [85]曹国辉,方志.混凝土连续箱梁长期受力性能试验研究[J].土木工程学报,2008,41(9):83-89
    [86]施吉林,张宏伟,金光日.计算机科学计算[M].高等教育出版社,2005:30-102
    [87]Pao-Hsii Wang, T. C. Tseng and C. G. Yang. Initial Shape of Cable-stayed Bridges[J]. Computers & Structures,1993,47(1):111-123
    [88]Pao-Hsii Wang, Hung-Ta Lin and Tzu-Yang Tang. Study on Nonlinear Analysis of a Highly Redundant Cable-stayed Bridge[J]. Computers & Structures,2002, 80(2):165-182
    [89]Bruno, D. and A. Grimaldi. Nonlinear Behaviour of Long-Span Cable-Stayed Bridges[J]. Meccanica 1985,20(4):303-313
    [90]Karoumi, R. Some Modeling Aspects in The Nonlinear Finite Element Analysis of Cable Supported Bridges[J]. Computers & Structures,1999,71(4):397-412
    [91]Kim, K.-S. and H. S. Lee. Analysis of Target Configurations under Dead Loads for Cable-Supported Bridges[J]. Computers & Structures,2001,79(29-30): 2681-2692
    [92]Nazmy, A. S. and A. M. Abdel-Ghaffar. Non-Linear Earthquake-Response Analysis of Long-Span Cable-Stayed Bridges[J]:Theory. Earthquake Engineering & Structural Dynamics,1990,19(1):45-62
    [93]Reddy, P., J. Ghaboussi, et al. Simulation of Construction of Cable-Stayed Bridges[J]. Journal of Bridge Engineering,1999,4(4):249-257
    [94]Wang, P.-H. and C.-G. Yang. Parametric Studies on Cable-Stayed Bridges[J]. Computers & Structures,1996,60(2):243-260
    [95]梁鹏,肖汝诚,夏刘.超大跨度缆索承重桥梁结构体系[J].公路交通科技,2004,21(5):53-56
    [96]梁鹏,肖汝诚,孙斌.超大跨度斜拉桥几何非线性精细化分析[J].中国公路学报,2007,20(2):57-62
    [97]梁鹏,秦建国,袁卫军.超大跨度斜拉桥活载几何非线性分析[J].公路交通科技,2006,23(4):60-62
    [98]张雪松,梁鹏,贾丽君.肖汝诚.非线性因素对超大跨度斜拉桥成桥内力的影响[J].公路交通科技,2004,,21(9):47-51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700