质子交换膜燃料电池自增湿膜电极的制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着化石燃料的日趋枯竭以及化石燃料燃烧所引起的环境危机日益加剧,新能源以及新的能源利用方式引起了人们越来越多的关注。质子交换膜燃料电池(PEMFC)因其比能量高、无污染、可低温快速启动等优点而受到人们的广泛关注。膜电极(MEA)是质子交换膜燃料电池的核心部件,不仅对燃料电池的性能有很大的影响,而且对降低其生产成本、加快其商业化进程具有很重要的现实意义。杜邦公司生产的商业Nafion系列质子交换膜由于其良好的机械稳定性和热稳定,以及高质子传导率,被广泛的应用于质子交换膜燃料电池的电解质膜。Nafion膜和催化层中的Nafion树脂均需要充足的水份来维持其较高的电导率,湿度的降低会导致质子交换膜的质子传导率下降以及电池内阻增大,进而使电池性能下降。在质子交换膜燃料电池的实际运行中,常需要借助于外增湿设备,使氢气和氧气在进入电池之前带入水蒸气,从而对电池系统进行增湿。然而,这会导致燃料电池系统复杂化、成本升高,以及系统的能量效率和体积比能量密度降低。因此,自增湿膜电极是质子交换膜燃料电池研究领域的最为重要的追求目标之一。实现膜电极的免增湿,不仅可以解决目前质子交换膜燃料电池的水热管理困难的难题,还能通过抛除外增湿设备以达到大幅度降低燃料电池系统成本、减少燃料电池系统自身能量消耗的目的,对于质子交换膜燃料电池商业化具有极其重要的意义。
     本文从提高质子交换膜燃料电池膜电极在低湿度下的性能以及稳定性出发,采用亲水性的有机高分子聚合物为保水剂,将其添加到阴/阳极催化层,制备自增湿膜电极;采用层层自组装技术将亲水性的聚电解质(PANI)和二氧化硅组装到Nafion膜上,形成自增湿复合膜,并制备成自增湿膜电极。
     首先,采用亲水性的有机高分子聚合物添加到阳极催化层中,制备自增湿膜电极。考察了亲水性有机高分子聚合物的种类,添加量以及阴阳极相对湿度对自增湿膜电极性能的影响。结果表明:采用PVA为保水剂的自增湿膜电极的电池性能较使用其他类型的高分子聚合物为保水剂的好;PVA的添加会提高阳极催化层的润湿程度和含水率,而5wt.%的添加量是阳极催化层中PVA的最佳含量;改变阴阳极的相对湿度对自增湿膜电极的性能影响不大;在电池温度为50oC,阴阳极相对湿度为34%,气体背压为20psi的条件下,PVA添加量为5wt.%的自增湿膜电极在0.7V和0.6V时的电流密度分别可以达到600mA.cm~(-2)和1000mA.cm~(-2),经过长达60小时的长时间恒电压放电测试,在0.6V下的电流密度仍可维持在750-780mA.cm~(-2)左右。
     其次,提高电池温度有利于提高催化剂的活性以及简化水热管理,但这同时对燃料电池在低湿度下的稳定运行提出了挑战。为了解决在高温、低湿度下保持Nafion膜较高的质子传导率与提高催化剂活性之间的内在矛盾。我们采用亲水性的有机高分子聚合物(PVA)和无机氧化物(SiO_2)同时添加到阳极催化层中,制备在较高电池温度下仍具有良好低湿度性能的自增湿膜电极。结果表明:采用PVA和SiO_2同时添加到阳极催化层所制备的自增湿膜电极性能优于单独采用PVA或SiO_2为保水剂的自增湿膜电极。当电池处于60oC和15%的湿度下运行时,PVA和SiO_2的添加量为3wt.%的膜电极MPS3,在0.6V下的电流密度可以达到1100mA.cm~(-2),且最大的功率密度为780mW.cm~(-2)。适当的提高电池温度有利于电池性能的提升。当阴阳极相对湿度从100%下降至15%,膜电极的性能几乎没有发生太大的变化。在电池温度为60oC下,自增湿膜电极MPS3表现出良好的低湿度运行稳定性,在15%的相对湿度下,经过30小时的长时间恒电压放电之后,其在0.6V下的电流密度下降幅度很小,仅由1100mA.cm~(-2)降低至900mA.cm~(-2)左右,而阳极仅添加PVA和SiO_2的样品,其电流密度仅为700mA.cm~(-2)和800mA.cm~(-2)。
     再者,我们采用特殊的双层阴极结构,将亲水性的有机高分子聚合物(PVA)添加到阴极内层催化层中制备自增湿膜电极。在氢-空燃料电池中,我们对PVA在阴极催化层中的添加方式,PVA的添加量、电池温度以及阴阳极相对湿度对该特殊结构的自增湿膜电极在低湿度下的性能进行了评价。结果表明:与将PVA添加到单层阴极催化层和双层阴极结构的外层催化层中相比,将PVA添加到双层阴极结构的内层催化层的自增湿膜电极,尽管在完全增湿情况下会增大电池的浓差极化,但是在低湿度下易于增强水的反扩散,有利于保持质子交换膜在低湿度下处于良好的润湿状态。在电池温度为60oC,气体背压为30psi,阴阳极相对湿度为20%时,将PVA添加到双层阴极结构的内层催化层中的自增湿膜电极在0.6V下的电流密度可以达到900mA.cm~(-2),是将PVA添加到双层阴极结构的外层催化层的自增湿膜电极的2.25倍,而将比单层阴极结构的自增湿膜电极高出3.5倍。
     最后,我们将层层自组装技术应用于制备自增湿复合膜,采用掺杂聚苯胺和SiO_2以静电结合的方式层层组装到Nafion膜上,制备成Nafion/(PANI/SiO_2)n型复合膜。采用数码照片、热重分析、傅里叶红外变换光谱、紫外-可见光吸收光谱、X-射线衍射等手段对自增湿复合膜进行表征。结果发现:PANI和SiO_2可以成功的被吸附到Nafion膜上,且PANI的含量与自组装层数成正比关系。电导率测试发现随着自组装层数的增加,复合膜的质子传导率逐渐降低。电池性能测试表明:当(PANI/SiO_2)的复合层数为7层时,膜电极在低湿度下的电池性能最好。
With the drying up of fossil fuels and the serious problem of environmental pollutioncaused by the combustion of fossil fuels,more and more attention has been paid to thedevelopment of new energy and new energy utilization technology. Proton exchangemembrane fuel cells (PEMFCs) have becoming attractive due to their advantages, such ashigh power density, zero or low exhaust, and quick startup at low temperature, etc. Membraneelectrode assembly (MEA) is the key component of PEMFC, it not only plays a key role forthe performance of the PEMFCs, but also for the reducing the cost of the fuel cells, as well asaccelerating the commercial applications. The commercial Nafion series membranes producedby Dupont company (USA) are commonly applied to the electrolyte because of its goodmechanical and thermal stability, as well as its high proton conductivity at100%relativehumidity (RH). Actually, Nafion ionomer is also used in the catalyst layer as a binder andproton conductor. However, the proton conductivity of Nafion depends strongly on the watercontent; dehydration of the Nafion membrane will lead to a series of detrimental effects on thePEMFC’s performance. The proton conductivity of Nafion membrane will decrease and theohmic resistance of the cell will increase under low-humidity conditions, causing rapid decayin cell performance. Thus, in terms of the actual operating conditions of a PEMFC, anexternal humidifier has to be used to maintain the water content of the cell system. In otherwords, the reactant gas must pass through the external humidifier and absorb water vaporbefore entering the cell. Therefore, this approach makes the cell system complicated, makesits energy efficiency and volume efficiency reduced, and makes the cost of fuel cell increased,thereby hinders the commercialization of the fuel cells. Indeed, the development of aself-humidifying membrane electrode assembly (MEA) has become one of the most importantsubjects in the PEMFC field. It is a most important aim for PEMFC to realizeself-humidification or no humidification, which not only solves the problem of watermanagement in PEMFC, but also decreases the cost and self energy consumption of PEMFCsystem by reducing the external humidifier. Summarily, the development of self-humidifyingMEA is extremely significant for the development and commercialization of proton exchangemembrane fuel cell.
     In this thesis, the self-humidifying MEAs were prepared by several new methods, includingadding hydrophilic organic polymer in catalyst layer, adding hydrophilic organic polymer andinorganic oxide in the catalyst layer, adding hydrophilic organic polymer in double cathodecatalyst layer, as well as preparing a self-humidification composite membrane by alayer-by-layer assembly methods.
     Firstly, we prepared a novel self-humidifying membrane electrode assembly (MEA) withaddition of polyvinyl alcohol (PVA) as the hygroscopic agent into anode catalyst layer wasdeveloped for proton exchange membrane fuel cell (PEMFC). The effect of the variety ofhydrophilic organic polymer, addition amount and the relative humidity of anode and cathodewere investigated. We found that the performance of self-humidifying MEA prepared byusing PVA as hygroscopic agent is better than using other organic polymers. The waterretention ability of self-humidifying MEAs was enhanced by adding PVA in anode catalystlayer. It is interesting that the performance of MEA PVA5hardly changes even if the relativehumidity (RH) of both the anode and cathode decreased from100%to34%. The MEAsshowed good self humidification performance, for the sample with PVA addition of5wt.%(MEA PVA5), the maximum power density can reach up to623.3mW.cm~(-2), with currentdensities of1000mA.cm~(-2)at0.6V and600mA.cm~(-2)at0.7V respectively, at50oC and34%of relative humidity (RH). The MEA PVA5also showed good stability at low humidityoperating conditions: keeping the MEA discharged at constant voltage of0.6V for60hours at34%of RH, the attenuation of the current density is less than10%, whilst for the MEAwithout addition of PVA, the attenuation is high up to80%within5hours.
     Secondly, the activity of catalyst increased with the increasing of cell temperature, as wellas heat and water management would be simplified at an elevated temperarue. To decrease theconflict between improving activity of catalyst and maintaining Nafion with a good protonconductivity at an elevated cell temperature under low-humidity conditions. A novelself-humidifying membrane electrode assembly (MEA) has been successfully prepared bysimultaneously adding both a hydrophilic organic polymer (polyvinyl alcohol, PVA) and aninorganic oxide (silica) to the anode catalyst layer. Compared to the self-humidifying MEA byadding only a hygroscopic substance (PVA or SiO_2) in anode catalyst layer, this MEA showedexcellent self-humidification performance under low-humidity conditions. A sample (MPS3) containing3wt.%PVA and3wt.%silica in the anode catalyst layer achieves a currentdensity as high as1100mA.cm~(-2)at0.6V, and the highest peak power density was780mW.cm~(-2), operating at60oC and15%relative humidity for both anode and cathode. Theperformance of the self-humidifying MEA was hardly changed even if the RHs of both theanode and cathode decreased from100%to15%at60oC. Appropriate to improve the celltemperature is advantageous to the promotion of cell performance. The sample also showedexcellent stability at low-humidity: after30h of continuous operation under the sameconditions, the current density decreases just slightly, from1100mA.cm~(-2)to ca.900mA.cm~(-2),whereas with MEAs to which only PVA or silica alone had been added, the current densitiesafter30h is just700mA.cm~(-2)and800mA.cm~(-2), respectively.
     Furthermore, a self-humidifying MEA was prepared by adding hydrophilic organic polymer(PVA) in the inner layer of the double cathode catalyst layer. The effect of adding mode ofPVA in the cathode, the addition amount, the cell temperature and the relative humidity ofanode and cathode were investigated. Compared to the MEA by adding PVA in the singlecathode layer (SC-3PVA) and adding PVA in the outlayer of double cathode layer(DC-3PVA-outer), the concentration polarization was increaed by adding PVA in the innerlayer of double cathode layer (DC-3PVA-inner), but the back diffusion of water from cathodeto anode was enhanced. At a cell temperature of60oC and30psi, the current density ofDC-3PVA-inner at0.6V can achieved900mA.cm~(-2)at20%RH, which is2.25times higherthan that of DC-3PVA-outer and4.5times higher than that of SC-3PVA.
     Finally, a novel self-humidifying composite membrane Nafion/(PANI/SiO_2)n was preparedby layer-by-layer assembly using doped PANI and SiO_2as the raw substances. We suggestedthat the doped PANI and SiO_2assemble on the Nafion membran in a form of electrostaticattraction. The composite membranes were characterized by Digital photos,Thermogravimetric analysis (TG), Fourier transform infrared spectroscopy (FTIR),Ultraviolet-visible absorption spectrum (UV-vis), X-ray diffraction (XRD). We found that thedoped PANI and SiO_2can be successful absorbed on the Nafion membrane, and theadsorption quantity of PANI is proportional to the assemble layer. The proton conductivity ofcomposite membranes gradually decreased with the increaing of (PANI/SiO_2) layers byelectrical conductivity tests. When the (PANI/SiO_2) layers is7, the cell performance of self-humidifying MEA is the best in the low humidity condition.
引文
[1] Subramanyan K., Diwekar U. M., Goyal A., Multi-objective optimization for hybrid fuelcells power system under uncertainty [J]. J. Power Sources,2004,132(1-2):99-112.
    [2]衣宝廉,燃料电池-原理、技术、应用[M],北京:化学工业出版社,2003.
    [3] Squadrito G., Barbera O., Giacoppo G., et al., Polymer electrolyte fuel cell stack researchand development [J]. Int. J. Hydrogen Energy,2008,33(7):1941-1946.
    [4] Prince-Richard S., Whale M., Djilali N., A techno-economic analysis of decentralizedelectrolytic hydrogen production for fuel cell vehicles [J]. Int. J. Hydrogen Energy,2005,30(11):1159-1179.
    [5] Wu S. H., Kotak D. B., Fleetwood M. S., An integrated system framework for fuelcell-based distributed green energy applications [J]. Renew Energy,2005,30(10):1525-1540.
    [6] El-Sharkh M. Y., Rahman A., Alam M. S., Evolutionary programming-based methodologyfor economical output power from PEM fuel cell for micro-grid application [J]. J. PowerSources,2005,139(1-2):165-169.
    [7] Dyer C.K., Fuel cells for portable applications [J]. Fuel Cells Bulletin,2002,2002(3):8-9.
    [8]刘润茹,王德军,燃料电池工作原理及性能研究[J].长春大学学报,2004,14(2):72-74.
    [9]毛宗强,燃料电池[M],北京:化学工业出版社,2005.
    [10]陈延禧,聚合物电解质燃料电池的研究进展[J].电源技术,1996,20(1):21-27.
    [11]林维明,燃料电池系统[M],北京:化学工业出版社,1996.
    [12] Sopian K., Wan Daud W. R., Challenges and future developments in proton exchangemembrane fuel cells [J]. Renew Energy,2006,31(5):719-727.
    [13]刘建国,孙公权,燃料电池概述[J].物理学与新能源材料专题,2004,33(2):79-81.
    [14] Carrette L., Friedrich K. A., Stimming U., Fuel Cells-Fundamentals and Applications [J].Fuel Cells,2001,1(1):5-39.
    [15] James L., Dicks A., Fuel Cell Systems, Explained-Second Edition [M],2003.
    [16] Bernay C., Marchand M., Cassir M., Prospects of different fuel cell technologies forvehicle applications [J]. J. Power Sources,2002,108(1-2):139-152.
    [17] Wee J. H., Applications of proton exchange membrane fuel cell systems [J]. Renew. Sust.Energ. Rev.,2007,11(8):1720-1738.
    [18] Virji M. B. V., Thring R. H., Analysis of a50kWe indirect methanol proton exchangemembrane fuel cell (PEMFC) system for transportation application [J]. P. I. Mech. Eng.D-J. Aut.,2005,219(8):937-950.
    [19]衣宝廉,燃料电池——高效、环境友好的发电方式[M],北京:化学工业出版社,2000.
    [20]刘凤君,高效环保的燃料电池发电系统及其应用[M],北京:机械工业出版社,2005.
    [21] Wang Y., Choi S. Y., Lee E. C., Fuel cell power conditioning system design forresidential application [J]. Int. J. Hydrogen Energy,2009,34(5):2340-2349.
    [22] Oszcipok M., Zedda M., Hesselmann J., et al., Portable proton exchange membranefuel-cell systems for outdoor applications [J]. J. Power Sources,2006,157(2):666-673.
    [23] Varigonda S., Kamat M., Control of stationary and transportation fuel cell systems:Progress and opportunities [J]. Comput. Chem. Eng.,2006,30(10-12):1735-1748.
    [24] Folkesson A., Andersson C., Alvfors P., et al., Real life testing of a hybrid PEM fuel cellbus [J]. J, Power Sources,2003,118(1-2):349-357.
    [25] Adams V. W., Possible fuel cell applications for ships and submarines [J]. J. PowerSources,1990,29(1-2):181-192.
    [26] Sohn Y. J., Park G. G., Yang T. H., et al., Operating characteristics of an air-coolingPEMFC for portable applications [J]. J. Power Sources,2005,145(2):604-609.
    [27] Holladay J. D., Wainright J. S., Jones E. O., et al., Power generation using a mesoscalefuel cell integrated with a microscale fuel processor [J]. J. Power Sources,2004,130(1-2):111-118.
    [28] Tanrioven M., Alam M. S., Impact of load management on reliability assessment of gridindependent PEM Fuel Cell Power Plants [J]. J. Power Sources,2006,157(1):401-410.
    [29]朱科,质子交换膜燃料电池Pt/C电催化剂和膜电极的研究[D],天津:天津大学,2005.
    [30] Mehta V, Cooper J. S., Review and analysis of PEM fuel cell design and manufacturing[J]. J. Power Sources,2003,114(1):32-53.
    [31] Paul R., Felix B., Chris O. et al. Operational aspects of a large PEFCs taek underPractical conditions [J]. J. Power Souree,2004,128(2):208-217.
    [32] Borroni-Bird C. E., Fuel cell commercialization issues for light-duty vehicle applications[J]. J. Power Sources,1996,61(1-2):33-48.
    [33] Laboratory N. E. T., Fuel Cell Handbook, Sixth Edition [M],2002.
    [34]徐磊敏,光照直接喷涂技术制备低铂载量及免增湿高性能膜电极的研究[D],广州:华南理工大学,2009.
    [35]黄倬,屠海令,张翼强,质子交换膜燃料电池的研究开发与应用[M],北京:冶金工业出版社,2000.
    [36]石井弘毅,图说燃料电池原理与应用[M],北京:科学出版社,2003.
    [37]贾荣利,石墨化沥青基超细炭粉负载Pt基电催化剂的研究[D],天津:天津大学,2005.
    [38]苏华能,质子交换膜燃料电池低铂载量膜电极与微型燃料电池电源系统的开发研究[D],广州:华南理工大学,2010.
    [39]任素贞,直接甲醇燃料电池用新型质子交换膜的研究[D],大连:大连理工大学,2005.
    [40] Haile S. M., Fuel cell materials and components [J]. Acta Mater.,2003,51(19):5981-6000.
    [41] Steele B. C. H., Heinzel A., Materials for fuel-cell technologies [J]. Nature,2001,414:345-352.
    [42] Litster S., McLean G., PEM fuel cell electrodes [J]. J. Power Sources,2004,130(1-2):61-76.
    [43] Baschuk J. J., Li X. G., Modelling of polymer electrolyte membrane fuel cells withvariable degrees of water flooding [J]. J. Power Sources,2000,86(1-2):181-196.
    [44]蔡年生,固体聚合物电极质燃料电池中的水平衡[J].电源技术,1996,20:128-133.
    [45] D. W. D., Water Distribution in Polymer Exchange Membrane of Fuel Cell [J]. J. PowerSources,1994,94(1):117-119.
    [46] Uribe F. A., Springer T. E., Gottesfeld S., A microelectrode study of oxygen reduction atthe Platinum/recast-Nafion film interface [J]. J. Electrochem. Soc.,1992,139(3):765-773.
    [47] Springer T. E., Zawodzinski T. A., Gottesfeld S., Polymer electrolyte fuel cell model [J].J. Electrochem. Soc.,1991,138(8):2334-2342.
    [48] Zawodzinski T. A., Neeman M., Sillerud L.O., et al., Determination of water diffusioncoefficients in perfluorosulfonate ionomeric membranes [J]. J. Phys. Chem.,1991,95(15):6040-6044.
    [49] Fuller T. F., Newman J., Experimental determination of the transport number of water inNafion117membrane [J]. J. Electrochem. Soc.,1992,139(5):1332-1337.
    [50] Zawodzinski T. A., Davey J., Valerio J., et al., The water content dependence ofelectro-osmotic drag in proton-conducting polymer electrolytes [J]. Electrochim. Acta,1995,40(3):297-302.
    [51] Staschewski D., Internal humidifying of PEM fuel cells [J]. Int. J. Hydrogen Energy,1996,21(5):381-385.
    [52] Mauritz K. A., Moore R. B., State of understanding of nafion [J]. Chem. Rev.,2004,104(10):4535-4585.
    [53] Zawodzinski T. A., Springer T. E., Davey J., et al., A comparative study of water uptakeby and transport through ionomeric fuel cell membranes [J]. J. Electrochem. Soc.,1993,140(7):1981-1985.
    [54]刘永浩,燃料电池用增强及自增湿质子交换膜的研究[D].大连:中国科学院研究生院(大连化学物理研究所),2006.
    [55] Watanabe M., Uchida H., Seki Y., et al., Self-humidifying polymer electrolytemembranes for fuel cells [J]. J. Electrochem. Soc.,1996,143(12):3847-3852.
    [56] Watanabe M., Uchida H., Emori M., Polymer electrolyte membranes incorporated withnanometer-size particles of Pt and/or metal-oxides: Experimental analysis of theself-Humidification and suppression of gas-crossover in fuel cells [J]. J. Phys. Chem. B,1998,102(17):3129–3137.
    [57] Watanabe M., Uchida H., Emori M., Analyses of self-humidification and suppression ofgas crossover in Pt-dispersed polymer electrolyte membranes for fuel cells [J]. J.Electrochem. Soc.,1998,145(4):1137-1141.
    [58] Uchida H., Ueno Y., Hagihara H., et al., Self-humidifying electrolyte membranes for fuelcells [J]. J. Electrochem. Soc.,2003,150(1): A57-A62.
    [59] Hagihara H., Uchida H., Watanabe M., Preparation of highly dispersed SiO2and Ptparticles in Nafion112for self-humidifying electrolyte membranes in fuel cells [J].Electrochim. Acta,2006,51(19):3979-3985.
    [60] Son D. H., Sharma R. K., Shul Y. G., et al., Preparation of Pt/zeolite–Nafion compositemembranes for self-humidifying polymer electrolyte fuel cells [J]. J. Power Sources,2007,165(2):733-738.
    [61] Yang T. H., Yoon Y. G., Kim C. S., et al., A novel preparation method for aself-humidifying polymer electrolyte membrane [J]. J. Power Sources,2002,106(1-2):328-332.
    [62] Kwak S. H., Yang T. H., Kim C. S., et al., The effect of platinum loading in theself-humidifying polymer electrolyte membrane on water uptake [J]. J. Power Sources,2003,118(1-2):200-204.
    [63] Liu Y. H., Yi B., Shao Z. G., et al., Pt/CNTs-Nafion reinforced and self-humidifyingcomposite membrane for PEMFC applications [J]. J. Power Sources,2007,163(2):807-813.
    [64] Wang C., Liu Z. X., Mao Z. Q., et al., Preparation and evaluation of a novelself-humidifying Pt/PFSA composite membrane for PEM fuel cell [J]. Chem. Eng. J.,2005,112(1-3):87-91.
    [65] Zhang W., Li M. K. S., Yue P. L., et al., Exfoliated Pt-clay-Nafion nanocompositemembrane for self-humidifying polymer electrolyte fuel cells [J]. Langmuir,2008,24(6):2663-2670.
    [66] Hung T. F., Liao S. H., Li C. Y., et al., Effect of sulfonated carbon nanofiber-supported Pton performance of Nafion-based self-humidifying composite membrane for protonexchange membrane fuel cell [J]. Journal of Power Sources,2011,196(1):126-132.
    [67] Tsai C. H., Yang F. L., Chang C. H., et al., Microwave-assisted synthesis of silica aerogelsupported pt nanoparticles for self-humidifying proton exchange membrane fuel cell [J]. I.J. Hydrogen Energy,2012,37(9):7669-7676.
    [68] Yang B., Fu Y. Z., Manthiram A., Operation of thin Nafion-based self-humidifyingmembranes in proton exchange membrane fuel cells with dry H2and O2[J]. J. PowerSources,2005,139(1-2):170-175.
    [69] Yang T., A Nafion-based self-humidifying membrane with ordered dispersed Pt layer [J].Int. J. Hydrogen Energy,2008,33(10):2530-2535.
    [70] Liu Y., Nguyen T., Kristian N., et al., Reinforced and self-humidifying compositemembrane for fuel cell applications [J]. J. Membr. Sci.,2009,330(1-2):357-362.
    [71] Zhang Y., Zhang H. m., Bi C., et al., An inorganic/organic self-humidifying compositemembranes for proton exchange membrane fuel cell application [J]. Electrochim. Acta,2008,53(12):4096-4103.
    [72] Peighambardoust S. J., Rowshanzamir S., Hosseini M.G., et al., Self-humidifyingnanocomposite membranes based on sulfonated poly(ether ether ketone) andheteropolyacid supported Pt catalyst for fuel cells [J]. Int. J. Hydrogen Energy,2011,36(17):10940-10957.
    [73] Mu S. C., Wang X. E., Tang H. L., et al., A Self-humidifying composite membrane withself-assembled Pt nanoparticles for polymer electrolyte membrane fuel cells [J]. J.Electrochem. Soc.,2006,153(10): A1868.
    [74] Liu F. Q., Yi B. L., Xing D. M., et al., Development of novel self-humidifying compositemembranes for fuel cells [J]. J. Power Sources,2003,124(1):81-89.
    [75] Xing D. M., Yi B. L., Fu Y. L., et al., Pt-C/SPEEK/PTFE self-humidifying compositemembrane for fuel cells [J]. Electrochem. Solid-State Lett.,2004,7(10): A315-A317.
    [76] Zhang Y., Zhang H. M., Zhu X. B., et al., A low-cost PTFE-reinforced integralmultilayered self-humidifying membrane for PEM fuel cells [J]. Electrochem. Solid-StateLett.,2006,9(7): A332-A335.
    [77] Wang L., Xing D. M., Liu Y. H., et al., Pt/SiO2catalyst as an addition to Nafion/PTFEself-humidifying composite membrane [J]. J. Power Sources,2006,161(1):61-67.
    [78] Zhu X. B., Zhang H. M., Liang Y. M., et al., A Novel PTFE-reinforced multilayerself-Humidifying composite membrane for PEM fuel cells [J]. Electrochem. Solid-StateLett.,2006,9(2): A49-A53.
    [79] Zhang Y., Zhang H. M., Zhu X. B., et al., Fabrication and characterization of aPTFE-reinforced integral composite membrane for self-humidifying PEMFC [J]. J.Power Sources,2007,165(2):786-792.
    [80] Wang L., Yi B. L., Zhang H. M., et al., Pt/SiO2as addition to multilayer SPSU/PTFEcomposite membrane for fuel cells [J]. Polym. Adv. Technol.,2008,19(12):1809-1815.
    [81] Shao Z. G., Xu H. F., Li M. Q., et al., Hybrid Nafion–inorganic oxides membrane dopedwith heteropolyacids for high temperature operation of proton exchange membrane fuelcell [J]. Solid State Ionics,2006,177(7-8):779-785.
    [82] Ramani V., Kunz H. R., Fenton J. M., Investigation of Nafion/HPA compositemembranes for high temperature/low relative humidity PEMFC operation [J]. J. Membr.Sci.,2004,232(1-2):31-44.
    [83] Ramani V., Kunz H. R., Fenton J. M., Stabilized heteropolyacid/Nafion (R) compositemembranes for elevated temperature/low relative humidity PEFC operation [J].Electrochim. Acta,2005,50(1-2):1181-1187.
    [84] Zhai Y. F., Zhang H. M., Hu J. W., et al., Preparation and characterization of sulfatedzirconia(SO42/ZrO2)/Nafion composite membranes for PEMFC operation at hightemperature/low humidity [J]. J. Membr. Sci.,2006,280(1-2):148-155.
    [85] Zhang Y., Zhang H. M., Zhu X. B., et al., Promotion of PEM self-humidifying effect bynanometer-sized sulfated zirconia-supported Pt catalyst hybrid with sulfonated poly(EtherEther Ketone)[J]. J. Phys. Chem. B,2007,111(23):6391-6399.
    [86] Wang L., Yi B. L., Zhang H. M., et al., Cs2.5H0.5PWO40/SiO2as addition self-humidifyingcomposite membrane for proton exchange membrane fuel cells [J]. Electrochim. Acta,2007,52(17):5479-5483.
    [87] Zhang Y., Zhang H. M., Zhai Y. F., et al., Investigation of self-humidifying membranesbased on sulfonated poly(ether ether ketone) hybrid with sulfated zirconia supported Ptcatalyst for fuel cell applications [J]. J. Power Sources,2007,168(2):323-329.
    [88] Bi C., Zhang H. M., Zhang Y., et al., Fabrication and investigation of SiO2supportedsulfated zirconia/Nafion self-humidifying membrane for proton exchange membranefuel cell applications [J]. J. Power Sources,2008,184(1):197-203.
    [89] Chalkova E., Fedkin M. V., Komarneni S., et al., Nafion/zirconium phosphate compositemembranes for PEMFC operating at up to120°C and down to13%RH [J]. J.Electrochem. Soc.,2007,154(2): B288-B295.
    [90] Lee H., Kim J., Park J., et al., A study on self-humidifying PEMFC using Pt-ZrP-Nafioncomposite membrane [J]. Electrochim. Acta,2004,50(2-3):761-768.
    [91] Sahu A. K., Jalajakshi A., Pitchumani S., et al., Endurance of Nafion-compositemembranes in PEFCs operating at elevated temperature under low relative-humidity [J]. J.Chem. Sci.,2012,124(2):529-536.
    [92] Nie L. L., Wang J. T., Xu T., et al., Enhancing proton conduction under low humidity byincorporating core-shell polymeric phosphonic acid submicrospheres into sulfonatedpoly(ether ether ketone) membrane [J]. J. Power Sources,2012,213(1):1-9.
    [93] Han M., Chan S. H., Jiang S. P., Investigation of self-humidifying anode in polymerelectrolyte fuel cells [J]. Int. J. Hydrogen Energy,2007,32(3):385-391.
    [94] Tang H. L., Wan Z. H., Pan M., et al., Self-assembled Nafion-silica nanoparticles forelevated-high temperature polymer electrolyte membrane fuel cells [J]. Electrochem.Commun.,2007,9(8):2003-2008.
    [95] Zhang J., Tang H. L., Pan M., Fabrication and characterization of self-assembledNafion-SiO2-ePTFE composite membrane of PEM fuel cell [J]. J. Membr. Sci.,2008,312(1-2):41-47.
    [96] Pereira F., Vallé K., Belleville P., et al., Advanced mesostructured hybrid silica-Nafionmembranes for high-performance PEM fuel cell [J]. Chem. Mater.,2008,20(5):1710-1718.
    [97] Tang H. L., Pan M., Synthesis and characterization of a self-assembled Nafion-silicananocomposite membrane for polymer electrolyte membrane fuel cells [J]. J. Phys. Chem.C,2008,112(30):11556-11568.
    [98] Amjadi M., Rowshanzamir S., Peighambardoust S.J., et al., Preparation, characterizationand cell performance of durable nafion/SiO2hybrid membrane for high-temperaturepolymeric fuel cells [J]. J. Power Sources,2012,210(1):350-357.
    [99] Ke C. C., Li X. J., Qu S. G., et al., Preparation and properties of Nafion/SiO2compositemembrane derived via in situ sol-gel reaction: size controlling and size effects of SiO2nano-particles [J]. Polym. Adv. Technol.,2012,23(1):92-98.
    [100] Yang J., Shen P. K., Varcoe J., et al., Nafion/polyaniline composite membranesspecifically designed to allow proton exchange membrane fuel cells operation at lowhumidity [J]. J. Power Sources,2009,189(2):1016-1019.
    [101] Won J. H., Lee H. J., Yoon K. S., et al., Sulfonated SBA-15mesoporoussilica-incorporated sulfonated poly(phenylsulfone) composite membranes forlow-humidity proton exchange membrane fuel cells: Anomalous behavior ofhumidity-dependent proton conductivity [J]. Int. J. Hydrogen Energy,2012,37(11):9202-9211.
    [102] Wang L., Advani S. G., Prasad A. K., Ionic liquid-based composite membrane forPEMFCs operating under low relative humidity conditions [J]. Electrochem. Solid-StateLett.,2012,15(4): B44-B47.
    [103] Jasti A., Prakash S., Shahi V. K., Stable zirconium hydrogen phosphate-silicananocomposite membranes with high degree of bound water for fuel cells [J]. React.Funct. Polym.,2012,72(2):115-121.
    [104] Lee C. H., Lee K. S., Lane O., et al., Solvent-assisted thermal annealing of disulfonatedpoly(arylene ether sulfone) random copolymers for low humidity polymer electrolytemembrane fuel cells [J]. RSC Advances,2012,2(3):1025.
    [105] ünlü M., Zhou J., Kohl P.A., Self humidifying hybrid anion-cation membrane fuel celloperated under dry conditions [J]. Fuel Cells,2010,10(1):54-63.
    [106] Yameen B., Kaltbeitzel A., Langer A., et al., Highly proton-conducting self-humidifyingmicrochannels generated by copolymer brushes on a scaffold [J]. Angew. Chem., Int. Ed.,2009,48(17):3124-3128.
    [107] Han W., Yeung K. L., Confined PFSA-zeolite composite membrane forself-humidifying fuel cell [J]. Chem. Commun.,2011,47(28):8085.
    [108] Yim S. D., Sohn Y. J., Park S. H., et al., Fabrication of microstructure controlledcathode catalyst layers and their effect on water management in polymer electrolyte fuelcells [J]. Electrochim. Acta,2011,56(25):9064-9073.
    [109] Ahn S., Lee Y., Ha H., et al., Effect of the ionomers in the electrode on the performanceof PEMFC under non-humidifying conditions [J]. Electrochim. Acta,2004,50(2-3):673-676.
    [110] Wang C., Mao Z. Q., Xu J. M., et al., A novel preparation for a self-humidifyingmembrane electrode assembly and performance of its fuel cell [J]. Chem. J. Chinese U.,2003,24(1):140-142.
    [111]杨涛,史鹏飞,质子交换膜燃料电池自增湿研究进展[J].能源技术,2006,27(3):107-110.
    [112] Jung U. H., Park K. T., Park E. H., et al., Improvement of low-humidity performance ofPEMFC by addition of hydrophilic SiO2particles to catalyst layer [J]. J. Power Sources,2006,159(1):529-532.
    [113] Jung U. H., Jeong S. U., Park K. T., et al., Improvement of water management inair-breathing and air-blowing PEMFC at low temperature using hydrophilic silicanano-particles [J]. Int. J. Hydrogen Energy,2007,32(17):4459-4465.
    [114] Sahu A. K., Selvarani G., Pitchumani S., et al., Ameliorating effect of silica addition inthe anode-catalyst layer of the membrane electrode assemblies for polymer electrolytefuel cells [J]. J. Appl. Electrochem.,2007,37(8):913-919.
    [115] Vengatesan S., Kim H. J., Lee S. Y., et al., Operation of a proton exchange membranefuel cell under non-humidified conditions using a membrane-electrode assemblies withcomposite membrane and electrode [J]. J. Power Sources,2007,167(2):325-329.
    [116] Vengatesan S., Kim H., Lee S., et al., High temperature operation of PEMFC: A novelapproach using MEA with silica in catalyst layer [J]. Int. J. Hydrogen Energy,2008,33(1):171-178.
    [117] Velan V. S., Velayutham G., Hebalkar N., et al., Effect of SiO2additives on the PEMfuel cell electrode performance [J]. Int. J. Hydrogen Energy,2011,36(22):14815-14822.
    [118] Miao Z. L., Yu H. M., Song W., et al., Effect of hydrophilic SiO2additive in cathodecatalyst layers on proton exchange membrane fuel cells [J]. Electrochem. Commun.,2009,11(4):787-790.
    [119] Lee S. Y., Kim H. J., Kim K. H., et al., Gradient catalyst coating for a proton exchangemembrane fuel cell operation under nonhumidified conditions [J]. Electrochem.Solid-State Lett.,2007,10(10): B166-B169.
    [120] Chen J., Matsuura T., Hori M., Novel gas diffusion layer with water managementfunction for PEMFC [J]. J. Power Sources,2004,131(1-2):155-161.
    [121] Wang E. D., Shi P. F., Du C. Y., A novel self-humidifying membrane electrode assemblywith water transfer region for proton exchange membrane fuel cells [J]. J. Power Sources,2008,175(1):183-188.
    [122] Kannan A., Cindrella L., Munukutla L., Functionally graded nano-porous gas diffusionlayer for proton exchange membrane fuel cells under low relative humidity conditions [J].Electrochim. Acta,2008,53(5):2416-2422.
    [123] Cindrella L., Kannan A.M., Membrane electrode assembly with doped polyanilineinterlayer for proton exchange membrane fuel cells under low relative humidityconditions [J]. J. Power Sources,2009,193(2):447-453.
    [124] Huang Y. F., Kannan A. M., Chang C. S., et al., Development of gas diffusionelectrodes for low relative humidity proton exchange membrane fuel cells [J]. Int. J.Hydrogen Energy,2011,36(3):2213-2220.
    [125] Kitahara T., Nakajima H., Mori K., Hydrophilic and hydrophobic double mpl coated gasdiffusion layer for enhancing pefc performance under no-humidification at the cathode [J].J. Power Sources,2012,199(1):29-36.
    [126] Tang H. L., Jiang S. P., Self-Assembled Pt-mesoporous silica-carbon electrocatalysts forelevated-temperature polymer electrolyte membrane fuel cells [J]. J. Phys. Chem. C,2008,112(49):19748–19755.
    [127] Inoue N., Uchida M., Watanabe M., et al., SiO2-containing catalyst layers for PEFCsoperating under low humidity [J]. Electrochem. Commun.,2012,16(1):100-102.
    [128] Choi I., Lee K. G., Ahn S. H., et al., Sonochemical synthesis of Pt-deposited SiO2nanocomposite and its catalytic application for polymer electrolyte membrane fuel cellunder low-humidity conditions [J]. Catal. Commun.,2012,21(1):86-90.
    [129] Su H. N., Xu L. M., Zhu H. P., et al., Self-humidification of a PEM fuel cell using anovel Pt/SiO2/C anode catalyst [J]. Int. J. Hydrogen Energy,2010,35(15):7874-7880.
    [130] Su H. N., Yang L. J., Liao S. J., et al., Membrane electrode assembly with Pt/SiO2/Canode catalyst for proton exchange membrane fuel cell operation under low humidityconditions [J]. Electrochim. Acta,2010,55(28):8894-8900.
    [131] Wood III D. L., Yi J. S., Nguyen T. V., Effect of direct liquid water injection andinterdigitated flow field on the performance of proton exchange membrane fuel cells [J].Electrochim. Acta,1998,43(24):3795-3809.
    [132] Nuyen T. V., A gas distributor design for proton exchange membrane fuel cells [J]. J.Electrochem. Soc.,1996,143(5):103-105.
    [133] Shelekhin A. B., Bushnell C. L., Pien M. S., Air-cooled, hydrogen-air fuel cell [M].1998.
    [134] Ge S. H., Li X. G., Hsing I. M., Internally humidified polymer electrolyte fuel cellsusing water absorbing sponge [J]. Electrochim. Acta,2005,50(9):1909-1916.
    [135] Lvov Y., Ariga K., Ichinose I., et al., Assembly of multicomponent protein films bymeans of electrostatic Layer-by-Layer adsorption [J]. J. Am. Chem. Soc.,1995,117(22):6117-6123.
    [136] Fischer P., Laschewsky A., Wischerhoff E., et al., Polyelectrolytes bearing azobenzenesfor the functionalization of multilayers [J]. Macromol. Symp.,1999,137(1):1-24.
    [137] Decher G., Hong J.-D., Buildup of ultrathin multilayer films by a self-assembly process,consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces[J]. Makromol. Chem., Macromol. Symp.1991,46(1):321-327.
    [138] Bertrand P., Jonas A., Laschewsky A., et al., Ultrathin polymer coatings bycomplexation of polyelectrolytes at interfaces: suitable materials, structure and properties[J]. Macromol. Rapid Commun.,2000,21(7):319-348.
    [139]吴涛,张希,自组装超薄膜:从纳米层状构筑到功能组装[J].高等学校化学学报,2001,22(6):1057-1065.
    [140] Decher G., Fuzzy nanoassemblies-toward layered polymeric multicomposites [J].Science,1997,277(5330):1232-1237.
    [141] Kotov N. A., Layer-by-layer self-assembly: The contribution of hydrophobicinteractions [J]. Nanostruct. Mater.,1999,12(5-8):789-796.
    [142] Fischer P., Laschewsky A., Layer-by-Layer adsorption of identically chargedpolyelectrolytes [J]. Macromolecules,2000,33):1100-1102.
    [143] Lang J., Liu M. H., Layer-by-Layer assembly of DNA films and their interactions withdyes [J]. J. Phys. Chem. B,1999,103(51):11393-11397.
    [144] Serizawa T., Takeshita H., Akashi M., Electrostatic adsorption of polystyrenenanospheres onto the surface of an ultrathin polymer film prepared by using an alternateadsorption technique [J]. Langmuir,1998,14(15):4088-4094.
    [145] Kleinfeld E. R., Ferguson G. S., Stepwise formation of multilayered nanostructuralfilms from macromolecular precursors [J]. Science,1994,265(5170):370-373.
    [146] Liu M., Kira A., Nakahara H., Two-dimensional aggregation of a long-chainthiacarbocyanine dye monolayer on polyanion subphases [J]. J. Phys. Chem.,1996,100(51):20138-20142.
    [147] Lavalle P., Vivet V., Jessel N., et al., Direct evidence for vertical diffusion and exchangeprocesses of polyanions and polycations in polyelectrolyte multilayer films [J].Macromolecules,2004,37(3):1159-1162.
    [148] Poptoshev E., Schoeler B., Caruso F., Influence of solvent quality on the growth ofpolyelectrolyte multilayers [J]. Langmuir,2004,20(3):829-834.
    [149] Lvov Y., Ariga K., Onda M., et al., A careful examination of the adsorption step in thealternate layer-by-layer assembly of linear polyanion and polycation [J]. Colloids Surf., A,1999,146(1-3):337-346.
    [150] Shinbo K., Suzuki K., Kato K., et al., Thermally stimulated currents and electricalconduction in self-assembled ultrathin films [J]. Thin Solid Films,1998,327-329(1):209-213.
    [151] Arys X., Jonas A. M., Laguitton B., et al., Structural studies on thin organic coatingsbuilt by repeated adsorption of polyelectrolytes [J]. Prog. Org. Coat.,1997,34(1-4):108-118.
    [152] Kim J., Tripathy S. K., Kumar J., et al., Fabrication of multilayer thin films viametal-macromolecular ligand complexation [J]. Mater. Sci. Eng., C,1999,7(1):11-18.
    [153] Balladur V., Theretz A., Mandrand B., Determination of the main forces driving DNAoligonucleotide adsorption onto aminated silica wafers [J]. J. Colloid Interface Sci.,1997,194(2):408-418.
    [154] Salom ki M., Vinokurov I. A., Kankare J., Effect of temperature on the buildup ofpolyelectrolyte multilayers [J]. Langmuir,2005,21(24):11232-11240.
    [155] Tian J., Wu C. C., Thompson M. E., et al., Photophysical properties, self-assembled thinfilms, and light-emitting diodes of Poly(p-pyridylvinylene)s and poly(p-pyridiniumvinylene)s [J]. Chem. Mater.,1995,7(11):2190-2198.
    [156] Serizawa T., Goto H., Kishida A., et al., Improved alternate deposition of biodegradablenaturally occurring polymers onto a quartz crystal microbalance [J]. J. Polym. Sci., Part A:Polym. Chem.,1999,37(6):801-804.
    [157] Hoogeveen N. G., Stuart M. A. C., Fleer G. J., Polyelectrolyte adsorption on oxides: II.Reversibility and exchange [J]. J. Colloid Interface Sci.,1996,182(1):146-157.
    [158] Lev salmi J. M., Mccarthy T. J., Poly(4-methyl-1-pentene)-supported polyelectrolytemultilayer films: preparation and gas permeability [J]. Macromolecules,1997,30(6):1752-1757.
    [159]陈小玲,层层组装厚膜的设计与结构调控[D],长春:吉林大学,2011.
    [160] Lu G., Ai S. F., Li J. B., Layer-by-Layer assembly of human serum albumin andphospholipid nanotubes based on a template [J]. Langmuir,2005,21(5):1679-1682.
    [161] Caruso F., Hollow capsule processing through colloidal templating and self-assembly[J]. Chem.--Eur. J.,2000,6(3):413-419.
    [162] Tjipto E., Cadwell K. D., Quinn J.F., et al., Tailoring the interfaces between nematicliquid crystal emulsions and aqueous phases via Layer-by-Layer assembly [J]. Nano Lett.,2006,6(10):2243-2248.
    [163] Krogman K. C., Lowery J. L., Zacharia N. S., et al., Spraying asymmetry intofunctional membranes layer-by-layer [J]. Nat. Mater.,2009,8(8):512-518.
    [164]唐群委,导电多层膜的层层自组装及性能研究[D],泉州:华侨大学,2009.
    [165] Wang S. Y., Wang X., Jiang S. P., PtRu nanoparticles supported on1-Aminopyrene-functionalized multiwalled carbon nanotubes and their electrocatalyticactivity for methanol oxidation [J]. Langmuir,2008,24(18):10505-10512.
    [166] Wang D. L., Lu S. F., Jiang S. P., Tetrahydrofuran-functionalized multi-walled carbonnanotubes as effective support for Pt and PtSn electrocatalysts of fuel cells [J].Electrochim. Acta,2010,55(8):2964-2971.
    [167] Cui Z. M., Li C. M., Jiang S. P., PtRu catalysts supported on heteropolyacid andchitosan functionalized carbon nanotubes for methanol oxidation reaction of fuel cells [J].Phys. Chem. Chem. Phys.,2011,13(36):16349-16357.
    [168] Wang D. L., Lu S. F., Xiang Y., et al., Self-assembly of HPW on Pt/C nanoparticles withenhanced electrocatalysis activity for fuel cell applications [J]. Appl. Catal., B,2011,103(3-4):311-317.
    [169] Zhang S., Shao Y. Y., Liao H. G., et al., Graphene decorated with PtAu alloynanoparticles: facile synthesis and promising application for formic acid oxidation [J].Chem. Mater.,2011,23(5):1079-1081.
    [170] Guo S. J., Dong S. J., Wang E. K., Three-dimensional Pt-on-Pd bimetallicnanodendrites supported on graphene nanosheet: facile synthesis and used as an advancednanoelectrocatalyst for methanol oxidation [J]. ACS Nano,2009,4(1):547-555.
    [171] Zhao Y. C., Zhan L., Tian J. N., et al., Enhanced electrocatalytic oxidation of methanolon Pd/polypyrrole-graphene in alkaline medium [J]. Electrochim. Acta,2011,56(5):1967-1972.
    [172] Wang Y., Shi Z. X., Fang J. H., et al., Graphene oxide/polybenzimidazole compositesfabricated by a solvent-exchange method [J]. Carbon,2011,49(4):1199-1207.
    [173] Zhu C. Z., Guo S. J., Zhai Y. M., et al., Layer-by-Layer self-Assembly for constructinga graphene/platinum nanoparticle three-dimensional hybrid nanostructure using ionicliquid as a linker [J]. Langmuir,2010,26(10):7614-7618.
    [174] Chai J., Li F. H., Hu Y. W., et al., Hollow flower-like AuPd alloy nanoparticles: Onestep synthesis, self-assembly on ionic liquid-functionalized graphene, andelectrooxidation of formic acid [J]. J. Mater. Chem.,2011,21(44):17922-17929.
    [175] Divisek J., Eikerling M., Mazin V., et al., A Study of capillary porous structure andsorption properties of Nafion proton exhange membranes swollen in water [J]. J.Electrochem. Soc.,1998,145(8):2677-2683.
    [176] Xiang Y., Yang M., Guo Z. B., et al., Alternatively chitosan sulfate blending membraneas methanol-blocking polymer electrolyte membrane for direct methanol fuel cell [J]. J.Membr. Sci.,2009,337(1-2):318-323.
    [177] Liu J. G., Zhao T. S., Liang Z. X., et al., Effect of membrane thickness on theperformance and efficiency of passive direct methanol fuel cells [J]. J. Power Sources,2006,153(1):61-67.
    [178] Rhee C. H., Kim H. K., Chang H., et al., Nafion/sulfonated montmorillonite composite:A new concept electrolyte membrane for direct methanol fuel cells [J]. Chem. Mater.,2005,17(7):1691-1697.
    [179] Yang B., Manthiram A., Multilayered membranes with suppressed fuel crossover fordirect methanol fuel cells [J]. Electrochem. Commun.,2004,6(3):231-236.
    [180] Miyake N., Wainright J. S., Savinell R. F., Evaluation of a sol-gel derived Nafion/silicahybrid membrane for polymer electrolyte membrane fuel cell applications: II. methanoluptake and methanol permeability [J]. J. Electrochem. Soc.,2001,148(8): A905-A909.
    [181] Farhat T. R., Hammond P. T., Designing a new generation of proton-exchangemembranes using Layer-by-Layer deposition of polyelectrolytes [J]. Adv. Funct. Mater.,2005,15(6):945-954.
    [182] Lin H. D., Zhao C. J., Ma W. J., et al., Low water swelling and high methanol resistantproton exchange membrane fabricated by cross-linking of multilayered polyelectrolytecomplexes [J]. J. Membr. Sci.,2009,345(1-2):242-248.
    [183] Harris J. J., DeRose P. M., Bruening M. L., Synthesis of passivating, nylon-like coatingsthrough cross-linking of ultrathin polyelectrolyte films [J]. J. Am. Chem. Soc.,1999,121(9):1978-1979.
    [184] Xiang Y., Zhang J., Liu Y., et al., Design of an effective methanol-blocking membranewith purple membrane for direct methanol fuel cells [J]. J. Membr. Sci.,2011,367(1-2):325-331.
    [185] Johal M. S., Casson J. L., Chiarelli P. A., et al., Polyelectrolyte trilayer combinationsusing spin-assembly and ionic self-assembly [J]. Langmuir,2003,19(21):8876-8881.
    [186] Jiang S. P., Liu Z., Tian Z. Q., Layer-by-Layer self-assembly of compositepolyelectrolyte-Nafion membranes for direct methanol fuel cells [J]. Adv. Mater.,2006,18(8):1068-1072.
    [187] Li Q. F., He R. H., Jensen J. O., et al., Approaches and recent development of polymerelectrolyte,embranes for fuel cells operating above100°C [J]. Chem. Mater.,2003,15(26):4896-4915.
    [188] Kozhevnikov I. V., Catalysis by heteropoly acids and multicomponent polyoxometalatesin liquid-phase reactions [J]. Chem. Rev.,1998,98(1):171-198.
    [189] Zhao C. J., Lin H. D., Cui Z. M., et al., Highly conductive, methanol resistant fuel cellmembranes fabricated by layer-by-layer self-assembly of inorganic heteropolyacid [J]. J.Power Sources,2009,194(1):168-174.
    [190] Lin H. D., Zhao C. J., Ma W. J., et al., Layer-by-layer self-assembly of in situpolymerized polypyrrole on sulfonated poly(arylene ether ketone) membrane withextremely low methanol crossover [J]. Int. J. Hydrogen Energy,2009,34(24):9795-9801.
    [191] Zhao C. J., Lin H. D., Zhang Q., et al., Layer-by-layer self-assembly of polyaniline onsulfonated poly(arylene ether ketone) membrane with high proton conductivity and lowmethanol crossover [J]. Int. J. Hydrogen Energy,2010,35(19):10482-10488.
    [192] Tang H. L., Pan M., Jiang S. P., et al., Self-assembling multi-layer Pd nanoparticles ontoNafion membrane to reduce methanol crossover [J]. Colloids Surf., A,2005,262(1-3):65-70.
    [193] Yamada M., Honma I., Heteropolyacid-encapsulated self-assembled materials foranhydrous proton-conducting electrolytes [J]. J. Phys. Chem. B,2006,110(41):20486-20490.
    [194] Sakamoto H., Daiko Y., Katagiri K., et al., Percolated interface conductivity ofsheet-like electrolyte prepared from poly(2-acrylamido-2-methyl-1-propanesulfonicacid)-deposited core-shell particles and effect of core particle size [J]. J. Power Sources,2010,195(18):5942-5946.
    [195] Daiko Y., Sakamoto H., Katagiri K., et al., Deposition of ultrathin Nafion layers onsol-gel-Derived phenylsilsesquioxane particles via Layer-by-Layer assembly [J]. J.Electrochem. Soc.,2008,155(5): B479-B482.
    [196] Lu S. F., Wang D. L., Jiang S. P., et al., HPW/MCM-41phosphotungsticacid/mesoporous silica composites as novel proton-exchange membranes forelevated-temperature fuel cells [J]. Adv. Mater.,2010,22(9):971-976.
    [197] Zeng J., Jiang S. P., Characterization of high-temperature proton-exchange membranesbased on phosphotungstic acid functionalized mesoporous silica nanocomposites for fuelcells [J]. J. Phys. Chem. C,(2011):11854-11863.
    [198] Tang H. L., Pan M., Lu S. F., et al., One-step synthesized HPW/meso-silica inorganicproton exchange membranes for fuel cells [J]. Chem. Commun.,2010,46(24):4351-4353.
    [199] Alwin S., Bhat S. D., Sahu A. K., et al., Modified-pore-filled-PVDF-membraneelectrolytes for direct methanol fuel cells [J]. J. Electrochem. Soc.,2011,158(2):B91-B98.
    [200] Lu J. L., Tang H. L., Lu S. F., et al., A novel inorganic proton exchange membranebased on self-assembled HPW-meso-silica for direct methanol fuel cells [J]. J. Mater.Chem.,2011,21(18):6668.
    [201] Wan Y., Zhao D., On the controllable soft-templating approach to mesoporous silicates[J]. Chem. Rev.,2007,107(7):2821-2860.
    [202] Thomas S. C., Ren X., Gottesfeld S., et al., Direct methanol fuel cells: progress in cellperformance and cathode research [J]. Electrochim. Acta,2002,47(22-23):3741-3748.
    [203] Pettersson A., Rosenholm J. B., Streaming potential studies on the adsorption ofamphoteric alkyldimethylamine and alkyldimethylphosphine oxides on mesoporous silicafrom aqueous solution [J]. Langmuir,2002,18(22):8447-8454.
    [204] Pan M., Tang H. L., Jiang S. P., et al., Fabrication and performance of polymerelectrolyte fuel cells by self-assembly of Pt nanoparticles [J]. J. Electrochem. Soc.,2005,152(6): A1081-A1088.
    [205] Pan M., Tang H. L., Jiang S. P., et al., self-assembled membrane-electrode-assembly ofpolymer electrolyte fuel cells [J]. Electrochem. Commun.,2005,7(2):119-124.
    [206] Jiang S. P., Li L., Liu Z., et al., Self-assembly of PDDA-Pt nanoparticle/Nafionmembranes for direct methanol fuel cells [J]. Electrochem. Commun.,2005,8(1):A574-A576.
    [207] Michel M., Taylor A., Sekol R., et al., High-performance nanostructured membraneelectrode assemblies for fuel cells made by Layer-by-Layer assembly of carbonnanocolloids [J]. Adv. Mater.,2007,19(22):3859-3864.
    [208] Taylor A. D., Michel M., Sekol R. C., et al., Fuel cell membrane electrode assembliesfabricated by Layer-by-Layer electrostatic self-assembly techniques [J]. Adv. Funct.Mater.,2008,18(19):3003-3009.
    [209]周琛,直接涂膜制备燃料电池膜电极技术的开发研究[D],广州:华南理工大学,2007.
    [210] Decker E. L., Frank B., Suo Y., et al., Physics of contact angle measurement [J].Colloids Surf., A,1999:156(1-3):177-189.
    [211] Watanabe M., Uchida H., Seki Y., et al., Self-humidifying polymer electrolytemembranes for fuel cells [J]. J. Electrochem. Soc.,1996,143(12):3847-3852.
    [212] Xu L. M., Liao S. J., Yang L. J., et al., Investigation of a novel catalyst coatedmembrane method to prepare low-platinum-loading membrane electrode assemblies forPEMFCs [J]. Fuel Cells,2009,9(2):101-105.
    [213] Lue S.J., Mahesh K. P. O., Wang W. T., et al., Permeant transport properties and cellperformance of potassium hydroxide doped poly(vinyl alcohol)/fumed silicananocomposites [J]. J. Membr. Sci.,2011,367(1-2):256-264.
    [214] Buchi F. N., Srinivasan S., Operating proton exchange membrane fuel cells withoutexternal humidification of the reactant gases [J]. J. Electrochem. Soc.,1997,144(8):2767-2772.
    [215] Zaidi S. M. J., Mikhailenko S. D., Robertson G. P. et al., Proton conducting comPositemembranes from polyether ether ketone and heteropolyacids for fuel cell applications [J].J. Membr. Sci.,2000,173(1):17-34.
    [216] Thomas A. Z. J., Charles D., Susan R. et al., Water uptake by and transport throughNafion117membranes [J]. J. Electrochem. soc.,1993,140(4):1041-1045.
    [217] Son Y., Ekdunge P., Simonsson D., Proton conductivity of Nafion117as measured by afour-electrode AC imPedance method [J]. J. Electrochem. Soc.,1996,143(4):1254-1458.
    [218] Liang H. G., Zheng L. P., Liao S. J., Self-humidifying membrane electrode assemblyprepared by adding PVA as hygroscopic agent in anode catalyst layer [J]. Int. J. HydrogenEnergy,2012,37(17):12860-12867.
    [219]于景荣,衣宝廉,韩明, Nafion膜厚度对质子交换膜燃料电池性能的影响[J].电源技术,2001,25(6):384-386.
    [220] Bernardi D. M., Verbrugge M. W., A mathematical model of the solid polymerelectrolyte fuel cell.[J]. J. Electrochem. Soc.,1992,139(9):2477-2451.
    [221] Janssen J. G. M., Overvelde M. L. J., Water transport in the proton exchange membranefuel cell: Measurements of the effective drag coefficient [J]. J. Power Sources,2001,101(1):117-125.
    [222] Susai T., Kaneko M., Nakato K. et al., Optimization of proton exchange membranes andthe humidifying conditions to improve cell performance for polymer electrolyte fuel cells[J]. Int. J. Hydrogen Energy,2001,26(6):631-637.
    [223] Voss H. H., Wilkinson D. P., Pickup P. G. et al., Anode water removal: A watermanagement and diagnostic technique for solid polymer fuel cells [J]. Electrochim. Acta,1995,40(3):321-328.
    [224] Yamada M., Li D., Honma I., et al., A Self-ordered, crystalline glass, mesoporousnanocomposite with high proton conductivity of2×10-2S.cm-1at intermediatetemperature [J]. J. Am. Chem. Soc.,2005,127(38):13092-13093.
    [225] Peng H. L., Mo Z. Y., Liao S. J., et al., High performance Fe-and N-doped carboncatalyst with graphene structure for oxygen reduction [J]. Sci. Rep.,2013,3,doi:10.1038/srep01765.
    [226] Franks G. V., Zeta potentials and yield stresses of silica suspensions in concentratedmonovalent electrolytes: isoelectric point shift and additional attraction [J]. J. ColloidInterface Sci.,2002,249(1):44-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700